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Abstract—Segment-Anything model (SAM) is a foundation
segmentation model published in April 2023. Trained on an un-
precedented 11 million annotated images, the model can generate
segmented masks bearing clear-cut contours by integrating user-
provided prompts. It is zero-shot transferable, requiring no task-
specific training. Nevertheless, its applicability for geographic
vision tasks has not been fully evaluated. There is no automated
prompt-feeding method incorporating with SAM that can work
efficiently for purposeful batch processing as well. To fill these
gaps, we developed a process that can be executed automatically
from visual-prompts extraction to road width measurement,
utilizing OpenStreetMap (OSM) and SAM. By examining the
quality of segmentation in various image contexts, we evaluated
the capacity and limitations of SAM working on aerial imagery.
Through comparing measured widths to VicRoads records, we
validated the specially designed width-measuring algorithm for
high precision and accuracy. After this process, prompt-indicated
zero-shot approach in solving basic geographic vision tasks is to
be shaped synchronously on both theory and application ends.

Index Terms—prompt, Segment Anything, zero-shot, without
training, OpenStreetMap, road extraction, road width, remote
sensing, aerial imagery

I. INTRODUCTION

The Coupling between remote sensing and vision-based

technology has been long established. It is consolidated with

the wide use of deep learning (DL). DL processes large-scale

data using deep neural networks to extract substantial Earth

information from remote sensing images. This information, in

turn, plays an indispensable role in finding better solutions to

geographic problems in any spatial or temporal coverage. [1]

As high-resolution remote sensing images and advanced DL

models become more accessible, many previously challenging

tasks become less difficult. In the light of a newly published

pre-trained DL model Segment-Anything, or SAM, this paper

attempts to re-evaluate a long-standing geographic task: road

extraction from remote sensing images and find an efficient

method for accurate width measurement based on road shapes

extracted.

SAM [2] is a prompt-indicated segmentation foundation

model which is trained on a SA-1B dataset composed of

1 billion masks and 11 million images, the largest of its

kind to date. By being given simple prompts, e.g., points,

boxes etc., the model can generate segmented objects with

Fig. 1: Sample result from automated-SAM segmentation on

an area of ∼ 702, 768m2 in Melbourne, Australia

clear boundaries. Prompt-approach is seldom found in the

vision-based artificial intelligence (AI) field, even if it was

largely used and achieved fair success in other sub-fields like

natural language processing. SAM is claimed as zero-shot

applicable on new datasets or tasks. No specific training is

required. Considering the scale of data required to train SAM,

the investment of time and resources maybe unaffordable for

many AI researchers. Transferability is a compelling method

to provide an alternative resource efficient approach to quick
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use, limited scope extension, or modification of foundation

models to achieve comparable results to training. However,

this is impossible without a better understanding of the model’s

inherent capacity and limitations. An assessment of SAM is

therefore required.

Road extraction is a typical geographic task. Despite numer-

ous studies that have been undertaken in the last decade, this

task remains non-trivial in terms of the difficulty in finding a

simple, coherent, robust, and transferable method. The task,

though challenging, is fundamental for many extended appli-

cations or topics, such as smart cities, digital twin, autonomous

driving, road safety, healthy and sustainable transport etc. The

task is also basic for other tasks that need to rely on its output,

for example, road width measurement can only be possible on

clear road shapes extracted. A re-evaluation of road extraction

using SAM will support these advanced usages.

In this research, an automated process integrating OSM with

SAM is used to extract road shapes from aerial images while

SAM is assessed to understand its capacity and transferability.

Fig. 1 displays the qualitative result automatically generated

by the process for a 16384x12288pixels image. Road widths

are subsequently measured using an efficient algorithm for

accurate width values.

This paper will contribute to the following areas:

• Evaluation of the applicability of prompt-indicated seg-

mentation foundation model without task-specific training

• Evaluation of zero-shot transferability in terms of prompt

effectiveness, image context and their relationship

• Development of a simple, cost-efficient, explainable,

transferable method for road width measurement

II. RELATED WORK

SAM was introduced only recently; hence online papers

are mostly not peer-reviewed, and few can be found related

to remote sensing except the following listed. The favourable

boundary accuracy of SAM encouraged the generation of

large, labelled datasets for training involved tasks [3]. Broadly

evaluated real-world applications in [4] indicate substantial

limitations of SAM but it is not clear whether the errors are

derived from prompts or the model itself. SAM was found

incapable in road segmentation regardless of prompt type in [5]

and generally inappropriate for overhead imagery. However, it

displayed encouraging performance in synthetic aperture radar

(SAR) imagery for glaciology that may benefit climate or

Earth science [6]. Tuned SAM was used in [7] to detect land-

forms on Mars. Adapter for prompt fine-tuning was applied in

[8] for shadow or camouflage object detection. These papers

embody a good start for SAM evaluation, especially the road

segmentation assessed in [4] and [5], but considerable work is

still needed towards comprehensive understanding.

Road extraction as a basic graphic task has been widely

studied. Width measurement, however, has not been suffi-

ciently examined. Here width refers to the shorter side-to-

side distance of a two-dimensional road shape which needs

to be extracted first from image. A survey [9] listed extensive

previous work on road extraction from 2D or 3D remote

sensing data in the last decade. In the 2D field, applied

semantic segmentation (SS) methods can be classified into

3 types: 1) morphological feature-based processing including

opening, closing, derivative map etc. 2) machine learning

methods such as histogram of oriented gradient, scale-invariant

features, support vector machine etc. 3) deep learning models

mostly based on FCN, CNN, U-NET or GAN. All methods

are tailored to perform road extraction for a fixed dataset.

Refinement or error-reducing techniques are required for post-

processing since output masks normally contain noise or

outline errors due to SS involved pixel-level prediction and

classification. Consequently, over-complexity is induced in

width measurement [10] [11] [12] [13]. SAM conversely has

only mask-level prediction [14], which can generate masks

with clear contours. No post-processing is needed. Given the

manifest geometry of road, the algorithm of width measure-

ment can be much simplified.

In the following content, the whole process is generally

described in Section III-A and details are elaborated in Section

III-B–III-G to ensure replicability. Results of road extraction

are discussed in relation to image context (size, content) in

Section IV, in which Section IV-A is an overview of the

results showing the model’s capacity and limitations; Section

IV-B is about the correlation between image size or content

complexity and prompt effectiveness. Width measurements are

listed in Section IV-C where measured values are compared

with government published values, if available, to check the

correctness of the whole process. Conclusion and future work

are discussed in Section V.

III. METHOD

A. General description

The process is designed based on two main questions: a)

How does the process generate prompts automatically and feed

them to SAM? b) How does it measure width of road extracted

from aerial imagery? As illustrated in Fig. 2, steps 1 through

4 is the solution to question a, while steps 5 and 6 give the

answer to question b. OpenStreetMap (OSM) [15] is integrated

in the process at the beginning to produce prompts for SAM

and assists in width measurement. OSM is vital in arriving at

correct width results while SAM is responsible for the quality

1) Aerial image

collection

2) OSM line map

3) Point prompts
4) SAM

segmentation

5) Width
measurement

6) Width validation

Fig. 2: Automated process for road width measurement
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of road extraction. Yes/No steps could be added for scalable

workflow to a larger dataset, but it is not the focus of this

research. An example will be used to explain each step in-

detail in the following sections.

B. Aerial image collection

Aerial imagery of Melbourne are provided by MetroMap, a

surveying services provider in Australia. The 5cm resolution

imagery is captured by MetroCam, a self-developed high-

flying camera system, in January 2020. Initially collected tiles

(256x256) are concatenated into images (4096x4096) as in

Fig. 4.

C. OSM line map

The bounding box of the geolocated image (Fig. 4) is used

to capture road (line) map of interest from OSM as Fig. 5,

which is a part of Melbourne’s drive map, captured by OSMnx

[16] “graph from place” specifying network type as “drive” for

all drivable roads in Melbourne as shown in Fig. 3.

D. Point prompts

The line map in Fig. 5 indicates the location of the road as

indicated in OSM in the corresponding aerial image in Fig. 4

and can serve the purpose of prompts. Therefore, points can

be selected from that line to form point prompts as input to

SAM.

Points can be randomly or purposely selected. According

to some initial experimental results, we propose to divide the

square space of 4096x4096 image into 9 smaller almost-equal-

sized blocks by adding virtual lines vertically and horizontally.

The bounding boxes of formed blocks are the combinations

of intervals ([0,1365], (1365,2731), [2731,4096]) on either

dimension. By selecting the points located at the median

position in each block, we can get maximum 9 points for

the whole image. The purpose is to ensure evenly distributed

efficient prompts while avoiding boundary positions.

The line in Fig. 5 is expected to cross 3 virtual blocks in

the 1st column, so that 3 points will be picked as its point

prompts.

E. SAM segmentation

Points attained from the last step are automatically fed

into SAM as positive prompts to segment the desired object.

SAM is set to select the best mask as the output from

initially generated 3 masks for ambiguity tolerance. [2] The

ground-truth level segmentation as shown in Fig. 6 indicates

the effectiveness of the selected point prompts. Its clear-cut

boundary can facilitate width measurement.

F. Width measurement

The segmented road mask from step 4 (III-E) is blended

with the line map from step 2 (III-C) via interpolation alpha

factor 0.8 in Fig. 7. Partial misalignment can be found in

the blended image where OSM line is supposed to be the

centreline of the road. The blended image is used to measure

widths through the following sub-steps:

1) Finding the fastest path: If the OSM white line in Fig. 7

is written as an array, all positions of white pixels can be sorted

and listed as [[0, 226]... [1, 228]... [2, 230] . . . ]. To get the

fastest path the line resides, the array can be simplified by

extracting the mid-point pixel from each column, as indicated

in orange in Fig. 9. Mid-point pixels are calculated using (1),

and the connection of them constitutes the fastest path.

stp+ ceil((shp− stp)/2) (1)

This approach ensures no minor direction change of the road

will be missed in any fine increment analysis while computing

can remain efficient by processing only about one fifth of the

original pixels in the later calculations.

2) Adding perpendicular lines for width pixels: The OSM

line was simplified into a list of discrete pixels in the last

step and a vector formed by any two consecutive pixels from

that list can indicate the position and orientation of a small

portion of the road. V1, consisting of the first and second mid-

point pixels, [0, 228] and [1, 230], represents the orientation

of the road at point [1,230] with the length between points,

[0, 228] and [1, 230] (Fig. 9, upper-right). The vector V2 that

is perpendicular to V1 can be found through (2).

V 1 · V 2 = 0 (2)

The line extended from vector V2 represents the width of

the road at point [1,230], which is drawn as zero-width red

line in the blended image in Fig. 8. The number of pixels the

red line crosses the road area (shadowed) is counted as 73 in

this image as width pixels.

3) Converting width pixels to meters: We can convert

width pixels to meters in the same ratio as image width to

longitudinal coverage or height to latitudinal covered distance

as (3).

image width(height)

lon(lat) coverage
=

width pixels

road width
(3)

The longitudinal and latitudinal coverages for the sample

image are calculated using haversine formula to be 242.336

and 242.332 meters respectively. Therefore, 242 is considered

safe to use as the conversion factor at any orientation in that

image. The 73 width pixels is then converted to 5.6 meters

via (3).

Measured widths are local at certain point with respect to

its local orientation and subject to change with the location of

that point. Therefore, the overall width needs to be determined

by the most frequent value in multiple measurements. By

selecting points from (1) at an interval, e.g., 50, a list of widths

can be measured as follows,

[5.6, 9.6, 10.7, 10.7, 10.2, 10.7, 10.7, 11.0, 10.8, 10.6]

The most frequent value, 10.7m, is ultimately chosen as the

final estimate for the width of the road in Fig. 4. The smaller

interval set; the more measurements will be generated for a

finer-grained width analysis.
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Fig. 3: Melbourne’s road network of

drivable roads

Fig. 4: Aerial image sample Fig. 5: Cropped line map from OSM

corresponding to the scene in Fig. 4

Fig. 6: SAM segmented road is

masked in blue and prompt points are

annotated as green stars

Fig. 7: Blended image of segmented

mask and OSM line map (misalign-

ment detected)

Fig. 8: Added perpendicular line to

road orientation in red

Fig. 9: Finding the fastest path that OSM line resides (white

pixels are on OSM line, orange pixels are selected; stp: starting

position; shp: shift position)

G. Width validation

“Road width and number of lanes” [17] is a dataset attained

from VicRoads incorporated with the Department of Transport

and Planning in the State government of Victoria, Australia.

We capture each width record from this dataset using the

same bounding box mentioned in III-C as a reference value.

However, VicRoads dataset is not map-structured containing

all geographic locations. Bounding box approach can fail when

the road of interest was recorded at a location outside that box

and width cannot be directly read. The sample image fell into

this category. But if the road name “Hume” was queried in

the VicRoads csv file, 2083 entries called “Hume Highway”

can be found with width values around 11-12m, not far away

from the measured value of 10.7m.

In the next section, width comparison will be conducted

when reference values can be directly captured from the Vi-

cRoads dataset using bounding boxes. 47 out of 139 processed

roads are compared to their reference values.

IV. RESULTS AND DISCUSSION

In the initial small batch test, we found that SAM works

best in the single-road-no-intersection scenario, the error rate
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increases with the complexity of roads in the image, such as

higher number of roads and intersections, or higher variety in

the classification of roads. However, limiting this complexity

is not considered as an issue since image size for analysis

can be customized. Therefore, we think the success rate on

less-complex images, e.g., single-road-no-intersection, two-

roads-one-intersection, etc., is a better indicator to reflect the

capacity of SAM in road extraction, and it is relied on for

complex images to expect good results when simpler sub-

images are processed separately.

A. SAM segmentation results

Out of 2025 mainly single-road-no-intersection images

(4096x4096), SAM generated 1873 ground-truth-level results

through maximum 9 point-prompts. Sample results in Fig. 10

show robustness in various image contexts, compact building

surroundings, or heavy forest etc. The model also made 152

wrong segmentations. Three types of reasons are identified

for failures: errors in OSM, occlusion and SAM failures.

Corresponding quantities and percentages are summarized in

TABLE I. Wrong segmentation exclusively caused by SAM

is less than 1% in the total batch. OSM error and occlusion

occupied 7%, which is not higher compared with other 2D

remote sensing published papers. Details are explained in

Section IV-A1–IV-A3.

TABLE I: AERIAL IMAGERY SEGMENTATION

SAM Segmentation results
Total number Good Bad

2025 1873 152

Classified reasons for bad results:
OSM
error occlusion

SAM
failure

92 54 6
60.5% 35.5% 4%

1) OSM error: The first possible reason is that OSM or

aerial images are out of date. As in Fig. 11, there is no road

shown in original image (OSM err-1o), but OSM indicates

a road and results in the wrong segmentation (OSM err-1s).

The second possible reason is road centerlines may have been

misaligned in OSM. It can be partially misaligned as in Fig. 7

where the 3rd point is almost out in the enlarged view, or

totally offset from the actual roads as in Fig. 11 (OSM err-

2s).

2) Occlusion: Vertical occlusions can confuse SAM when

prompts are placed on them. It is inevitable in 2D images when

large greenery covers roads or there is vertical construction

built above roads, e.g., trees and bridges are wrongly seg-

mented in Fig. 11 (Occ-1s) and (Occ-2s) respectively, even

though OSM line maps are correct.

3) SAM failure: Failure cases exclusively caused by SAM

deserve more attention. Firstly, when roads look similar or

identical to its adjacent objects, SAM showed difficulty in

segmenting them. 4 out of 6 belong to this situation as

sampled in Fig. 11 (SAM err-1o) in which 3 original images

containing hardly visible but still recognizable roads by human

eyes cannot work in SAM. This may indicate segmentation is

realized based on image morphological features, not the class

of the object the model understands through given prompts.

Secondly, the model tends to predict larger area as positive

than ground-truth when it does not work, and no clear reason

can be found as 2 pairs of sources (SAM err-2o) and results

(SAM err-2s) in Fig. 11.

Another source of error is from the point prompts exactly

located on shadows, which are excluded in most correctly

segmented results. Pointing to shadows can confuse the model

to generate wrong prediction which can be equally disagreed

by successful cases.

In more complex content images, the segmentation success

rate dropped significantly since the errors discussed above

can be accumulated. Nevertheless, promising results are not

uncommon as in Fig. 12. Stable good results can be expected

when complex images are considered as compositions of

separately processed simpler ones.

B. Image-size effect

Image size, representing the complexity of roads in one im-

age, plays a role in the success rate of SAM segmentation. To

verify how it works, we tested one failed image (4096x4096)

in its half (2048x2048), 1/4 (1024x1024) and 1/16 (256x256)

size. The result is improved gradually with the reducing size

and complexity of images as in Fig. 13. Some images can

get decent segmentation after one-time size reducing as the

top two samples in Fig. 14 while 50% of the bottom two

samples needs further size-reducing. A decision is to be made

on whether a new iteration is required. Here may exist a trade-

off between the speed of processing and the stability of results.

When the image size was decreased to 256x256, one new

phenomenon is found as in Fig. 15. The prompts help to

generate a narrow white symbol line on the street. This

indicates the model is good at finding differentiable edges even

on extremely narrow or small objects once the prompts are all

correctly placed. But on the other hand, the model has little

understanding of the meaning of prompts.

C. Width measurement

Width is measured in the sampled 139 images out of

the 1873 successfully segmented images, in which 47 can

find their bounding-box-captured VicRoads records leading to

a one-to-one comparison shown as curves in red and blue

respectively in Fig. 16. The loess-smoothed curve in green is

largely aligned with the reference curve. As discussed in the

Section II, width measurement is not as actively studied as

road extraction in recent years. The comparison with previous

work is only conducted on available results as listed in TABLE

II. The 47-image accumulated pixels in our work cover a larger

geographic area. The higher error rate in 5-10m range can be

caused by the limited number of sample points; only 12 out

of 47 fall within this range and any large deviation in a small

group can cause significant general error rate. The 10-20m

range, however, performs much better.
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Fig. 10: 1873 images with ground-truth-level segmentation

Fig. 11: 152 images with bad segmentation due to classified

reasons (image title: error type -number of subtype (“o” for

original, “s” for segmented))

TABLE II: COMPARISON WITH PREVIOUS WORK

Image Size (Accu.) , Resolution Error Rate
Width range (m) 5-10 10-20
Guan (2010) [13]

28648x37929pixels, 50cm
29.3% 27.3%

Xia (2017) [12] 32.2% 39.4%
Luo (2018) [11] 7.5% 54.5%

Ours (2023)a 192512x192512pixels, 5cm 36.8% 14.6%
aError rates are calculated from median values.

V. CONCLUSION

SAM model has the ability for direct inference without

training in road extraction application when suitable image

size (content complexity) is chosen, and accurate prompts are

given. Successful results are mostly ground-truth level with

no pre, or post processing required. Therefore, downstream

tasks like width measurement can be conducted efficiently

to make reasonable estimates on real road width using a set

of explicit and easy-replicable algorithms. Comparing with

the previous training-processing-led methods, this workflow

produced comparable results in the 5-10m width category and

much improved ones on 10-20m.

Although SAM showed good capacity on contour process-

ing, it encountered difficulties handling complex or visually

misleading images, which tells its capacity may rely more

on morphological features instead of the understanding on
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Fig. 12: Good segmentation results for complex content

Fig. 13: Segmentation results affected by various image sizes
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Fig. 14: 100% (top two) and 50% (bottom two) segmentation

success due to one-time size-reducing

Fig. 15: 256x256 image with a white symbol line segmented

the object it processed. When conflicted prompts are given,

it tends to predict all confusing areas as positive resulting in

many over-masked results. Some changes on prompt layer for

the model to better understand the meaning of prompts may

prepare it to perform greater in any task.

On the other hand, small image size with less complex

objects contained is a good choice not only for segmentation,

as proved correlation between SAM performance and image

complexity, but also for width measurement in terms of easier

generalization of algorithm from one width to another. In

addition, the use of 3D data could enable the removal of

Fig. 16: Curves show measured values(red) versus recorded

values(blue)

vertical occlusion errors. However, the efficient correction of

OSM errors requires further investigation.
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