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A B S T R A C T

In response to the COVID-19 pandemic, most countries implemented public health ordinances that resulted
in restricted mobility and a resultant change in air quality. This has provided an opportunity to quantify the
extent to which carbon-based transport and industrial activity affect air quality. However, quantification of
these complex effects has proven to be difficult, depending on the stringency of restrictions, country-specific
emission source profiles, long-term trends and meteorological effects on atmospheric chemistry, emission
levels and in-flow from nearby countries. In this study, confounding factors were disentangled for a direct
comparison of pandemic-related reductions in absolute pollutions levels, globally. The non-linear relationships
between atmospheric processes and daily ground-level NO2, PM10, PM2.5 and O3 measurements were captured
in city- and pollutant-specific XGBoost models for over 700 cities, adjusting for weather, seasonality and
trends. City-level modelling allowed adaptation to the distinct topography, urban morphology, climate and
atmospheric conditions for each city, individually, as the weather variables that were most predictive varied
across cities. Pollution forecasts for 2020 in absence of a pandemic were generated based on weather and
formed an ensemble for country-level pollution reductions. Findings were robust to modelling assumptions
and consistent with various published case studies. NO2 reduced most in China, Europe and India, following
severe government restrictions as part of the initial lockdowns. Reductions were highly correlated with changes
in mobility levels, especially trips to transit stations, workplaces, retail and recreation venues. Further, NO2
did not fully revert to pre-pandemic levels in 2020. Ambient PM2.5 pollution, which has severe adverse health
consequences, reduced most in China and India. Since positive health effects could be offset to some extent
by prolonged exposure to indoor pollution, alternative transport initiatives could prove to be an important
pathway towards better health outcomes in these countries. Increased O3 levels during initial lockdowns have
been documented widely. However, our analyses also found a subsequent reduction in O3 for many countries
below what was expected based on meteorological conditions during summer months (e.g., China, United
Kingdom, France, Germany, Poland, Turkey). The effects in periods with high O3 levels are especially important
for the development of effective mitigation strategies to improve health outcomes.
1. Introduction

At the end of 2019, a new, highly infectious and deadly coron-
avirus was detected, transmitted via human-to-human contact (Riou
and Althaus, 2020). Since then, the rapid spread of various variants
of SARS-CoV-2 has put unprecedented pressure on economies and
healthcare systems, resulting in significant morbidity and a death toll
of several million people (World Health Organization, 2021). To slow
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disease transmission, many countries implemented public health or-
dinances that included an array of measures such as mask wearing,
quarantining of positive cases and reduced population mobility across
and between cities. Even before travel and work restrictions were en-
acted and the World Health Organization (WHO) declared a pandemic
on 11 March 2020, mobility dropped dramatically (Google, 2020). By
April 2020, more than half of the world’s population had reduced
vailable online 28 April 2022
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their travel by more than 50% (Forster et al., 2020; Le Quéré et al.,
2020). Heavy restrictions resulted in deserted cities, empty roads and
clear skies in cities frequently blanketed in air pollution (e.g., He
et al., 2020). The enforced reductions in mobility and industrial activity
provide a natural experiment to explore the effects of these activities
on air pollution. For example, it provides an opportunity to investigate
the effects on air quality of decarbonising the road transport system as
part of climate change mitigation.

1.1. Quantifying the impact of COVID-19 lockdowns

During the first seven months following the start of the pandemic,
over 200 papers were accepted for publication that explored changes
in air pollution levels (Gkatzelis et al., 2021). Not all pollutants were
affected equally, due to the different sources of pollution. For example,
secondary pollutants such as O3 form through chemical reactions of
NOx and volatile organic compounds under the influence of solar
radiation (Seinfeld and Pandis, 2016). NO2 is mainly emitted through
fuel combustion from road transport and fossil fuel power plants. PM2.5
is also emitted in these sectors, but mostly from diesel motor vehi-
cles (e.g., commercial heavy-duty diesel trucks) and coal-fired power
stations. It is also generated in other sectors, for example, through
industrial activity and coal-fired winter heating (He et al., 2020). Thu-
nis et al. (2018) allocated PM2.5 emissions in Europe to agriculture
(23%), industry (20%), natural (19%), transport (14%) and residential
(13%) sources. In Scotland, PM2.5 pollution depends mostly on natural
and non-traffic sources (Dobson and Semple, 2020). Although road
transport strongly declined during lockdown periods, some locations
were mainly exposed to pollution sources that were affected to a limited
extent by the pandemic (e.g., agriculture, natural sources). Hence,
besides the stringency of restrictions, the mix of emission sources in
a specific country influences the reduction in air pollution that might
be expected.

1.1.1. Nitrogen dioxide
Studies used either ground-level measurements or satellite remote

sensing to quantify the reduction in NO2 during the initial lockdown
period (i.e., March/April 2020 for most countries). In the United States,
reported NO2 reductions were 20% compared to the corresponding
eriod in 2010–2019 (Bekbulat et al., 2021) and 21.6% compared to
019 (Goldberg et al., 2020). Other studies found average reductions of
.3 parts per billion (reported as −27% compared to 2015–2019, before

de-trending) (Archer et al., 2020) to 4.8 parts per billion (reported as
−25.5% compared to 2017–2019) (Berman and Ebisu, 2020), with the
largest reductions in urban counties. Sharma et al. (2020) found an
average NO2 reduction of 18% compared to 2017–2019 in 22 cities
across India, while Mahato et al. (2020) reported a 53% reduction
compared to the pre-lockdown period in Delhi. In Wuhan, reported re-
ductions were 53.3% compared to the pre-lockdown period (Lian et al.,
2020) and 57% compared to 2017–2019 (Sicard et al., 2020). Sicard
et al. (2020) also found a 53% NO2 reduction in selected European
cities with high pollution levels (i.e., Nice, Rome, Valencia and Turin),
while Bauwens et al. (2020) reported reductions of 27% compared
to 2019 in Western Europe and 40% in China. Reductions varied
substantially between cities (Goldberg et al., 2020). Connerton et al.
(2020) found NO2 reductions of 24% compared to 2015–2019 in New
York City, 25% in São Paulo, 38% in Los Angeles, and 39% in Paris.

NO2 reductions were short-lived and returned towards normal
ranges after the lockdowns ended. For example, Dentener et al. (2020)
observed reductions in the average NO2 tropospheric column of over
50% during March (compared to 2019) in a selection of major Asian
cities. However, over the three-month period from March to May 2020,
reductions were much lower at 15%–20%. Similarly, the observed
three-month reductions were 20% in Germany and the Benelux, 15% in
Italy, 10%–15% in North America, Spain, France, the United Kingdom,
2

Poland and Czech Republic, and 8% in Romania. E
1.1.2. Particulate matter
For particulate matter, results were mixed with large reductions in

some countries and no significant effects in others. Substantial PM2.5
reductions of 36% compared to 2017–2019 (Sicard et al., 2020) and
36.9% compared to the pre-lockdown period (Lian et al., 2020) were
reported for Wuhan. He et al. (2020) found PM2.5 reductions of 21.1
and 7.1 μg/m3 compared to 2019 in Chinese cities with and without
formal lockdowns, respectively. Effects were larger in colder, richer,
and more industrialised cities. Similarly, Giani et al. (2020) found an
average reduction of 14.5 μg/m3 in population-weighted PM2.5 across
China, compared to 2016–2019. In the areas most affected by COVID-
19, two-month average reductions up to 40 μg/m3 were observed. In
India, Sharma et al. (2020) found an average reduction in PM2.5 of 43%
compared to 2017–2019 across 22 cities, while Mahato et al. (2020)
reported a reduction of 39% compared to 2019 in Delhi.

In contrast, the average PM2.5 reduction in Europe was found to
be only 2.2 μg/m3 compared to 2016–2019 (Giani et al., 2020). Re-
ductions in Scotland were very limited (i.e., within 1 μg/m3 compared
to 2017 and 2018), even though motor vehicle journeys reduced by
65% (Dobson and Semple, 2020). Further, Sicard et al. (2020) reported
an average reduction of 4% compared to 2017–2019 in four cities with
high pollution levels in Southern Europe. In the United States, a slight
increase in PM2.5 was observed of 0.28 μg/m3 compared to April 2015–
2019 (Archer et al., 2020). Bekbulat et al. (2021) found a 10% increase
in PM2.5 compared to 2010–2019 and concluded this was within the
normal range of variability.

1.1.3. Ozone
In contrast to the reductions observed for other pollutants, many

studies found increased O3 during lockdown periods. For example,
O3 increases of 17% compared to 2017–2019 were reported for both
Europe (Sicard et al., 2020) and India (Sharma et al., 2020). Sicard
et al. (2020) reported a 36% increase compared to 2017–2019 in
Wuhan, while Lian et al. (2020) found an increase of 116.6% compared
to the pre-lockdown period. Increased O3 levels were also reported for
São Paulo (30% compared to 2015–2019), Paris (12%) and New York
City (7%), while a decrease of 10% was observed for Los Angeles (Con-
nerton et al., 2020). Many studies discussed atmospheric chemistry for
O3 formation as the potential cause of observed ozone increases. O3
titration occurs particularly during winter months if the NOx level is
igh, reducing the O3 level (Sillman, 1999). Hence, reduced NOx during
he initial lockdowns could lead to higher O3 pollution.

.2. Limitations and opportunities

Many papers present case studies for a specific country (e.g., China,
e et al. (2020), Scotland, Dobson and Semple (2020)) or a selection
f cities (e.g., Connerton et al., 2020; Sicard et al., 2020). However,
ery few studies have performed city-level analyses at a global scale.
lobal studies have the advantage that they allow for a consistent
omparison between countries. One example of a global analysis is the
tudy by Venter et al. (2020), finding substantial variations in country-
evel temporal and spatial pollution anomalies for NO2, PM2.5 and O3
hat remain unexplained. Although not considering cities individually,
hey compared pollution changes across 34 different countries.

Multiple confounding factors complicate the attribution of air pollu-
ion to pandemic-related changes. For example, long-term trends in air
ollution can be observed for some pollutants, as government policies
hift towards renewable energy sources. Several studies did not account
or long-term trends in pollution levels, which could lead to incorrectly
ttributing a decrease in air pollution to actions taken during the
andemic. Further, various studies compared 2020 measurements to
quivalent periods in previous years (e.g., 2019, or 2017–2019) without
djustments for weather effects (e.g., Bauwens et al., 2020; Berman and

bisu, 2020; Sicard et al., 2020). This approach can have limitations if
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the weather in 2020 differs from atmospheric conditions in the equiva-
lent historical period (e.g., more rainfall or higher temperatures). Gold-
berg et al. (2020) found that weather variations between years can
cause fluctuations in monthly NO2 levels of approximately 15%. Fur-
ther, Wang et al. (2020) found that benefits of emission reductions
in China during the lockdown period were sometimes overwhelmed
by adverse meteorology, leading to severe air pollution events. These
examples indicate that, in absence of weather adjustments, pollution
estimates need to be averaged over extended time periods to reduce
weather influences; an approach that is taken by many studies (as men-
tioned above). The importance of weather adjustments is frequently
acknowledged, but not often addressed. Specifically, Gkatzelis et al.
(2021) found that two thirds of studies that quantified changes in air
pollution did not correct for weather effects.

Studies that did adjust for weather influences used a variety of
approaches, including difference-in-difference methods (e.g., Navinya
et al., 2020), generalised additive models (e.g., Ropkins and Tate,
2021) and atmospheric chemical transport models (e.g., Zhao et al.,
2020). Further, several studies have investigated the use of machine
learning approaches. For example, Grange and Carslaw (2019) in-
vestigated the normalisation of time series with respect to weather
effects using a random forest model, obtaining time series under av-
erage weather conditions. The use of non-parametric machine learning
methods for meteorological normalisation has considerable advantages
over parametric alternatives such as regression analysis, as atmospheric
processes are complex, non-linear, and variables frequently exhibit
high multicollinearity (Grange and Carslaw, 2019). Further, Petetin
et al. (2020) quantitatively illustrated the benefits of using a machine
learning approach to incorporate meteorological variability, as opposed
to directly comparing measurements in previous years to 2020 levels.
Importantly, machine learning is especially beneficial for accurately
predicting pollution at finer spatial and temporal scales (Petetin et al.,
2020). Therefore, for a robust comparison to daily city-level mobility
data (i.e., fine spatial and temporal scale), accurate weather-normalised
pollution estimates are a prerequisite.

With respect to the selection of a particular machine learning ap-
proach, Ma et al. (2020a), Zamani Joharestani et al. (2019) and Ren
et al. (2020) all found that XGBoost (Chen and Guestrin, 2016) per-
formed better for air pollution modelling than other machine learning
techniques such as random forest and support vector regression. Fur-
ther, Ma et al. (2020b) showed that an XGBoost model significantly
improved the PM2.5 forecasts of an operational atmospheric chemical-
transport model at the Shanghai Meteorological Service. Our research
should be seen in light of these developments. In this paper, we
present a city-level analysis at a global scale, including adjustment for
weather variables such as temperature, wind speed and precipitation.
City- and pollution-specific modelling based on historical atmospheric
data and annual trends, provides air pollution estimates for 2020 in
absence of a pandemic (i.e., a counterfactual, ‘business as usual’ sce-
nario). Various methods were explored to optimise forecast accuracy.
The identified pollution anomalies were then compared to country-
specific government policies intended to limit the spread of COVID-19.
Hence, our research investigates air pollution both at the micro- and
the macro-level. It explores how different countries obtained different
results based on the stringency of restrictions and associated changes
in city-level mobility patterns.

2. Materials and methods

2.1. Data

The following global data sources were selected to provide infor-
mation on air pollution levels, weather, the severity of government
restrictions, and mobility patterns of city residents. Data was checked
3

for completeness, cleaned and processed using Java, Python and R. r
2.1.1. Pollution
The World Air Quality Index project (AQICN, 2021) provides

ground-level readings of pollutants for cities in 132 countries sourced
from world-wide environmental protection agencies. Daily measure-
ments of NO2, PM10, PM2.5 and O3 were downloaded over the period
2015–2020 for approximately 900 cities (i.e., a subset of the 1692
largest cities in the world (United Nations, 2015) for which suffi-
cient data was available). All measurements were a 24-h average of
hourly readings, accounting for the local time zone. Since the data
provider quoted pollution measurements in terms of AQI levels based
on standards of the Environmental Protection Agency (Gilliam and Hall,
2016), measurements were converted back to their original unit for
comparative analysis in this study. Our final dataset consisted of NO2
and O3 measurements in parts per billion (ppb) and PM10 and PM2.5
measurements in μg/m3.

2.1.2. Weather
Meteorological data was obtained from the ERA5 reanalysis (Hers-

bach et al., 2020) of the European Centre for Medium-Range Weather
Forecasts, providing a large range of atmospheric, land and oceanic
climate variables. Importantly, the ERA5 reanalysis combines past ob-
servations with models to generate globally consistent time series,
while limiting missing data. Hourly (solar radiation and precipitation
only) and 8-hourly ERA5 data was downloaded at a 0.25◦ × 0.25◦ reso-
ution via the Copernicus Climate Change Service Climate Data Store.
sing each city’s latitude and longitude coordinates (United Nations,
015), daily city-level information was extracted from the grid cell
ontaining the location of the city centre. The following atmospheric
nd land-based variables were obtained for each 24-h period based on
he local time zone:

– mean air temperature at 2 m above the surface (K);
– total net solar radiation at the surface (J m−2);
– total precipitation (m);
– mean wind speed (m s−1);
– mean wind direction (degrees); and
– mean leaf area index of vegetation (m2 m−2).

.1.3. Stringency index
Governments adopted a broad variety of (initial) approaches to

eal with the COVID-19 pandemic, ranging from trying to maintain
usiness as usual (e.g., Brazil, Sweden), to imposing strict lockdowns
nd border closures in attempts to eliminate the virus (e.g., China,
ew Zealand). A globally consistent assessment of the stringency of

hese policy measures has been provided by the Oxford COVID-19
overnment Response Tracker (Hale et al., 2021). This daily, country-

evel stringency index is based on a combination of containment and
losure policies, providing an overall score of a country’s physical
istancing policies between 0 (no restrictions) and 100 (most severe
estrictions). Components of the stringency index include the severity
f restrictions on gatherings, cancellation of public events, stay-at-home
equirements, school, university, workplace and public transport clo-
ures, local, regional and international travel controls, and the presence
f public information campaigns. The stringency index purely evaluates
he strictness of government policies, without providing a qualitative
ssessment on the appropriateness of restrictions.

.1.4. Mobility
Google’s COVID-19 Community Mobility Reports (Google, 2020)

ere downloaded to assess the mobility patterns of city residents. These
eports are based on GPS location information of users who had turned
n Location History on their mobile phone. Google assigns location
nformation to places using six categories: retail and recreation, grocery
nd pharmacy, parks, transit stations, workplaces, and residences. The
otal number of visitors is recorded for each category, except for

esidences which is measured by average time spent. Reports provide
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Fig. 1. Flowchart describing the modelling process that was followed for each city and pollutant.
a daily percentage change, comparing actual mobility to levels before
widespread disruptions due to the pandemic. Baseline mobility levels
represent the median value for the corresponding category and day
of week during the five-week period between January 3 and February
6, 2020. The Community Mobility Reports consist of county/province-
level data to preserve privacy. In this research, county-level data was
fully allocated to a single city when a city was located inside the
county area (i.e., Clark County for Las Vegas), or combined when the
city extended across multiple counties (i.e., Bronx, Kings, New York,
Queens, and Richmond counties for New York City).

2.2. Modelling

As air pollution levels strongly depend on meteorological condi-
tions, pollution forecasts should be adjusted for weather-related effects
before analysis. In this study, the relationship between weather and air
pollution was modelled based on historical data from January 2015
until December 2019. A separate model was calibrated (i.e., fitted) for
each city, as city topography and the presence of pollution sources in
or near the city have a strong influence on the impact of changes in
weather. For example, southerly winds in Melbourne (Australia) trans-
port clean maritime air masses to the city, while the same southerly
winds in continental Europe might bring in pollution from nearby
cities. Further, four separate models were calibrated for pollutants NO2,
PM10, PM2.5 and O3. To ensure a sufficient amount of ground-level
ollution data is available for model calibration and analysis, cities
ere excluded if less than 365 training samples were available or more

han 30 pollution measurements in 2020 were missing. This led to a
ample of 720, 710, 751 and 707 cities for NO2, PM10, PM2.5 and O3,

respectively. Fig. 1 provides a schematic overview of the modelling
process for each city and pollutant, which is described in more detail
in the following paragraphs.

City-specific model forecasts based on the actual weather in 2020
provided an indication of pollution levels if the COVID-19 pandemic
had not occurred. Model forecasts for 2020 were then compared to
observed air pollution levels in 2020 to obtain the forecast errors
(i.e., residuals). Residuals of the model consist of (i) imperfections
in the statistical model for the weather–pollution relationship, (ii)
the impact of pandemic-related government restrictions and reduced
mobility on air pollution, and (iii) other confounders such as bushfires.
Therefore, it is important to model the weather–pollution relationship
with high accuracy, reducing noise in subsequent analyses.

2.2.1. XGBoost
Machine learning was used to model city-specific air pollution with

weather-related variables. Specifically, this study used XGBoost, an eX-
treme Gradient Boosting algorithm based on decision trees. XGBoost is
an adaptation of gradient boosting machines (Friedman, 2001), which
4

perform additive optimisation in functional space. This means that a
Table 1
Initial and reduced hyperparameter sets for grid search.

Hyperparameter Initial set Final set

𝜂 {0.01, 0.05, 0.10} {0.01, 0.05}
𝜏𝑑 {2, 4, 5, 6, 8, 10} {5, 6, 8}
𝜏𝑠 {1, 3, 5, 7} {5, 7}
𝜌𝑠 {0.5, 0.6, 0.7, 0.8, 1} {0.5, 0.6}
𝜌𝑓 {0.8, 1} {1}

sequence of decision trees is calibrated, where each decision tree aims
to explain the residuals left by the previous tree. Compared to gradient
boosting machines, XGBoost adds a regularisation constraint to the
objective function to prevent overfitting and includes several method-
ological improvements to enhance scalability. Model calibration was
performed on the University of Melbourne’s high-performance comput-
ing system (Lafayette et al., 2016), using the XGBoost implementation
in R.

2.2.2. Hyperparameter tuning
XGBoost has several hyperparameters that influence the learning

process. For example, the shrinkage parameter 𝜂 controls the learning
rate of the algorithm, by scaling down the contribution of each decision
tree to the pollution estimate. Generally, a low 𝜂 leads to a more robust
model by limiting the influence of a single decision tree, although
resulting in longer calibration times (i.e., more trees are required).
Further, constraints on the structure of each decision tree can limit
model complexity. These constraints include the maximum depth of a
tree (𝜏𝑑) and the minimum number of samples required in a single node
of a tree (𝜏𝑠). The latter reduces complexity by preventing further splits
when the data does not provide sufficient evidence (i.e., only a small
number of samples is available at the node). Further, the calibration
of each decision tree using a random sample of the data can improve
model performance by reducing the correlation of subsequent trees.
Sub-sampling can be controlled using hyperparameters for the ratio
of training samples (𝜌𝑠) and the ratio of features (𝜌𝑓 ) that is used for
model calibration.

In this study, hyperparameters were tuned using grid search. Initial
experiments used a large grid for a small sample of models (𝑛 = 45;
15 cities and 3 pollutants). The initial grid, presented in Table 1, led
to a total of 720 combinations of hyperparameter values. However,
extensive experimentation on the high-performance computing cluster
was not feasible using a grid search this large. Note that a single
experiment involved calibrating 2888 XGBoost models, capturing over
700 cities and four different pollutants. Further, each of these model
calibrations involved a grid search over the hyperparameter space,
including a five-fold cross-validation for each possible combination of

the hyperparameters and up to 1000 decision trees per sub-model.
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Table 2
Selected features for XGBoost models.

Variable Description

𝑇 Air temperature at 2 m altitude, day 𝑡
�̄� Air temperature at 2 m altitude, mean of days 𝑡–3, 𝑡–2, 𝑡–1
𝑆 Net solar radiation at the surface, day 𝑡
�̄� Net solar radiation at the surface, mean of days 𝑡–3, 𝑡–2, 𝑡–1
𝑃 Total precipitation, day 𝑡
𝑃 Total precipitation, sum of days 𝑡–3, 𝑡–2, 𝑡–1
𝑣 Wind speed, day 𝑡
𝜙 Wind direction, day 𝑡
𝐿 Leaf area index of vegetation, day 𝑡
𝑌 Year of observation

Experiments using the full grid aimed to narrow down the range of
yperparameter values that performed well on our dataset. Hyperpa-
ameter combinations were ranked based on lowest root mean squared
rror (RMSE) in cross-validation. The final set of hyperparameter values
n Table 1 were frequently present in the top models of the sampled
ities. Therefore, a grid search over these values, a total of 24 hyperpa-
ameter combinations, was used for the full-scale experiments in this
tudy. In particular, a low learning rate (𝜂 ∈ {0.01, 0.05}) reduced

overfitting by making the boosting process more conservative. Further,
the minimum number of instances required in each node was increased
from the default setting (i.e., 1) to improve generalisability (𝜏𝑠 ∈ {5,
7}). Sub-sampling was applied to samples, but not to features. That is,
either 50% or 60% of observations was selected at random to calibrate
each decision tree, while a tree could use all weather-related variables.
Besides limiting overfitting, sub-sampling also reduced computation
time for a single tree, aiding the processing of many cities. Strongly
restricting the maximum depth of each tree did not lead to good overall
accuracy. Hence, values for this hyperparameter were set to 𝑑 ∈ {5, 6,
8}.

2.2.3. Feature selection
Various feature selection experiments explored the best approach to

incorporate the meteorological variables in the XGBoost models, based
on the mean absolute error (MAE) of out-of-sample forecasts for the
first two weeks of January 2020. This indicated that some variables
have increased prediction power at different time lags. It was explored
whether to include the value on the day itself, day 𝑡–1, 𝑡–2, 𝑡–3, or
the average over the last or preceding three days (𝑡–2 to 𝑡, or 𝑡–3 to
𝑡–1), taking into account interactions with the other features. Adding
additional features capturing weather during the preceding three days
improved model accuracy the most. Specifically, the total precipitation,
mean temperature and mean solar radiation over the preceding three
days were added as features. Wind speed and direction were most
predictive when measured on the day itself. Since the leaf area index
did not fluctuate substantially from day to day, only the measurement
on day 𝑡 was used. Finally, a time variable was included to capture any
annual trends in air pollution levels, as government policies sometimes
resulted in a negative trend over the 2015–2019 period (e.g., cleaner
fuels, gradual introduction of electric vehicles, etc.). An overview of the
final selection of variables is provided in Table 2.

Some variables that have potential to further improve pollution
forecasts have not been included in the modelling on purpose. For
example, a ‘day of week’ variable can explain weekly patterns in air
pollution caused by mobility fluctuations (i.e., limited travel during
weekends). However, since mobility will be explored later on, models
did not incorporate any mobility-related variables even if this could
have led to higher accuracy. The only features used in the XGBoost
models were atmospheric, vegetation-related and temporal variables,
capturing weather, seasonality and any annual trends in air pollution
5

levels.
2.2.4. Model forecasts and assessment
Final XGBoost models were calibrated using the full training set,

containing the features in Table 2. Models used the city- and pollutant-
specific hyperparameter set that resulted in the lowest RMSE in cross-
validation. To improve explainability, variable importance in the final
models was assessed through ranking. Specifically, tree-based models
such as XGBoost allow for an investigation of the contribution of each
feature to the model (i.e., gain). The gain quantifies how important
a feature is in making a branch of a decision tree more pure, based
on the sum of improvements in squared error over all internal nodes
where the feature was chosen as a splitting variable (Hastie et al., 2009,
p. 367–368). The averaged feature importance characteristics over all
decision trees in one XGBoost model provide an overall score of feature
importance. Feature importance was explored in various case studies to
provide further insights into the modelling approach.

Each calibrated model was used to predict air pollution levels for
the corresponding city and pollutant throughout 2020. These weather-
based forecasts for 2020 do not incorporate any pandemic-related
reductions in emissions. Hence, forecasts provide a counterfactual in-
dication of pollution levels had a pandemic not occurred (i.e., the
XGBoost models are agnostic of the pandemic). The differences between
2020 forecasts and the actual pollution measurements in 2020 are
referred to as ‘unexplained pollution’, representing the meteorology-
normalised reduction in air pollution. Importantly, a separate XGBoost
model was calibrated for each city, independently. Therefore, city-
specific air pollution models provide a multi-model ensemble forecast
for the unexplained pollution in a country (i.e., for air pollution in large
cities with a population over 300,000).

Finally, the unexplained NO2 pollution was selected to explore
associations with mobility patterns using the Google Mobility Reports.
Motor-vehicle traffic is a major source of NO2 pollution, while many
emission sources/processes contribute to PM10, PM2.5 and O3 levels.
Since the NO2 pollution has been adjusted for weather influences,
seasonality and annual trends, unexplained pollution estimates could
theoretically be allocated to mobility levels on a day-to-day basis.
However, the Google Mobility Reports used a different baseline for each
day of the week, complicating the analysis of mobility data for consec-
utive days. Therefore, 7-day smoothing was applied to both time series
for a more robust comparison. The Google Mobility Reports stratify
mobility reductions based on trip purpose. A correlation analysis was
performed to determine which type of trips were most highly associated
with unexplained NO2 levels. Correlations were computed between 15
February and 15 April 2020, capturing more regular mobility levels
during the pre-lockdown period and subsequent reductions during the
lockdown period. Analysis was performed at a country-level, showing
how these relationships varied, globally.

3. Results

3.1. Micro level

3.1.1. Model fit
In total, 2888 XGBoost models for the weather–pollution relation-

ship were calibrated, corresponding to 720, 710, 751 and 707 cities for
NO2, PM10, PM2.5 and O3, respectively. The average explained varia-
tion in training data, as measured by 𝑅2, was 86.3%, 85.8%, 86.2%
and 86.3% for each of these four pollutants. A wide variety of sea-
sonal patterns were observed for different cities and pollutants, which
were adequately captured by the XGBoost models. For example, Fig. 2
provides out-of-sample XGBoost model forecasts for 2020, showing
NO2 in Chongqing, PM10 in Antwerpen and PM2.5 in Ulaanbaatar. The
assessment of out-of-sample performance using 2020 measurements
is complicated, because of the influences of the pandemic. However,
results of further statistical model validation have been provided in
Section 3.3.
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Fig. 2. Actual (black) and forecasted (blue) pollution levels for (a) NO2 in Chongqing,
China; (b) PM10 in Antwerpen, Belgium; and (c) PM2.5 in Ulaanbaatar, Mongolia.

3.1.2. Feature importance
Tables 3 and 4 show the feature importance statistics per pollutant,

computed across all calibrated XGBoost models. For each feature in
Table 3, the corresponding gains of all 2888 models were averaged
to obtain the mean gain. Note that the gain is an indicator of relative
feature importance (i.e., how important is a feature compared to the
other features) and the gains across all features sum to 1. The three-
day temperature average and the leaf area index were the most useful
features for NO2, PM10 and PM2.5, while the current solar radiation

as most important for O3. Variations in temperature and the amount
f foliage throughout the year are both indicators of seasonal influences
hat affect air pollution levels. Urban vegetation also impacts pollution
evels directly by removing a substantial amount of NO2 and particulate
atter from the air (Nowak et al., 2006). In contrast, temperature

evels have a significant effect on the emission of pollutants into the
tmosphere. For example, the increased pollution levels in Ulaanbaatar,
ongolia (see Fig. 2c) were mainly caused by the use of heating stoves

nd heat only boilers during winter (The World Bank, 2009). The
GBoost models were in line with these observations, as �̄� was the
ost important feature to predict air pollution in Ulaanbaatar (i.e., �̄�

gain = 0.695 for PM2.5). High temperatures can also result in increased
pollution levels through atmospheric chemistry (von Schneidemesser
et al., 2015) or increased energy consumption such as through the use
of air conditioning (Davis and Gertler, 2015). For example, Fig. 2b
shows increased PM10 levels during the early August 2020 heat wave
n Belgium, captured accurately by the XGBoost model.

The top features per pollutant were not always the best-performing
eatures, as considerable variation in feature importance was observed
cross cities (see Table 4). For example, wind direction was the most
mportant feature for several coastal cities (e.g., Liverpool, Nantong,
akarta). In these cities, clean ocean air can substantially reduce pol-
ution levels, while unfavourable wind conditions transport pollution
6

t

Table 3
Average feature importance of temperature (𝑇 , �̄� ), leaf area index (𝐿), precipitation
(𝑃 , 𝑃 ), wind speed (𝑣) and direction (𝜙), solar radiation (𝑆, �̄�) and year (𝑌 ). The

ost important feature per pollutant is underlined.
Feature Mean gain NO2 PM10 PM2.5 O3

𝐿 0.134 0.137 0.126 0.142 0.131
�̄� 0.127 0.152 0.136 0.153 0.064
𝑇 0.110 0.105 0.094 0.108 0.133
𝑆 0.107 0.063 0.076 0.076 0.218
𝑣 0.105 0.129 0.108 0.109 0.071
𝑃 0.092 0.075 0.118 0.122 0.052
�̄� 0.088 0.076 0.071 0.076 0.131
𝑃 0.086 0.095 0.111 0.062 0.076
𝜙 0.082 0.081 0.095 0.088 0.065
𝑌 0.069 0.087 0.066 0.064 0.059

Table 4
As per Table 3, but showing the number of cities where the feature was the most
important feature.

Feature Overall NO2 PM10 PM2.5 O3

𝐿 631 160 146 203 122
�̄� 549 169 182 188 10
𝑇 329 101 46 76 106
𝑆 361 1 25 8 327
𝑣 261 109 52 91 9
𝑃 193 18 85 85 5
�̄� 124 31 9 21 63
𝑃 182 58 87 12 25
𝜙 125 14 60 46 5
𝑌 133 59 18 21 35

from other cities or nearby power plants into the city. This asser-
tion is supported by air pollution, wind speed and wind direction
observations during 2015–2019. Bivariate polar plots of these obser-
vations (created using the polarplotr/openair R package by Carslaw
and Ropkins, 2012) illustrate how air pollution levels in these cities
varied based on wind direction and speed. In Liverpool (Fig. 3a), wind
directions between East-northeast (ENE) and South-southeast (SSE)
transport particulate matter from nearby cities Manchester, Birming-
ham and London, and continental Europe into the city (Graham et al.,
2020). Further, wind directions from the ocean transport clean mar-
itime air masses, substantially reducing air pollution in Liverpool and
Nantong (Fig. 3a–b).

Wind speed was a slightly more informative feature in NO2 models
than in PM10, PM2.5 and O3 models. In contrast, the total precipitation
over the past three days (𝑃 ) was more useful for predicting PM10 and
PM2.5 than NO2 and O3. This finding is consistent with the larger
washout effect of precipitation for particulate matter compared to
NO2 (Yoo et al., 2014). Due to many null observations, 𝑃 and 𝑃
are not a differentiating feature in cities with a mostly dry climate
(e.g., {𝑃 , 𝑃 } gain = {0.023, 0.019} and {0.024, 0.010} for PM10 and
PM2.5 in the semi-arid climate of Aguascalientes, Mexico). However,
he precipitation variables rank highly for some cities with a sufficient
mount of rainfall. For example, 𝑃 was the most influential predictor
or PM2.5 in Kathmandu (Nepal), which receives a substantial amount
f rain annually while the local topography limits the ability of wind
o clear the area of pollution (see Fig. 3c). Overall, the results of the
eature importance analysis support our approach to model air pollu-
ion separately for each city and pollutant. This allowed the XGBoost
odels to adapt to the distinct urban features, climate and atmospheric

onditions for each city, individually.

.2. Macro level

After exploring micro-level effects in Sections 3.1.1 and 3.1.2, this
ection will focus on macro-level effects. Figs. 4–6 show the results of
he ensemble forecasts for the unexplained pollution in several coun-

ries, using the XGBoost models of all corresponding cities. The figures



Atmospheric Pollution Research 13 (2022) 101438J.S. Wijnands et al.

p

a
a

Fig. 3. Bivariate polar plots of pollution compared to wind direction and speed, as observed during 2015–2019.
resent the absolute reduction in NO2, PM2.5 and O3, stated in ppb,
μg/m3 and ppb, respectively. For brevity, PM10 has not been included,
s country-level results showed similar patterns for unexplained PM2.5
nd PM10 (even though PM2.5 and PM10 models were calibrated inde-

pendently). The unexplained pollution is the difference between 2020
measurements and the forecasts of the XGBoost models using weather,
vegetation and temporal variables. Hence, these outcomes are agnostic
of the pandemic and the associated restrictions on mobility. However,
the unexplained pollution matched the timing of the restrictions in
different countries very well. In particular, the unexplained pollution
in China peaked between late January and early February, consistent
with the lockdown during this period (see first column of Fig. 4).
In other countries, the peaks were observed around early April. In
larger countries such as China and India, regional lockdowns led to
larger confidence intervals, as restriction levels varied across cities (He
et al., 2020). In smaller countries restrictions generally applied more
uniformly, resulting in narrower confidence intervals. As the XGBoost
models did not incorporate mobility-related variables, many of the
unexplained pollution charts still showed 7-day temporal patterns. This
is especially visible for NO2 in the United States and several Euro-
pean cities, showing 52 peaks of reduced pollution corresponding to
weekends in 2020. The same patterns can be observed for the mobility
time series, for example, capturing different effects of the pandemic on
workplace travel during weekdays and weekends.

Besides differences in timing, the amplitude of the pollution re-
ductions also varied substantially between countries. For NO2, the
largest reductions were observed in China, India and Europe. Further,
the amplitude of NO2 reductions was in line with the magnitude of
observed reductions in mobility for the corresponding country. Large
reductions in PM2.5 were mainly observed for China and India. Note
that in absolute terms only slight reductions in PM2.5 were apparent
for some countries. However, these reductions were still substantial
in relative terms, as the regular ranges of PM2.5 levels were already
significantly lower than in China and India to start with. Since negative
health effects are computed based on absolute levels, less benefits may
be obtained in these countries by interventions targeting reductions in
mobility, or alternative transport initiatives.

Most existing studies have investigated air pollution during the
initial lockdown periods in March and April 2020. Our study found
that after the initial lockdowns, NO2 and PM2.5 emissions did not
fully return to pre-pandemic levels. Reduced mobility during most of
2020 led to a sustained reduction in air pollution, although not to
the same extent as during the initial lockdowns. For O3, many studies
reported an increase during the initial lockdowns (see Section 1.1.3),
consistent with our results. However, from June/July to September, our
analyses found a subsequent reduction in O3 for many countries below
what was expected based on meteorological conditions (e.g., China,
United Kingdom, France, Germany, Poland, Turkey). This period cor-
7

responds to summer in the Northern Hemisphere, when O3 levels are
normally elevated. Note that photochemical production of O3 at mid
and high latitudes in the Northern Hemisphere is low in winter due to
reduced sunlight and temperatures (Dentener et al., 2020). Most studies
reported increases in O3 during March and April, from already low
levels. However, the implications in periods with high O3 levels are
especially important with respect to health consequences. This should
be investigated further in future research.

Figs. 4–6 also illustrate the effects of different baselines for each day
of the week in the mobility dataset. This resulted in positive peaks dur-
ing weekends, corresponding to lower mobility reductions with respect
to already low baseline levels (e.g., see workplace travel). In con-
trast, the unexplained NO2 pollution estimates showed negative peaks
during weekends. Table 5 reports correlations after 7-day smoothing
between the NO2 and mobility time series from mid-February to mid-
April, linking mobility patterns for each country to the unexplained
pollution levels. Correlations were reported for all countries where
at least one city was modelled, noting that one city with complete
measurements resulted in 𝑛 = 61 data points. For various countries, the
total unexplained NO2 pollution was highly correlated with changes
in mobility levels. Exposures for each trip type were different per
country (e.g., travel to workplaces may constitute the majority of trips),
indicating that policy interventions in some categories may be more
promising to explore than others. Trips to transit stations, workplaces,
retail and recreation venues generally had a higher correlation with
unexplained pollution than trips to groceries and pharmacies. Further,
park visits varied significantly between countries. In most of the Nordic
countries (Denmark, Finland, Norway) the correlations between park
usage and unexplained pollution were opposite to the rest of the world,
presumably because the baseline levels for park visits during winter
were very low due to the cold weather conditions in these countries.

3.3. Robustness of results

To assess the impact of modelling assumptions used in this re-
search, various alternative approaches were explored. Specifically, the
weather–pollution relationship was modelled using linear regression,
generalised linear models (GLM) using various link functions, and
random forests. The goodness-of-fit on training data, averaged across
all cities and pollutants, varied from linear regression (𝑅2 = 36.7%),
Gamma GLM with inverse link function (𝑅2 = 40.6%), random for-
est (𝑅2 = 50.3%), to XGBoost (𝑅2 = 86.2%). As the goodness-of-fit
of each model was different, Table 6 shows the variation of model
fit across cities. Further, a time series modelling approach without
weather variables was explored. As the time series forecasting approach
differed substantially from our preferred XGBoost method described in
Section 2.2, it is described here in more detail. First, one time series was
created per pollutant and city based on pollution measurements during
2015–2019. Missing values were imputed, or the time series was dis-

regarded if there were too many missing values. Each remaining time
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Fig. 4. Unexplained NO2 (ppb) and PM10 (μg/m3) across cities, stringency of COVID-19 restrictions, and mobility patterns for China, United States and Italy. Shading indicates
50, 80 and 90% confidence intervals. Google mobility data was not available for China; US park visits between mid-August and September had data quality issues.
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Fig. 5. As Fig. 4, but for Spain, France and Germany. Park usage in France and Germany exceeds + 100% during summer months, compared to the January baseline.
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Fig. 6. As Fig. 4, but for India, Japan and United Kingdom.
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Table 5
Correlations between mobility and unexplained NO2, computed per country from mid-February to mid-April.

Country Maximum
stringency

n Transit
stations

Workplaces Retail and
recreation

Grocery and
pharmacy

Parks Residential

Croatia 96.3 46 0.98 0.97 0.98 0.94 0.91 -0.97
Colombia 88.0 61 0.97 0.97 0.97 0.94 0.97 -0.97
Serbia 100.0 61 0.96 0.96 0.95 0.94 0.92 -0.96
Denmark 72.2 61 0.92 0.91 0.92 0.84 -0.60 -0.92
Bosnia and Herzegovina 92.6 61 0.90 0.89 0.88 0.84 0.83 -0.90
Israel 94.4 177 0.86 0.82 0.82 0.80 0.75 -0.84
Finland 67.6 122 0.80 0.78 0.76 0.80 -0.48 -0.81
Bolivia 84.3 36 0.78 0.78 0.79 0.78 0.77 -0.78
Indonesia 71.8 61 0.72 0.79 0.78 0.74 0.72 -0.81
Spain 85.2 693 0.76 0.77 0.75 0.73 0.74 -0.80
Romania 87.0 183 0.77 0.76 0.76 0.74 0.75 -0.77
Hungary 76.9 61 0.73 0.75 0.74 0.84 0.77 -0.75
Belgium 81.5 60 0.76 0.73 0.76 0.74 0.57 -0.75
Austria 81.5 61 0.73 0.72 0.72 0.69 0.73 -0.73
Portugal 88.0 122 0.68 0.71 0.68 0.74 0.67 -0.70
France 88.0 1213 0.70 0.72 0.69 0.68 0.69 -0.72
New Zealand 96.3 122 0.69 0.69 0.72 0.74 0.66 -0.66
Switzerland 73.2 181 0.73 0.64 0.71 0.66 0.21 -0.68
Italy 93.5 1085 0.66 0.70 0.67 0.69 0.66 -0.71
Czech Republic 82.4 94 0.59 0.60 0.55 0.64 0.25 -0.58
China 81.9 427 0.45 0.59 0.51 0.70 0.29 -0.69
Brazil 74.5 329 0.61 0.62 0.57 0.51 0.63 -0.62
Germany 76.9 1303 0.54 0.57 0.58 0.65 -0.06 -0.57
Ireland 90.7 28 0.56 0.58 0.59 0.59 0.57 -0.57
Estonia 77.8 61 0.61 0.52 0.59 0.57 0.49 -0.59
South Africa 88.0 271 0.57 0.58 0.55 0.51 0.49 -0.58
Vietnam 96.3 108 0.66 0.46 0.57 0.67 0.79 -0.42
United Kingdom 79.6 1387 0.57 0.58 0.55 0.48 0.37 -0.59
Norway 79.6 61 0.56 0.57 0.57 0.48 -0.34 -0.55
Poland 83.3 488 0.50 0.56 0.49 0.54 0.49 -0.52
Bulgaria 73.2 105 0.46 0.41 0.41 0.28 0.31 -0.40
Mongolia 65.7 61 0.42 0.23 0.46 0.32 0.20 -0.35
United States 72.7 3961 0.34 0.36 0.37 0.20 0.02 -0.37
India 100.0 1594 0.30 0.32 0.30 0.32 0.29 -0.33
Argentina 100.0 94 0.32 0.28 0.30 0.35 0.30 -0.30
Chile 73.2 183 0.34 0.34 0.27 0.17 0.15 -0.37
North Macedonia – 61 0.25 0.30 0.25 0.31 0.11 -0.24
Japan 45.4 1038 0.41 0.29 0.34 -0.06 -0.06 -0.35
Canada 74.5 755 0.29 0.25 0.27 0.19 0.22 -0.27
Netherlands 79.6 305 0.22 0.24 0.30 0.19 0.14 -0.26
Mexico 82.4 781 0.16 0.16 0.18 0.27 0.21 -0.14
Thailand 76.9 549 0.16 0.16 0.17 0.15 0.17 -0.17
Turkey 77.8 774 0.22 0.12 0.10 0.07 0.15 -0.10
Slovakia 87.0 61 0.09 0.11 0.11 0.15 0.30 -0.10
Sweden 64.8 122 0.08 0.06 0.02 0.03 0.04 -0.06
South Korea 82.4 1464 -0.05 0.21 -0.03 -0.42 -0.42 -0.07
series was decomposed into seasonal, trend and remainder components
using Loess (STL) (Cleveland et al., 1990). The trend and remainder
components were then recombined and used to calibrate an ARIMA
model. A 2020 forecast was computed as the prediction of the ARIMA
model plus the seasonal component obtained earlier. This resulted in
city- and pollutant-specific 2020 forecasts based purely on historical
air pollution data, without adjustments for weather variables. Since
pollution data until the end of 2019 was used for model calibration,
the time series forecasting approach is also agnostic to the COVID-19
pandemic.

Machine learning methods such as XGBoost tend to overfit on train-
ing data. To provide an indication of out-of-sample performance, Fig. 7
provides examples of the actual pollution levels in 2020 and predictions
using the various modelling approaches for NO2 in Ürümqi (China)
and Santiago (Chile), and PM10 in Pune (India). All methods correctly
captured the seasonal pollution patterns of the different cities. Notably,
Ürümqi experienced multiple COVID-related lockdowns. Besides the
initial lockdown in China during February and early March, residents
of Ürümqi were locked inside their homes from 18 July to 31 August
as part of very severe lockdown restrictions. Based on the weather
during these periods, all methods forecasted substantially higher levels
of NO2 than measured. In Santiago (Chile), NO2 pollution normally
11

increases during winter in the Southern Hemisphere. Chile experienced
Table 6
Variation of model fit across cities, measured using 𝑅2.

Percentile Linear model Gamma GLM Random forest XGBoost

10th 18.4% 23.4% 31.1% 74.8%
20th 25.3% 29.6% 38.7% 80.9%
30th 29.8% 34.0% 43.6% 84.4%
40th 33.6% 38.0% 47.5% 86.7%
50th 36.6% 41.2% 51.2% 88.5%
60th 40.1% 44.4% 54.5% 90.0%
70th 43.6% 47.8% 58.5% 91.5%
80th 47.9% 51.6% 62.7% 92.9%
90th 54.4% 56.3% 68.2% 94.7%

a severe outbreak of COVID-19 during 2020 and residents in Santiago
were subject to an extended 143-day lockdown period from March
to mid-August. The various methods were consistent in predicting
substantially higher NO2 levels for the counterfactual scenario, based
on the observed weather. Finally, the large seasonal PM10 fluctuations
in Pune (India) were captured accurately, including pollution spikes
in November 2020, although forecasts also showed some variations
between methods.

Tables 7 and 8 provide a statistical assessment of out-of-sample

performance. The accuracy of pollution forecasts for the first two weeks
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Fig. 7. Actual (black), XGBoost (blue), linear regression (red), Gamma GLM (orange),
andom forest (light blue) and time series (green) forecasts for (a) NO2 in Ürümqi,
hina; (b) NO2 in Santiago, Chile; and (c) PM10 in Pune, India.

Table 7
MAE of forecasts during the first two weeks of January 2020, for different modelling
approaches.

Time series Linear model Gamma GLM Random forest XGBoost

NO2 (ppb) 5.45 5.01 5.19 4.40 4.18
PM10 (μg/m3) 28.02 21.76 21.78 21.78 21.09
PM2.5 (μg/m3) 20.01 16.69 17.96 16.58 16.68
O3 (ppb) 6.68 7.52 8.20 6.05 6.28

Table 8
RMSE of forecasts during the first two weeks of January 2020, for different modelling
approaches.

Time series Linear model Gamma GLM Random forest XGBoost

NO2 (ppb) 6.54 5.95 6.47 5.37 5.13
PM10 (μg/m3) 34.07 26.81 27.89 26.50 26.18
PM2.5 (μg/m3) 24.44 21.20 24.09 20.65 21.02
O3 (ppb) 8.08 8.93 9.72 7.37 7.60

of January 2020 was computed based on MAE and RMSE across all
cities. The effects of the pandemic on mobility levels were not as
widespread in early January 2020. Hence, forecasting errors during
this period can, to a large extent, be attributed to the quality of the
statistical models, except for instances where increased pollution was
not related to weather effects (e.g., the large-scale bushfires in Australia
in January 2020, or reduced travel during the holiday period). Results
show that the XGBoost models obtained the best out-of-sample perfor-
mance, except for PM2.5 and O3, where the random forest approach led
to a slightly lower MAE and RMSE.

Importantly, when aggregating results to country level, the alterna-
tive approaches led to similar results, but with an increased level of
noise (see Fig. 8). The XGBoost method presented in this study had the
12
highest prediction accuracy (based on training and out-of-sample data)
and hence, provides the most accurate assessment of the impact of the
pandemic on pollution levels. It also led to smaller confidence intervals
compared to a time series or linear modelling approach. Replication
of the main results using alternative methodologies provides further
confidence in the robustness of the presented results. Deep learning
methods have not been investigated in this study, but could potentially
further improve accuracy.

Some XGBoost models had a lower goodness-of-fit on training data
than the 86% average 𝑅2, for example, due to remaining data quality
issues or external events impacting pollution levels during 2015–2019.
To assess the sensitivity of the results to model quality, various exper-
iments were performed with different exclusion criteria for XGBoost
models with a reduced quality of fit. For example, experiments were
conducted that excluded XGBoost models with an 𝑅2 on training data
below 50%. This resulted in the exclusion of only 21 out of 2888
models (i.e., 0.7%) and had limited effects on the overall results. Fi-
nally, various experiments were performed using air pollution measure-
ments obtained via satellite remote sensing, as opposed to ground-level
measurements. Ground-level measurements were preferred, leading to
improved correlations of the unexplained pollution with the mobility
time series.

4. Discussion

The attribution of changes in air pollution levels for primary and
secondary pollutants due to COVID-19 is complex. For example, the
impact on primary pollutants is affected by the source profile of emis-
sions applicable in a specific country. Government restrictions during
the pandemic generally impacted transport emissions heavily and in-
dustrial activity to a lesser extent. In contrast, other sources such as
agriculture were largely unaffected, while residential emissions mostly
increased due to stay-at-home orders. Attribution is further complicated
by government policies in response to climate change, extreme events
such as large-scale bushfires, and weather conditions impacting atmo-
spheric chemistry, emission levels, and the in-flow of particulate matter
from nearby countries. Our study attempted to disentangle some of
these confounding factors to directly compare absolute reductions in
pollutions levels due to the COVID-19 pandemic, globally.

4.1. Consistency with other publications

Daily meteorology-normalised pollution estimates were obtained for
a wide variety of countries. As the temporal and spatial coverage is
a superset of most other studies, results can easily be compared to
those reported elsewhere. Table 9 provides a comparison to studies
that investigated a specific country, region, or city. Our estimates are a
slice of the full results for the same location/region and time period as
reported by the respective study. Note that differences are expected due
to variations in methodology, confounding factors that were adjusted
for (if any), as well as the historical baseline period for reporting the
change. Table 9 is presented for reference purposes and not intended
to be an exhaustive comparison to all studies published in this domain.

Overall, results of our global analysis are broadly consistent with
the patterns found in published region-specific case studies. For exam-
ple, Archer et al. (2020) and Berman and Ebisu (2020) both investi-
gated air pollution anomalies in the United States. Archer et al. (2020)
compared the average NO2 levels in April to the corresponding period
in 2015–2019, observing a mean reduction of 2.02 ppb and reductions
up to 8 ppb for some locations. Adjustments for the annual trend (but
not for weather effects) led to a final estimate of −1.3 ppb. Berman and
Ebisu (2020) found NO2 reductions of 4.8 ppb in daily 1-h maximum
NO2 between 13 March and 21 April, compared to a baseline of 2017–
2019, without adjustments for trends or weather effects. Our study
found reductions in between these studies: a 2.5 ppb weather- and
trend-adjusted reduction in 24-h average NO2 between 1 April and 30
April, and 2.9 ppb between 13 March and 21 April.
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Fig. 8. Sensitivity analysis, showing unexplained NO2 (ppb) across cities in China (top row) and Italy (bottom row) for different modelling approaches. Shading indicates 50, 80
and 90% confidence intervals.
Table 9
Comparison of results to other studies that quantified air pollution changes during lockdowns in 2020.

Study Region Time period Pollutant Reported estimate Our estimate

Adams (2020) Ontario, Canada 22-Mar–25-Apr NO2 −2 ppb −1.9 ppb
Adams (2020) Ontario, Canada 22-Mar–25-Apr PM2.5 0 μg/m3 −0.6 μg/m3

Adams (2020) Ontario, Canada 22-Mar–25-Apr O3 −1 ppb 1.1 ppb
Archer et al. (2020) United States 1-Apr–30-Apr NO2 −2.02, −1.3 ppba −2.5 ppb
Archer et al. (2020) United States 1-Apr–30-Apr PM2.5 0.05, 0.28 μg/m3a −0.1 μg/m3

Berman and Ebisu (2020) United States 8-Jan–12-Mar NO2 −1.17 ppb −0.6 ppb
Berman and Ebisu (2020) United States 13-Mar–21-Apr NO2 −4.76 ppb −2.9 ppb
Berman and Ebisu (2020) United States 8-Jan–12-Mar PM2.5 −0.29 μg/m3 −0.6 μg/m3

Berman and Ebisu (2020) United States 13-Mar–21-Apr PM2.5 −0.28 μg/m3 −0.1 μg/m3

Connerton et al. (2020) Los Angeles, USA 1-Mar–31-Mar PM2.5 −2.99 μg/m3 −1.9 μg/m3

Connerton et al. (2020) New York, USA 1-Mar–31-Mar PM2.5 −2.03 μg/m3 −4.5 μg/m3

Connerton et al. (2020) Paris, France 1-Mar–31-Mar PM2.5 −2.56 μg/m3 −2.4 μg/m3

Connerton et al. (2020) São Paulo, Brazil 1-Mar–31-Mar PM2.5 −0.54 μg/m3 −0.3 μg/m3

Jia et al. (2020) Memphis, USA 25-Mar–4-May PM2.5 0.3 μg/m3 0.1 μg/m3

Jia et al. (2020) Memphis, USA 25-Mar–4-May O3 −1.9 ppb −1.6 ppb
Ordóñez et al. (2020) Europe 15-Mar–30-Apr NO2 −9.2, −13.1 μg/m3b −10.7 μg/m3

Ordóñez et al. (2020) Europe 15-Mar–30-Apr O3 6.2, 0.1 μg/m3b 4.5 μg/m3

Petetin et al. (2020) Spain 14-Mar–29-Mar NO2 −3.4, −5.6 ppbc −5.9 ppb
Petetin et al. (2020) Spain 30-Mar–9-Apr NO2 −5.2, −7.4 ppbc −6.8 ppb
Petetin et al. (2020) Spain 10-Apr–23-Apr NO2 −4.3, −6.8 ppbc −6.1 ppb
Ropkins and Tate (2021) United Kingdom 10-Mar–10-Apr NO2 −4.16, −7.58 μg/m3d −8.1 μg/m3

Ropkins and Tate (2021) United Kingdom 10-Mar–10-Apr PM2.5 4.79, 5 μg/m3d −1.7 μg/m3

Ropkins and Tate (2021) United Kingdom 10-Mar–10-Apr O3 6.96, 7.39 μg/m3d 5.8 μg/m3

Tanzer-Gruener et al. (2020) Pittsburgh, USA 14-Mar–30-Apr PM2.5 −2.8 μg/m3 −1.7 μg/m3

Venter et al. (2020) China 24-Jan–15-May PM2.5 −16 μg/m3 −9.2 μg/m3

Venter et al. (2020) India 29-Feb–15-May PM2.5 −15 μg/m3 −15.6 μg/m3

Zheng et al. (2020) Wuhan, China 23-Jan–22-Feb PM2.5 −24.8 μg/m3 −28.9 μg/m3

aComparison to 2015–2019 and trend-adjusted change, respectively.
bComparison to 2015–2019 and meteorology-adjusted change, respectively.
cMeteorology-normalised changes at background and traffic sites, respectively.
dBreak-point/segment analyses for urban background and traffic sites, respectively.
.2. Limitations

Our study has a few limitations. For example, smaller countries
id not have as many XGBoost models available for a multi-model
nsemble forecast, resulting in larger observed variations. Further,
ajor cities with a population over 300,000 were investigated in this

tudy to provide country-level pollution estimates. Since pollution is
omparatively high in urban locations, other studies may find lower
eductions in pollution when also including rural areas. For the Google
OVID-19 Community Mobility Reports, it should be noted that the
ccuracy of place categorisation may vary from country to country.
owever, as mobility is reported as the percentage change from base-

ine in the same country, the measurements are consistent within a
ountry. Alternative data sources include Apple Maps Mobility Trends
eports (Apple, 2020), providing daily percent changes in Apple Maps
13
routing requests from baseline levels at January 13, 2020. However, a
limitation of this data source is that travellers mainly require routing
information for new routes and the full extent of daily mobility on
routes that are well-known to a traveller may not be captured.

4.3. Impact

It is well known that exposure to air pollution can lead to ad-
verse health outcomes, such as respiratory and cardiovascular illnesses.
Every year, ambient air pollution results in an estimated 4.2 million
and 254,000 premature deaths from PM2.5 and O3 exposure, respec-
tively (Cohen et al., 2017). Indoor air pollution leads to an additional
3.8 million deaths per year, caused by the use of solid fuels and
kerosene for heating and cooking (World Health Organization, 2018).
Globally, over half of deaths related to PM exposure occur in China
2.5
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and India. PM2.5 emissions related to residential energy use have the
largest impact on mortality in these countries (Lelieveld et al., 2015).
Our study shows the largest reductions in ambient particulate matter
during the pandemic occurred in China and India, where adverse health
consequences of air pollution are most prevalent. Other studies have
shown that mobility reductions also influence the intraday patterns of
air pollutants. For example, mobility restrictions could eliminate the
morning rush-hour peak in PM2.5, reducing acute exposures in high-
traffic environments (Tanzer-Gruener et al., 2020). However, He et al.
(2020) found that PM2.5 levels in China during lockdown periods were
still four times higher than the WHO air quality guidelines for annual
mean PM2.5 of 10 μg/m3 (World Health Organization, 2006). Lockdown
periods also resulted in elevated exposure to indoor particulate matter.
For example, residents in India spent over 30% more time at home
during the initial lockdown (see Fig. 6). Although targeting mobility
reductions in these countries can be effective in reducing exposure
to ambient air pollution, the unintended consequences of increased
exposure through indoor pollution should be carefully considered in
any interventions.

With respect to O3, reduced titration with NOx and volatile organic
compounds was discussed in many studies as an explanation for in-
creased O3 levels. This process is the dominant mechanism affecting
O3 levels in winter (Yang et al., 2019). The majority of studies have
investigated pollution levels during the initial lockdown, which oc-
curred during late winter and early spring in the Northern Hemisphere.
Our study also observed increased O3 in various countries during these
initial lockdowns. However, a subsequent reduction in O3 was observed
during summer months in the Northern Hemisphere (i.e., below levels
expected based on meteorological conditions), which was outside the
period of investigation of many other studies. As these reductions
occurred when O3 levels typically peak, this period is important to
nvestigate with respect to the health consequences of altered O3 levels.
ence, the formation of O3 is an important research question to in-
estigate further, especially in relation to the development of effective
itigation strategies.

. Conclusions

The COVID-19 pandemic has prompted extraordinary measures to
imit disease transmission, restricting mobility of citizens around the
orld. These restrictions also influenced air pollution, although quan-

ification has proven to be complex. The aim of our study was to
isentangle confounding factors in a city-level analysis at a global scale.
on-parametric machine learning methods were used to model the non-

inear relationship between atmospheric processes and air pollution,
djusting for weather, seasonality, trends and city characteristics such
s topography. Daily pollution levels throughout 2020 were predicted
n a counterfactual scenario, agnostic of the pandemic, and compared to
he observed air pollution. Finally, city-level predictions were assessed
or each country, providing a country-specific multi-model ensemble
orecast for the meteorology-normalised pollution reductions. It was
hown that results were broadly consistent with those reported else-
here. Hence, one of the contributions of this study is showing how

ase studies could be scaled up to a global level.
The unexplained pollution matched the timing of government re-

trictions in different countries very well, based on data from the Ox-
ord COVID-19 Government Response Tracker. The largest reductions
n NO2 were observed during the initial lockdowns in China, Europe
nd India. Further, pollution did not fully revert to pre-pandemic
evels throughout 2020. For particulate matter, the largest absolute
eductions occurred in China and India. In many countries, increased
3 levels were observed during the initial lockdowns, which has been
ocumented widely (see Section 1.1.3). Reduced titration of O3 with
Ox and volatile organic compounds was generally postulated as the
ain driver; this process is the dominant mechanism affecting O3 levels

in winter. However, during the summer period from June/July to
14
September, our analyses found a subsequent reduction in O3 for many
countries below what was expected based on meteorological conditions
(e.g., China, United Kingdom, France, Germany, Poland, Turkey). This
was outside the period of investigation of many other studies, but
important for the development of effective mitigation strategies with
respect to health consequences. The adverse health consequences of
air pollution are most prevalent in China and India. Although targeting
mobility reductions in these countries can be effective in reducing expo-
sure to ambient air pollution, the unintended consequences of increased
exposure through indoor PM2.5 pollution should be carefully considered
in any intervention. Note that in many countries, NO2 reductions were
highly correlated with changes in mobility levels, especially trips to
transit stations, workplaces, retail and recreation venues. Therefore,
alternative transport initiatives for these type of trips, such as electric
vehicles, bicycles and ride sharing, could be an important pathway
towards improved health outcomes.
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