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Abstract
The World Health Organization has listed the design of safer intersections as
a key intervention to reduce global road trauma. This article presents the first
study to systematically analyze the design of all intersections in a large coun-
try, based on aerial imagery and deep learning. Approximately 900,000 satellite
images were downloaded for all intersections in Australia and customized com-
puter vision techniques emphasized the road infrastructure. A deep autoencoder
extracted high-level features, including the intersection’s type, size, shape, lane
markings, and complexity, which were used to cluster similar designs. An Aus-
tralian telematics data set linked infrastructure design to driving behaviors cap-
tured during 66 million kilometers of driving. This showed more frequent hard
acceleration events (per vehicle) at four- than three-way intersections, relatively
low hard deceleration frequencies at T-intersections, and consistently low aver-
age speeds on roundabouts. Overall, domain-specific feature extraction enabled
the identification of infrastructure improvements that could result in safer driv-
ing behaviors, potentially reducing road trauma.

1 INTRODUCTION

Each year, motor-vehicle crashes cause an estimated 1.35
million fatalities around the world and a further 50 mil-
lion people incur nonfatal injuries (WHO, 2018). In fact,
road deaths are the eighth leading cause of death glob-
ally and road traffic injuries are the number one cause of
fatalities among individuals aged 5–29 years (WHO, 2018).
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International bodies, such as the World Health Organiza-
tion (WHO) and the United Nations (UN), have identi-
fied traffic safety as a pressing issue to be addressed. The
UN has highlighted the need to reduce deaths and injuries
caused by traffic accidents and to improve road safety
as part of the Sustainable Development Goals 3 and 11
(UN, 2015). Furthermore, in recognizing the growing epi-
demic of road traffic deaths, the UN proclaimed the years

346 wileyonlinelibrary.com/journal/mice Comput Aided Civ Inf. 2021;36:346–361.

 14678667, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.12623 by N
H

M
R

C
 N

ational C
ochrane A

ustralia, W
iley O

nline L
ibrary on [08/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

mailto:jasper.wijnands@unimelb.edu.au
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/mice


WIJNANDS et al. 347

2011 to 2020 as a decade of action for road safety. The sug-
gested strategic directions to reduce road trauma include
improving road infrastructure and design, changing road
user behavior, and enhancing vehicle safety. In particular,
WHO argues that policymakers need to provide a greater
focus on improving road design to reduce road injuries and
deaths (WHO, 2018). For example, it has listed the design
of safer intersections as a key intervention to improve road
safety in its Save LIVES campaign (WHO, 2017).
The impact of intersection design on crash risk has

been explored extensively (e.g., Björklund & Åberg, 2005;
Young, Salmon,&Lenné, 2013). It has been recognized that
the design of roads can be adapted to promote safe driving
behavior, for example, through the introduction of round-
abouts, signalized intersections, or speed humps (Martens,
Comte, & Kaptein, 1997). Torok (2011) noted that altering
road design to limit unsafe driving behavior is an easier
and more time-effective solution to improving road safety
than attempting to change driver behavior. In particular,
Devlin, Candappa, Corben, and Logan (2011) argued that
roads should be designed to minimize the occurrence or
consequence of driver error. Such a concept is reflected in
the “Safe System” approach adopted by many countries,
focusing on creating safer roads, roadsides, and vehicles to
accommodate human error when driving (OECD, 2008).
Intersections have been identified as crash “hot spots”

for dangerous driving leading to crashes (Tay & Rifaat,
2007). According to Choi (2010), intersections are partic-
ularly hazardous due to activities such as turning across
traffic, with the potential for obstructed views or inade-
quate surveillance while turning. Further, there are many
possible points of conflict with other road users, includ-
ing pedestrians, cyclists, and motorcyclists (Devlin et al.,
2011). Transportation authorities such as the American
Association of State Highway and Transportation Officials
and the Transportation Association of Canada have pro-
vided detailed design guidelines for intersection configu-
rations (TAC, 2017; AASHTO, 2018). These guidelines take
into account traffic characteristics, physical elements, and
human and economic factors. For example, safety can be
affected by physical elements such as traffic islands, traffic
lights, or the angle of the intersection. Many studies have
reported that roundabouts offer the safest intersection type
for road users (e.g., Rodegerdts et al., 2007).

1.1 Current risk mitigation approaches

Efforts to reduce road trauma include the development
of passive and active in-vehicle safety systems, the anal-
ysis of police-reported crash data to identify high-risk
areas, driving simulator experiments, and site-specific

case studies. For example, accident black spot initiatives
have treated many intersections where crashes are com-
mon (e.g., BITRE, 2012). Traffic environments have been
investigated using various approaches, including cameras
placed at the intersection location (Sayed, Ismail, Zaki,
& Autey, 2012; Thompson, Wijnands, Mavoa, Scully, &
Stevenson, 2019), in-vehicle cameras (Dingus et al., 2006),
and surrogate measures such as time-to-collision (Vogel,
2003). Further, Anwaar, Anastasopoulos, Ong, Labi, and
Islam (2012) performed country-level analyses using sum-
mary statistics to inform road safety policies. The availabil-
ity of detailed micro-level data at this large scale provides
opportunities to further enhance road safety.

1.2 Advances in data-driven
methodologies

Recent advances inmethodologies based on artificial intel-
ligence (AI) allow for extensive analyses of large data
sets (Schmidhuber, 2015). Contemporary methods include
convolutional neural networks (CNNs) to analyze images
(Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016), and
stacks of Long Short-Term Memory (LSTM) recurrent
neural networks to process sequential data (Fernández,
Graves, & Schmidhuber, 2007). Whereas these super-
vised learning methods require labeled data, unsupervised
learning enables feature extraction in the absence of labels.
In particular, by using the input data themselves as labels,
autoencoders (AEs) can extract the main features by mini-
mizing the difference between the input and reconstructed
data, while passing the information through a narrow bot-
tleneck layer (Ballard, 1987). Improvements inAE architec-
tures, loss functions, and calibration approaches, such as
partially corrupting input data, have further improved the
robustness of extracted features (e.g., Vincent, Larochelle,
Bengio, & Manzagol, 2008).
In the road safety domain, various applications have

been proposed that incorporate these AI techniques. These
applications include monitoring driving behavior using
AEs (Guo, Liu, Zhang, & Wang, 2018) or LSTM recurrent
neural networks (Wijnands, Thompson, Aschwanden, &
Stevenson, 2018), drowsiness detection using CNNs (e.g.,
Park, Pan, Kang, & Yoo, 2017; Wijnands, Thompson, Nice,
Aschwanden, & Stevenson, 2020), and style transfer using
generative adversarial networks to identify safe infrastruc-
ture design (Zhao et al., 2019). All these deep learning
implementations require very large data sets formodel cal-
ibration. With respect to further optimizing intersection
design, the following large-scale data sources provide par-
ticular opportunities: (i) in-vehicle telematics technology
and (ii) satellite imagery.
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1.3 In-vehicle telematics technology

As crashes are rare events, small sample sizes complicate
the analysis of causation with respect to road design fac-
tors (Devlin et al., 2011). Therefore, new large-scale data
sources that capture driving behavior continuously could
be valuable for exploring intersection safety, especially to
identify near-miss events and minor crashes not recorded
in police reports. In-vehicle telematics technology uses a
smartphone application or a device installed into the on-
board diagnostics port of a vehicle to record driving behav-
ior from GPS information (Cassias & Kun, 2007). Some
insurance companies use telematics devices to calculate
personalized insurance premiums based on a driver’s style,
behavior, and ultimately, their crash risk (Handel et al.,
2014). Its other uses include commercial fleet monitoring
and performance monitoring for novice drivers (Horrey,
Lesch, Dainoff, Robertson, & Noy, 2012; Stevenson et al.,
2018).

1.4 Satellite imagery

Large-scale data are also available for (relatively) static
information, such as infrastructure design. In particular,
satellite remote sensing provides detailed depictions of
road infrastructure, globally. Most previous studies on this
topic focus on extracting roads from satellite imagery. For
example, Hu, Razdan, Femiani, Cui, and Wonka (2007)
identified potential roads and intersections associatedwith
each pixel in the image to grow a road network, which is
pruned in a final step. Wang, Song, Chen, and Yang (2015)
labeled satellite images with the road direction obtained
from vector road maps and constructed the road net-
work by tracking the predicted road direction in consecu-
tive satellite images. Easa, Dong, and Li (2007) extracted
curves after preprocessing imagery using edge detection
and obtained the road network by connecting all extracted
curves using straight lines. Further, Cadamuro, Muhebwa,
and Taneja (2019) assessed road quality using a combina-
tion of AE and LSTM on raw satellite imagery.
Some studies have attempted to harness the informa-

tion in satellite imagery for road safety analysis. For exam-
ple, Najjar, Kaneko, and Miyanaga (2017) predicted city-
scale road safety maps from raw satellite images. Further,
Zhang, Lu, Zhang, Shang, andWang (2018) used color and
texture information and higher level features from pre-
trained CNNs to identify locations with high crash risk.
Both studies note that images at locations with elevated
crash risk look similar, and distinctly different from the
green colors and rooftops observed in locations with few
crashes. However, this could merely be an indication of
traffic volume and exposes a difficulty for interpreting raw

satellite imagery in research of this kind; addingmore trees
to a complex intersection is unlikely to resolve a road safety
issue. Therefore, what is required is the development of
tailored methods to extract domain-specific features from
raw satellite imagery for road safety analyses. By combin-
ing this with telematics data, our research proposes a deep
learning approach to identify intersection design charac-
teristics associated with (un)safe driving behaviors.

2 METHODS

2.1 Intersection identification

First, all intersection locations in Australia were iden-
tified using Python and OpenStreetMap (OSM). OSM
provides open-source online maps generated by mil-
lions of volunteers. The complete map of Australia was
downloaded from GeoFabrik (2018), providing free, daily
updated maps. Osmosis (2018) was used to extract the
road network of Australia as an OSM XML file. OSM uses
tags to describe various attributes of map elements (e.g.,
“junction:roundabout”, “highway:secondary”). Using
these tags, only the subset of the road network accessible
to motor-vehicles was selected.
The geometry is described in OSMusing three elements:

nodes, ways, and relations, where a node represents a geo-
graphic location, a way is a list of sequential nodes, and a
relation is a collection of nodes and/orways. As a nodemay
appear inmore than one way, intersections were identified
as nodes that appeared in at least two ways. This resulted
in a large collection of three-way intersections, including
T and Y types, four-way intersections, multiway (i.e., more
than four) intersections and nodes on roundabouts. The
initial selection of intersections had to be refined further,
for example, where there was no real-world opportunity
for vehicles to turn (e.g., two-way streets splitting into two
separate one-way roads). Other locations were incorrectly
identified as intersections when the node was an endpoint
of two different ways due to different street names or speed
limits; these locations were also removed. Separated lanes
sometimes led to multiple intersections being identified,
although these points should be represented as a single
intersection (see Figure 1). Therefore, for each set of identi-
fied nodes with small internode distances, the central loca-
tion of the set was computed as the final intersection loca-
tion.As thismerging process is computationally expensive,
a recursive partitioning algorithm was developed for this
process to enable multicore processing.
A separate process was performed for roundabouts,

where subsets of nodes were directly retrieved from the
OSM XML file using the “junction:roundabout” attribute.
For each roundabout, any separated segments were
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WIJNANDS et al. 349

F IGURE 1 Left panel: intersection identification using OSM
geometry with initial steps (small, orange dots) and final location
(large, black dot). Right panel: comparison to satellite imagery

merged and the centroid was calculated based on all iden-
tified, nearby nodes. Checks were performed to remove (i)
any incorrectly labeled segments and (ii) T-intersections of
roads feeding into the roundabout. In total, a set of 903,704
geographic coordinateswas obtained, corresponding to the
centers of the intersections and roundabouts in Australia.
The intersections were spread across the State of Victo-
ria (26.8%), New SouthWales (24.8%), Queensland (18.7%),
Western Australia (13.3%), South Australia (10.4%), Tasma-
nia (2.6%), Australian Capital Territory (2.0%), and North-
ern Territory (1.4%).

2.2 Obtaining and processing satellite
imagery

Imagery based on satellite remote sensingwas downloaded
for all identified intersection locations using the Google
Maps Static API. As images were not available at all loca-
tions, the sample size decreased to 898,418. The selected
settings resulted in 256 × 256 pixels color images without
labels at zoom level 19; two examples are provided in Fig-
ure 2a (Map data, 2018, Google). Not all information con-
tained in these satellite images is important for road safety.
Specifically, it would be relevant to capture the type, size,
shape, lane markings, and complexity of an intersection.
In contrast, the colors and shapes of rooftops, buildings,
trees, and other vegetation are less important, especially
when located away from the road near the edge of an image
(i.e., not in the line of sight). To prevent clustering on these
features, the images were preprocessed to emphasize road
infrastructure and reduce the amount of redundant infor-
mation. The creation of preprocessing steps was an itera-
tive process where the impact on the quality of extracted
features and image clustering was assessed through a vali-

dation process (see Sections 2.3–2.5). This led to the final
set of preprocessing steps illustrated in Figure 2. First,
using OpenCV (Bradski, 2000), images were (i) smoothed
using Gaussian blur with a 3 × 3 kernel size, (ii) converted
to grayscale, and (iii) processed using the Scharr operator
(Jähne, Haussecker, & Geissler, 1999) to detect lines based
on horizontal and vertical gradients (see Figure 2b). Since
asphalt does not contain many lines or varying colors, as
opposed to trees and buildings, these steps emphasize the
road infrastructure.
Importantly, the location of the intersection is in the

middle of the image by design (see Section 2.1). Therefore,
it is possible to capture the same spatial range of informa-
tion from the center of the intersection, regardless of image
orientation. This was implemented using a fading scheme,
preserving pixels within a 52-pixel radius from the center
and gradually forcing pixel colors toward white at a radius
of 128 pixels. This preprocessing step provided increased
focus on intersection design and reduced elements such as
shapes of buildings that the neural network could pick up
(see Figure 2c).
An additional characteristic, which is still visible after

these preprocessing steps, is the orientation of the road
network. Since the heading of the road has only limited
influence on road safety (e.g., adverse lighting conditions
at sunrise/sunset could increase crash risk), it is best to
prevent clustering based on the orientation of the intersec-
tion. As the visible image is circular, it can be rotated at any
anglewithout information loss due to cropping. To identify
the optimal rotation angle for an image, a discrete Fourier
transform was applied, decomposing image 𝑓(𝑖, 𝑗) into its
sine and cosine components (Equation (1)).

𝐹(𝑘, 𝑙) =

𝑁−1∑
𝑖=0

𝑁−1∑
𝑗=0

𝑓(𝑖, 𝑗)𝑒
−i2𝜋

(
𝑘𝑖

𝑁
+
𝑙𝑗

𝑁

)
,

𝑒i𝑥 = cos 𝑥 + i sin 𝑥 (1)

Figure 2d illustrates the magnitude component of 𝐹,
showing high intensity perpendicular to the orientation of
the main straight road in the image. The result was then
transformed to a polar coordinate system where the mean
intensity at each angle (i.e., per row in the image) was
computed (see Figure 2e). This reduced the task of find-
ing the rotation angle to determining the argmax value
from 256 intensity values. For enhanced accuracy, a peri-
odic cubic spline (Knott, 2000) was fitted to determine the
rotation angle corresponding to the maximum intensity.
Note that the order of magnitude of this refinement was
around 0.5 degree. The image before application of the
Fourier transformwas then rotated by the computed angle
to arrive at the final image (see Figure 2f). The resulting
data set, containing 898,418 abstractions of all identified
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350 WIJNANDS et al.

F IGURE 2 Illustration of preprocessing steps for two sample images. The plots show (a) the original Google Street View image, (b) line
detection based on the Scharr operator, (c) emphasizing intersection center, (d) Fourier transform, (e) transformation to log-polar space to
determine rotation angle, and (f) the final rotated image

intersections in Australia, is publicly available through an
open-access repository (Wijnands, 2020).

2.3 Extracting features using a deep AE

The raw pixels in the generated data set are not directly
suitable for accurate clustering. Therefore, a deep AE was
developed using TensorFlow (Abadi et al., 2015) to extract
the high-level features describing each image. AEs can
be as simple as a three-layer network, consisting of an
input, hidden, and output layer, with fully connected neu-
rons (Rumelhart, Hinton, & Williams, 1985). However, for
imagery, multiple successive layers with convolution fil-
ters have been shown to extract robust features (Long,
Shelhamer, & Darrell, 2015). The network architecture
designed for our study is described in Table 1. First, con-
volutional layers (Conv2D) encode the image by reduc-
ing the spatial dimensions, while increasing layer depth to
extract increasingly complex features. This leads to a bot-
tleneck layer 𝑧 of 2,048 neurons containing a condensed
representation of the image. From here, transposed con-
volutional layers (Conv2D_T) decode the information and
rebuild the 256× 256 grayscale image. A 4× 4 filter sizewas
used in decoding layers to minimize checkerboard arti-
facts. Neurons in the AE use ReLU activation functions,
except for the final layer. The model’s robustness was fur-
ther improved by batch normalization between convolu-
tional layers.
The loss function  was formulated in this research as

 =

256∑
𝑖=1

256∑
𝑗=1

𝑋𝑖𝑗 + 𝛼
∑
𝑘

‖𝑊𝑘‖2 + 𝛽‖𝑧‖1 (2)

TABLE 1 Description of autoencoder architecture

Layer Operation Dimensions
0 Input image 256 × 256 × 1
1 Conv2D, 3×3 kernel, stride 2 128 × 128 × 64
2 Conv2D, 3×3 kernel, stride 2 64 × 64 × 96
3 Conv2D, 3×3 kernel, stride 2 32 × 32 × 128
4 Conv2D, 3×3 kernel, stride 2 16 × 16 × 192
5 Conv2D, 3×3 kernel, stride 2 8 × 8 × 256
6 Conv2D, 3×3 kernel, stride 2 4 × 4 × 384
7 Conv2D, 4×4 kernel, flatten 2,048
8 Conv2D_T, 4×4 kernel 4 × 4 × 512
9 Conv2D_T, 4×4 kernel, stride 2 8 × 8 × 512
10 Conv2D_T, 4×4 kernel, stride 2 16 × 16 × 512
11 Conv2D_T, 4×4 kernel, stride 2 32 × 32 × 384
12 Conv2D_T, 4×4 kernel, stride 2 64 × 64 × 384
13 Conv2D_T, 4×4 kernel, stride 2 128 × 128 × 256
14 Conv2D_T, 4×4 kernel, stride 2 256 × 256 × 256
15 Conv2D_T, 4×4 kernel, stride 1 256 × 256 × 1

with 𝑋𝑖𝑗 the sigmoid cross-entropy loss for pixel (𝑖, 𝑗) and
regularization terms including the L2 norm of all 𝑘 convo-
lution kernel weight matrices (𝑊𝑘) and the L1 norm of 𝑧’s
activations. The latter is a sparsity constraint to improve
feature quality by enforcing a sparse representation in the
bottleneck layer. Hyperparameters 𝛼 and 𝛽 control the rel-
ative importance of the regularization terms on overall
model fit and were determined experimentally using grid
search (𝛼 = 0.1, 𝛽 = 0.05). The AE was trained for 10 mil-
lion iterations on an NVIDIA P100 graphics card (see Fig-
ure 3). Experiments with a further increased number of
iterations did not lead to substantial improvements in AE
output images.

 14678667, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.12623 by N
H

M
R

C
 N

ational C
ochrane A

ustralia, W
iley O

nline L
ibrary on [08/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



WIJNANDS et al. 351

F IGURE 3 Convergence of loss components

2.4 Image clustering

All intersection abstractions were processed through the
trained AE to obtain the 2,048 activations in 𝑧. This
condensed representation was used to cluster images
using the t-Distributed Stochastic Neighbor Embedding
(t-SNE) algorithm (Van der Maaten & Hinton, 2008). t-
SNE reduces the 2,048-dimensional input space to a 2-
dimensional space, while aiming to preserve the relative
distances between points in the high-dimensional space.
The embedding for the 898,418 × 2,048 encoding was com-
puted using the opt-SNE adaptation (Belkina et al., 2019),
providing automatic optimization of several hyperparame-
ters, based on a parallel t-SNE implementation by Ulyanov
(2016). The perplexity of the t-SNE algorithm was set to 30
(recommended range [5, 50], see Van der Maaten and Hin-
ton (2008)).

2.5 Model validation

For validation purposes, hold-out OSM information was
assigned to each intersection in the t-SNE embedding.
Specifically, during the intersection identification process
(see Section 2.1) it was identified what the number of
legs of an intersection was and whether nodes had to be
merged. This led to four “simplified” classes of intersec-
tions based on OSM classifications, splitting all intersec-
tions into the following basic categories: roundabouts (𝖮),
three-way intersections (𝖳), simple four-way intersections
(𝖷), and complex intersections (#). The latter includes four-
way intersectionswith at least onemulti-lane leg and inter-
sections with features such as dividing islands, slip lanes,
or more than four legs. Further, traffic light information
was obtained directly from OSM. As the simplified inter-
section class and traffic light information were not used
in the methodology described above, they can provide an
indication of the quality of the t-SNE clustering.

2.6 Telematics data

An in-vehicle telematics data set from Australian insurer
QBE/Insurance Box was used to obtain detailed mea-

surements of driving behavior. The data set contained
272 million records, representing 66 million kilometers
of driving across Australia, mainly captured in 2017 and
2018 using over 11,000 unique telematics devices. Each
record covers a 30-second period in which various mea-
sures, including vehicle speed, acceleration and deceler-
ation were recorded. Vehicle speed was a point measure-
ment (km/hour), whereas acceleration and deceleration
were recorded at 1 Hz, but reported as the number of
times a fixed g-force thresholdwas exceeded during the 30-
second observational period. Records where a vehicle had
not moved at all or where the GPS location was inaccurate
were excluded.
Note that the sample of drivers for which telematics data

was captured may not be representative of the full driv-
ing population. For example, drivers had decided to opt-
in for an insurance policy where their driving behavior
would be monitored. This resulted in some biases related
to sociodemographics and risk characteristics. For exam-
ple, young drivers were overrepresented, while the poten-
tial for reduced insurance premiums couldmake this prod-
uct more attractive for safe drivers.
The process of matching telematics data to intersections

is independent from the use of satellite imagery, AEs, and
clustering, as it only requires the latitude and longitude
coordinates of the intersections. It was determined how
many vehicles had passed at each of the 898,418 intersec-
tions and the recorded measurements of driving behav-
ior were then assigned to the corresponding intersection.
The hard acceleration (HA) and hard deceleration (HD)
frequencies per intersection were computed as the aver-
age number of events per second for a single vehicle. To
improve robustness of these computations, only the 25% of
intersections with at least 25 observations were analyzed.
HA andHDeventswere defined as exceeding thresholds of
0.15 g and −0.5 g, respectively. The HD threshold is more
extreme than the HA threshold, leading to a lower number
of recorded events. For example, Papazikou, Quddus, and
Thomas (2017) described that 1% of acceleration records
were greater than 0.25 g in a large naturalistic driving
study, whereas only 0.018% of deceleration records were
more extreme than −0.5 g. However, the −0.5 g thresh-
old is a proxy for crashes and near misses. Bagdadi (2013)
reported that a threshold of −0.48 g yields a success rate
of 76% in detecting near crashes, based on data from the
100-car naturalistic driving study (Dingus et al., 2006). For
reference, decelerations exceeding−0.5 g fall in a category
described by Boodlal and Chiang (2014) as “very aggres-
sive drivingmanoeuvres that could result in injury or cause
vehicle passengers or cargo that are not securely restrained
to be shifted within the vehicle.”
After the traffic volume and driving behaviors per inter-

section were determined, they were assigned to points in
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352 WIJNANDS et al.

the t-SNE embedding. Specifically, as each point in the
t-SNE embedding represented a single intersection, the
corresponding geographic location was used to make this
mapping. Assigning extreme driving events to correspond-
ing intersections in the t-SNE embedding allowed for a
data-driven comparison of clusters with similar intersec-
tion designs.

3 RESULTS

3.1 Feature extraction

Figure 4 shows the results of first preprocessing several
sample images and then passing them through the trained
AE (i.e., model inference). This figure indicates that fea-
tures extracted from the satellite imagery are related to
high-level road characteristics concerning the shape, size,
and structure of the intersection, while elements less
important for road safety disappear.
The bottleneck layer of the AE results in substantial

compression of the imagery before regeneration (i.e., about
99.8% compression when taking into account the sparsity
constraint). Although our research has found it is possible
to regenerate highly accurate images by relaxing the spar-
sity constraint, capturing mainly road geometry and lane
markings as presented here leads to better clustering than
also encoding detailed bushes, trees, and other urban fea-
tures.

3.2 Image clustering

The t-SNE embedding is presented in Figure 5, with each
dot representing a single intersection, mapped from the
2,048-dimensional AE representation to a 2-dimensional
space. Results of the two validation analyses are presented
in the top row of Figure 5. The symbols𝖮, 𝖷, 𝖳, and # in the
figure’s legend represent the simplified classes of round-
about, simple four-way, three-way, and complex intersec-
tion, respectively. Specifically, the first plot shows one
roundabout cluster, a simple four-way intersection clus-
ter, two T-intersection clusters, and a few smaller complex
intersection clusters. It is expected that t-SNE does not cre-
ate a perfect split into these four simplified classes, as the
input images contain further details that are also taken
into account in the clustering. However, the appearance
of intersection groups of similar types based on hold-out
information provides a positive initial assessment of the
clustering approach. Further, a cluster of signalized inter-
sections appears, even though traffic light informationwas
not supplied to the model during training (i.e., the method
is purely image-based), indicating the complexity of the

F IGURE 4 Illustration of feature extraction process, showing
original (left), preprocessed (middle), and AE regenerated (right)
images. The encoded features are retrieved from the AE’s bottleneck
layer (represented by a small square)

intersection is extracted from imagery. This all provides
confidence in the presented framework.
The remaining plots in Figure 5 show the recorded aver-

age speed per intersection, traffic volume, and frequencies
of HA and HD events. A few outliers were observed in the
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F IGURE 5 t-SNE clusters with matched OSM and telematics data (best viewed in color)
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354 WIJNANDS et al.

F IGURE 6 Each column provides sample images for the corresponding region in Figure 5. (a) Region A, (b) Region B, (c) Region C, (d)
Region D, (e) Region E, (f) Region F1/F2, (g) Region G, and (h) Region H

acceleration and deceleration charts, which were removed
for plotting purposes. These telematics-based variables all
show substantial clustering when plotted on top of the
t-SNE embedding and are discussed in detail in the
next section.

3.3 Design implications

The regions A–H (see Figure 5) have been manually
selected for illustrative purposes. As the t-SNE algorithm
captures both the local and global structure of the high-
dimensional data, it can be used to explore clusters at sev-
eral scales (Van der Maaten & Hinton, 2008). Therefore,
the position and size of a region can be selected depending
on the research question. Samples of intersection designs
are provided in Figure 6 for each of the regions selected
here. Regions F1 and F2 represent similar designs, as in F1

TABLE 2 Average recorded driving behavior per intersection
in selected regions

Region Speed HA freq HD freq
A – Large roundabout 26.3 0.027 1.6E-04
B – Compact roundabout 22.9 0.036 1.1E-04
C – Complex intersection 19.5 0.024 2.6E-04
D – Complex T-intersection 45.3 0.033 1.1E-04
E – T with access road 64.6 0.016 6.1E-05
F – Three-way intersection 32.4 0.038 6.8E-05
G – Four-way intersection 27.6 0.043 1.2E-04
H – Parking lot 12.7 0.016 3.8E-05

the preprocessed images have the third leg of the intersec-
tion facing left, whereas in F2 this leg faces right.
Furthermore, statistics and box plots are presented in

Table 2 and Figure 7, respectively. HA and HD frequencies
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WIJNANDS et al. 355

F IGURE 7 Box plots of data in Table 2. (a) Speed (km/h), (b)
HA frequency, and (c) HD frequency

were measured as the number of events per second. For
example, average HD frequencies across intersection types
weremostly between 0.0001 and 0.0002 events per second,
equivalent to 0.01% to 0.02% of the time (see Table 2). Note
that this is the same order of magnitude as mentioned in
Papazikou et al. (2017), who reported “values under −0.5 g
represent only 0.018% of the total deceleration values.” Our
research attributes this to different intersection types.
One-way ANOVA tests indicated significant differences

in means between regions for speed (𝑝 < 0.001), acceler-
ation frequencies (𝑝 < 0.001), and deceleration frequen-
cies (𝑝 < 0.001). In the following paragraphs, “significant”
refers to p-values smaller than 0.01 for pairwise com-
parisons using the Games–Howell post hoc test (i.e., for
unequal group variances and without the assumption of
normal distributions).

3.3.1 Roundabouts

The recorded average vehicle speeds on roundabouts (A,
B) were significantly lower than on most other crossings
(D, E, F, G). In addition, average speed per roundabout did
not vary asmuch as for other designs. Some differences can
also be observed within the roundabout cluster. In partic-
ular, for compact designs (B) 33% more HA events were
observed than for larger designs (A), a significant differ-
ence. In contrast, the larger designs showed significantly
more HD events.

3.3.2 Three- and four-way intersections

T-intersections (F) and four-way crossings (G) generally
have relatively low traffic volume. However, the latter
recorded 12% more HA events: the highest frequency of all

clusters (significant for all pairs with G). Three-way inter-
sections (F) recorded comparatively fewHD events (signif-
icant, except F–D with 𝑝 = 0.02, F–E, and F–H).
The traffic volume at complex intersection cluster (C)

is one to two orders of magnitude larger than at the
aforementioned clusters. These high-volume, complex
intersections are mostly signalized and have the highest
frequency of HD events (significant difference for all pair-
wise comparisons with C). In contrast, designs following
the complex T-intersection cluster (D) are generally not
signalized, have significantly lower traffic volume and HD
events, but significantly higher average speeds and HA
events.

3.4 Identifying unsafe designs

Outliers in the deceleration data can be used to identify
particularly unsafe designs within each cluster. In this
analysis, the average HD frequency in the same region
of the t-SNE cluster was used as a benchmark. The fol-
lowing examples (see Figures 8a–c) all had a frequency
of HD events (i.e., a proxy for near misses) at least eight
times more than average for their category. For each of
these examples, at least 175 observations were available
of drivers crossing the intersection. It is described where
the design features differ from safe designs in the same
region, where no HD events were recorded, although cau-
sation has not been investigated. The first example (see
Figure 8a) is a compact roundaboutwith several design fea-
tures requiring additional attention from a driver. In par-
ticular, the roundabout has a stop line at one of the round-
about exits for a pedestrian crossing. When a driver has to
stop at the line, the roundabout is blocked, forcing circu-
lating cars behind it to stop. Separately, the bicycle lane
that ends at the top-right leg could contribute to unsafe
situations involving cyclists. Figure 8b shows a very large,
multi-lane roundabout with above average traffic volume
and speeds; at this location 10.2 times the average HD fre-
quency of region A was observed. For three-way intersec-
tions, Figure 8c provides an example of a design outlier
with increased HD frequency. The presence of 90◦ angle
parking both near and within the intersection, fromwhich
drivers pull out blindly, increases the number of conflict
points and potential for unexpected maneuvers.
It is also possible to query the intersection database

using specific filters. For example, as intersections in
region C are generally signalized, a query was used to iden-
tify all intersections in this cluster without traffic lights.
Two samples are provided in Figures 8d and e. This could
provide opportunities for considering adding traffic lights
at selected intersections to improve road safety. Note that
detailed design rules exist on when to add traffic lights to
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356 WIJNANDS et al.

F IGURE 8 Google satellite (left) and street view (right) images
at selected locations. (a) Compact roundaboutwith stop line and end-
ing bicycle lane (regionB), (b) Large roundaboutwith high traffic vol-
ume (region A), (c) Parking spots along T-intersection (region F), (d)
Complex intersection without traffic lights (region C), and (e) Inter-
section with bus-only leg, no traffic lights (region C)

a specific intersection. In Figure 8e, upon closer inspec-
tion, one of the legs is a bus-only leg. Based on the satel-
lite imagery, the AI method expected this to be a signal-
ized intersection.

3.5 Comparison to crash statistics

Results were compared to a database containing 118,082
unique crash events in the State of Victoria between

F IGURE 9 t-SNE clusters with matched crash events

January 2010 and October 2019. Geographic coordinates
were available for 73,068 events, and 45,756 of them
occurred near intersection locations identified in our
research. Figure 9 shows the number of recorded crash
events per intersection, plotted using the t-SNE embed-
ding. For better visualization, intersectionswithmore than
five crash events have been displayed as black.
For a statistical comparison to these crash statistics, the

total number of HD events per intersection were com-
puted, taking into account traffic volume. A correlation of
56% was observed between the number of HD and crash
events per intersection. Further, a logistic regressionmodel
was fitted with variables volume and HD frequency, and a
binary response variable indicating whether a crash had
occurred at each intersection. The model achieved an area
under the receiver operating characteristic curve (AUC) of
0.86 (Sing, Sander, Beerenwinkel, & Lengauer, 2005). Note
that AUC values between 0.8 and 0.9 indicate excellent
discrimination (Hosmer, Lemeshow, & Sturdivant, 2013, p.
177).

3.6 Model validation and sensitivity
analysis

In this section, the model’s robustness and the impact of
various assumptions made in this research were explored.
First, the data set was split in a 50% training fold and
a 50% test fold for validation purposes. The AE model
was calibrated using the training fold only (i.e., a much
smaller data set than for the main analysis presented
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earlier). After model calibration, the training and test folds
were both processed through the AE to obtain the activa-
tions in the bottleneck layer. It was expected that similar
features would be extracted from both folds. To visualize
any discrepancies, t-SNE was run on the combined results
to get a consistent mapping from 2,048-dimensional to
2-dimensional space. Figure 10a illustrates that theAEpro-
duces similar results on unseen data.
One of the contributions of this research is the develop-

ment of specific preprocessing steps to achieve clustering
based on features related to road safety. This was an itera-
tive process leading to the final set of preprocessing steps
presented in this article. In Figure 10b, some results of the
early experiments are presented. The hold-out OSM infor-
mation was used to illustrate the effects of preprocessing
steps on the quality of the embedding. The left plot of Fig-
ure 10b shows the results of using satellite imagery directly,
without further preprocessing (as in Figure 2a). It is clear
that clustering based on raw satellite imagery does not lead
to good results. Specifically, by plotting the images on top of
this t-SNE embedding (results not presented), it was found
that they were simply sorted by the main colors present
in the imagery. The use of unrotated imagery (as in Fig-
ure 2c) led to smaller clusters based on road orientation,
which mainly affected T-intersections.
Figure 10c exemplifies the importance of the sparsity

constraint that was added to the loss function (see Equa-
tion (2)). Low values of 𝛽 resulted in very accurate image
regeneration, by emphasizing reconstruction loss. How-
ever, minimizing reconstruction loss alone does not yield
optimal results for domain-specific feature extraction. In
particular, low values of 𝛽 resulted in clustering based on
finer details less important for road safety, now captured in
the bottleneck layer (e.g., the specific shape of vegetation).
In contrast, strongly enforcing sparsity in the bottleneck
layer means the compressed information is not sufficient
to accurately capture the type of intersection (right plot of
Figure 10c). The selected value for this hyperparameter (𝛽
= 0.05) achieved a balance between these extremes, where
some finer details were disregardedwhile still maintaining
sufficient capacity to store important information.
The specification of the AE network architecture (e.g.,

the number of layers, filter size, and layer depth) has a
more subtle impact on results. For example, Figure 10d
shows the impact of the size of the bottleneck layer. When
the size of the latent space was reduced, the intersection
type was still identified well. However, inspecting the AE’s
regenerated images revealed that most other details had
disappeared. On the contrary, when increasing the size of
the bottleneck layer, the amount of detail in the regener-
ated imagery plateaued. As sparsity of this layer is enforced
through the loss function, the additional capacity in the

F IGURE 10 Plots of hold-out information for cross-validation
(a) and sensitivity analyses (b–e). (a) Model validation: train fold
(left), test fold (right), (b) Preprocessing steps: none (left), all except
rotation (right), (c) Hyperparameter β to enforce sparsity: 0.01 (left),
1.0 (right), (d) Size of bottleneck layer: 512 (left), 4,096 (right), and (e)
t-SNE perplexity: 5 (left), 50 (right)

 14678667, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.12623 by N
H

M
R

C
 N

ational C
ochrane A

ustralia, W
iley O

nline L
ibrary on [08/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



358 WIJNANDS et al.

latent space is not fully utilized. Because of reduced model
complexity, the size of the latent space was set to 2,048.
t-SNE perplexity had a relatively limited impact on the

results (Figure 10e), as also noted by developers of the opt-
SNE algorithm (Belkina et al., 2019). Values at the higher
end of the recommended [5, 50] range resulted in slightly
better clustering of complex intersections. In this research,
the perplexity parameter was kept at its base setting of 30.

4 DISCUSSION

Our results show that the treatment of satellite imagery
using custom preprocessing and deep learning methods,
can generate clearly identifiable clusters of intersections
that are further associated with differences in driving
behavior. A single data source was used for all satel-
lite imagery to ensure consistent data quality. Image blur
was only observed for a very small fraction of images,
while variations in image brightness were adjusted for
using grayscale conversion and the Scharr operator. As
the AE will use any information that is still available
after preprocessing, the zoom level of a satellite image
has a direct impact on feature extraction. The effects of
image resolution were not investigated, although high-
resolution images may require an increased number of
convolutional layers in the AE to extract features at a sim-
ilar level of abstraction. The sensitivity analyses in Sec-
tion 3.6 described the impact of several key assumptions on
the results. Additional experiments with alternative model
configurations did not lead to better clustering, such as a
sparsity constraint based on Kullback–Leibler divergence,
and pretrained network architectures for the encoding part
of the AE.
A limitation of our study is that the OSM data on sig-

nalized intersections was not always accurate (i.e., traffic
lights observed in Google Street View images were some-
times missing in OSM). Note that this only affects the val-
idation analysis and not the proposed methodology.
In Section 3.3, the selected regions A–H are for illustra-

tive purposes only and different regions may be of inter-
est depending on the specific research question. For exam-
ple, future research could use smaller, adjacent regions
within the embedding to explore nuances in design associ-
ated with increased crash risk or dangerous driving behav-
ior, or use the full embedding as the basis for advanced
statistical modeling. The embedding could also be used
to select geographic locations forming infrastructure base-
lines for the analysis of dynamic data, such as in-vehicle
video footage from naturalistic driving studies. Further,
the quality of the embedding could be refined by adding
other features extracted from imagery, as identified in

previous research. These features include elevation data
(Chen, Tang, Zhou, & Cheng, 2019) and lane number or
width changes (Bar Hillel, Lerner, Levi, & Raz, 2014),
which could influence behavior while approaching the
intersection. Further, sight distance could be computed
using Geographic Information Systems, while account-
ing for obstacles like trees or buildings (Castro, Iglesias,
Sánchez, & Ambrosio, 2011). By combining these features
with the intersection design elements our method extracts
from satellite imagery (i.e., before applying the t-SNE algo-
rithm), further improvements could be obtained.
Standard-setting bodies such as AASHTO provide

detailed guidelines for the construction of safe, cost-
effective intersections with sufficient capacity for the effi-
cient movement of traffic. Big data analyses as presented
here enable a data-driven evaluation of intersection safety
after the infrastructure has been created. Evaluation using
large-scale measurements of actual driving behavior could
provide new perspectives on (i) accident black spot iden-
tification and (ii) the efficacy of guidelines currently
adopted, and has the potential to inform new policies.

5 SUMMARY AND CONCLUSIONS

Our research developed a new methodology to assess
the impact of intersection design on road safety, based
on computer vision and deep learning. First, all inter-
section locations in Australia were identified and corre-
sponding satellite imagery was collected. A series of cus-
tomized preprocessing steps was developed to emphasize
features in raw satellite imagery that are related to road
safety. High-level features were then extracted from the
condensed representation in a deep AE. A loss function
was formulated to enforce sparsity in the AE’s bottleneck
layer, prioritizing feature quality over perfect image recon-
struction. The images were clustered using t-SNE based
on the extracted features. Finally, driving behavior was
explored using recorded telematics data. It was found that
HA events (per vehicle) were more frequent at simple
four-way than at three-way intersections. T-intersections
recorded one of the lowest HD frequencies (a proxy for
crash and near-miss events). Further, consistently low
average speeds were recorded on roundabouts, contribut-
ing to the lower crash severity observed in previous studies.
Moreover, several particularly unsafe design features were
identified within clusters of similar intersections.
Various validation analyses provide confidence in the

proposed methodology, including (i) a comparison to
hold-out OSM information, (ii) model evaluation using
train and test sets, (iii) sensitivity analyses, and (iv) a com-
parison to crash statistics. Overall, our method provides
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a new perspective on design issues that have long been
investigated through small-scale case studies using
police-reported crash data. In contrast to existing
approaches, our research provides the following con-
tributions:

1. Advances in AI methodologies, toolkits, and comput-
ing power, allow for the analysis of very large data sets.
Rather than the in-depth investigation of a single or
few intersections, our study shows how AI enables the
investigation of all intersections in a large country.

2. Previous studies used pretrained CNNs and color infor-
mation to extract features from aerial imagery (e.g.,
Najjar et al., 2017; Zhang et al., 2018). In contrast, the
results of our preprocessing steps show the importance
of more domain-specific feature extraction, as a CNN
will easily differentiate raw satellite imagery based on
features unrelated to road safety. Our approach extracts
features including the intersection’s type, size, shape,
lane markings, and complexity. These features are not
easily collected manually and at such a large scale, sup-
porting a computer-aided approach.

3. Rather than using predefined types of intersections
(i.e., observer bias), similar intersections are obtained
through unsupervised clustering based on actual
designs. This allows for the identification of small or
large subsets of very similar intersections spread across
a large geographic area, taking into account nuances of
safety-related features.

4. In-vehicle telematics technology provides measure-
ments of speed, HA and HD behaviors, complemen-
tary to crash statistics. By optimizing or eliminating spe-
cific design features that have been linked empirically
to extreme driving behaviors, countermeasures can be
developed to achieve safer intersection designs.
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SUPPORTING INFORMATION

The following supporting information is available on Zen-
odo: Data set S1 (https://doi.org/10.5281/zenodo.2564253)
Data set S1. This data set contains 898,418 preprocessed

images (see Figure 2f) of all identified intersections in Aus-
tralia, including their geographic coordinates (Wijnands,
2020).
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