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A B S T R A C T

Deep learning using neural networks has provided advances in image style transfer, merging the content of one
image (e.g., a photo) with the style of another (e.g., a painting). Our research shows this concept can be extended
to analyse the design of streetscapes in relation to health and wellbeing outcomes. An Australian population
health survey (n=34,000) was used to identify the spatial distribution of health and wellbeing outcomes,
including general health and social capital. For each outcome, the most and least desirable locations formed two
domains. Streetscape design was sampled using around 80,000 Google Street View images per domain.
Generative adversarial networks translated these images from one domain to the other, preserving the main
structure of the input image, but transforming the ‘style’ from locations where self-reported health was bad to
locations where it was good. These translations indicate that areas in Melbourne with good general health are
characterised by sufficient green space and compactness of the urban environment, whilst streetscape imagery
related to high social capital contained more and wider footpaths, fewer fences and more grass. Beyond iden-
tifying relationships, the method is a first step towards computer-generated design interventions that have the
potential to improve population health and wellbeing.

1. Introduction

1.1. Streetscape design

Given the recent mass movement of people to cities, a trend ex-
pected to continue into the future (International Organization for
Migration, 2015), neighbourhood planning is becoming increasingly
important. Historically, as a response to problems related to over-
crowding such as outbreaks of diseases following the industrial re-
volution, improving the health of city residents has been one of the
main drivers of urban planning (Sharifi, 2016). For example, in the
early 20th century the Garden City movement (Howard, 1902) aimed to
address these issues by combining the best elements of city and coun-
tryside living in a single neighbourhood design. This was followed by
the Neighbourhood Unit concept (Perry, 1929), attempting to address
social problems by developing self-contained neighbourhoods that in-
crease pedestrian safety and provide a strong sense of community.
However, according to Mehaffy, Porta, and Romice (2015), the
Neighbourhood Unit did not improve social interaction, health condi-
tions or walking behaviour. Hence, although utopian visions aimed to

improve health and wellbeing outcomes of city residents, not all were
successful. Modernism concepts, such as Le Corbusier's Radiant City
(Fishman, 1982; Le Corbusier, 1933), introduced superblocks and high-
rise buildings. In contrast, the Broadacre City (Wright, 1932) reserved
one-acre plots per family for living purposes. Single-use zoning had
some advantages, such as ease of implementation. However, suburban
development led to increased car dependency and, in reality, had ad-
verse health effects including non-communicable disease. Later, neo-
traditional movements focussed on walkability, public transport, com-
pact form and medium-high density to address issues caused by sub-
urbanisation (Furuseth, 1997; Rutheiser, 1997). Eco-urbanism aimed
for sustainable development, for example, using renewable energy
technologies to reduce greenhouse gas emissions and protecting natural
environments from new developments by revitalising existing urban
areas instead (Joss, Cowley, & Tomozeiu, 2013; Tsolakis &
Anthopoulos, 2015). Several design concepts have been linked to sus-
tainability, including compactness, sustainable transport, density,
mixed land use, diversity, passive solar design and greening (Jabareen,
2006). The neo-traditional development, eco-city and compact city
(Dantzig & Saaty, 1973) all incorporate some of these sustainable urban
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form concepts. These developments indicate that the historically strong
link between urban form and health has been re-emerging.

Various recent studies have linked the urban form to health and
wellbeing outcomes (de Vries, van Dillen, Groenewegen, &
Spreeuwenberg, 2013; Sallis et al., 2015). For example, hard urban
surfaces and reduced shading can lead to heat island effects, with as-
sociated health risks such as heat exhaustion and heat stroke, especially
impacting the elderly (Carmona, Tiesdell, Heath, & Oc, 2010; Smith &
Levermore, 2008). Urban green space has a cooling effect that could
mitigate some of these issues (Bowler, Buyung-Ali, Knight, & Pullin,
2010). The level and variability of streetscape greenness has further
health impacts, e.g., on perceived general health (Maas, Verheij,
Groenewegen, de Vries, & Spreeuwenberg, 2006) and the prevalence of
cardiovascular disease (Pereira et al., 2012). Survey-based approaches
have identified that living in a green environment has positive asso-
ciations with self-reported health, including the number of symptoms
experienced in the last two weeks (de Vries, Verheij, Groenewegen, &
Spreeuwenberg, 2003). Direct physical connections have been found as
well, for example, Ward Thompson et al. (2012) showed that a lack of
green space in deprived communities is associated with increased stress
levels as measured by salivary cortisol.

Urban form also influences the frequency of active transport such as
walking and cycling (Frank & Engelke, 2001; Hensley, Mateo-Babiano,
& Minnery, 2014), providing associated health benefits (Turrell,
Haynes, Wilson, & Giles-Corti, 2013). A higher perceived confinement
of space and sense of intimacy (as measured by visual enclosure) is
related to increased pedestrian activity (Yin & Wang, 2016). Specific
streetscape features such as the proportion of windows on the street, the
proportion of active street frontage and the amount of street furniture
also significantly impact pedestrian activity (Ewing, Hajrasouliha,
Neckerman, Purciel-Hill, & Greene, 2016). Further, pavement condition
is considered very important by pedestrians and poor conditions lead to
strong dissatisfaction among elderly pedestrians, which can affect
physical activity levels (Stradling, Anable, & Carreno, 2007).

The built environment also affects crime rates and perceived safety
(Foster & Giles-Corti, 2008). For example, Salesses, Schechtner, and
Hidalgo (2013) found a significant association between violent crime
and the perceptions of streetscapes related to safety and social class.
Interventions that improve the appearance of abandoned buildings
(e.g., by installing working doors and windows) and vacant lots (e.g.,
removing rubbish, planting grass and trees, installing low fences) can
reduce the prevalence of firearm violence (Branas et al., 2016). The
effect of greening vacant land also has mental health implications.
Through a cluster randomised trial, South, Hohl, Kondo, MacDonald,
and Branas (2018) found that greening significantly reduced feelings of
depression and worthlessness of residents living nearby. Cohen,
Inagami, and Finch (2008) found that parks are positively associated
with the perception of mutual trust and willingness of people to help
each other. Further, the architectural features present in urban
streetscapes have been found to affect wellbeing outcomes (Spokane
et al., 2007). A literature review by Mair, Diez Roux, and Galea (2008)
identified that depression was more consistently associated with mea-
sures of the built environment than with socioeconomic deprivation,
residential stability or race composition.

The studies above indicate the perception of urban form has various
health and wellbeing impacts. Lynch (1960) investigated the human
perception of urban form and concluded humans map their surround-
ings using elements such as paths, edges, districts, nodes and land-
marks. Further, Lozano (1990) defined urban form as the aggregation of
more or less repetitive elements, such as block size and form, street
design, street patterns and the layout of parks. Big data sources such as
Google Street View (GSV) imagery (Anguelov et al., 2010) now allow
for in-depth analyses of these urban features. For example, large
numbers of geo-tagged photos have been used to detect patterns of
urban usage and public perception of functional and social attributes
(Liu, Zhou, Zhao, & Ryan, 2016; Zhou, Liu, Oliva, & Torralba, 2014).

Doersch, Singh, Gupta, Sivic, and Efros (2012) used geo-localised street
level images to discover unique visual features in a city, such as bal-
conies, windows with railings and special Parisian lampposts in Paris,
France. Place Pulse, a database of urban imagery using crowd-sourced
classifications, quantifies perceptions of urban areas, including safety,
beauty, and liveliness (Dubey, Naik, Parikh, Raskar, & Hidalgo, 2016;
Naik, Philipoom, Raskar, & Hidalgo, 2014). Various studies have also
attempted to quantify the level of green space visible at the street level.
For example, Li et al. (2015) used colour information in GSV images to
estimate and map urban green space. Further, Seiferling, Naik, Ratti,
and Proulx (2017) focussed on identifying tree cover from GSV images
using computer vision techniques.

Although the research findings described throughout this in-
troduction are important, the methods employed typically focus on a
selection of urban factors or sometimes just one factor in isolation (e.g.,
greenness). As these factors are pre-supposed to be associated with
outcomes, they are potentially subject to a degree of observer bias
based on historical, theoretical, or disciplinary background. Further,
when multiple factors are included, there is limited understanding of
how these interact to improve health or how suggested changes to
urban form might translate in the real world. For example, while tra-
ditional linear approaches such as regression models might include
multiple observed factors that recommend a ‘30% improvement in
greenness’, ‘25% increase in density’, and a ‘15% increase in diversity’,
it is left to the imagination of residents, policy-makers and planners to
understand how these changes might actually appear when translated
into the urban landscape. Given the mixed success, historically, of
utopian planning visions on city residents’ health, the analysis of em-
pirical streetscape data using an objective, unsupervised approach will
identify elements of neighbourhood planning movements that can be
linked to actual health improvements of residents.

1.2. Style transfer

Compared to the traditional approaches described above, the cur-
rent study does not require an a priori selection of features potentially
subject to observer bias. Our approach is based on the concept of
generative adversarial networks (GANs), first described in Goodfellow
et al. (2014). GANs are based on game theory and consist of multiple
competing models, namely generator and discriminator neural net-
works. The role of the generator is to generate images in the new style,
while the discriminator assesses whether the generated image looks
realistic. Using different formulations of the internal loss function and
neural network structures, GANs have been adapted for various image
translation tasks; for example, increasing image resolution to recover
finer details (i.e., super-resolution) (Ledig et al., 2017; Sønderby,
Caballero, Theis, Shi, & Huszár, 2017) or filling in missing regions of an
image (i.e., semantic inpainting) (Pathak, Krähenbühl, Donahue,
Darrell, & Efros, 2016; Yeh et al., 2017). Another application of image-
to-image translation is style transfer, which entails merging the style of
a collection of images and the content of another image. Examples of
style transfer include translating (i) photos to paintings, (ii) black and
white photos to colour, (iii) summer photos to winter and (iv) daytime
photos to night (e.g., Gatys, Ecker, & Bethge, 2016; Isola, Zhu, Zhou, &
Efros, 2017; Zhu, Park, Isola, & Efros, 2017).

Importantly, these techniques can also be applied to images re-
presenting the design of the urban environment. As health and well-
being outcomes have been shown to be related to the human perception
of urban form (see Section 1.1), the image style could be defined as
streetscapes with either a positive or negative human perception.
Salesses et al. (2013) have shown the large variety in human percep-
tions of streetscapes captured in GSV images. By changing the style of
the streetscape towards a more positive perception, it might be possible
to also improve health or wellbeing outcomes. Note that not all varia-
tion in GSV images may be attributed to human perception or health
and wellbeing outcomes. While for the style transfer domains described
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above (e.g., black and white to colour) the style is uniquely defined, the
exact streetscape style that influences human perception and health
outcomes still has to be discovered. Therefore, research is required that
investigates if a GAN is able to successfully capture these styles.

Using GANs it may be possible to design by example rather than
designing each urban space individually, based on large streetscape
datasets. By sampling design of successful areas using outcomes such as
liveability, non-communicable disease and mental health, unsupervised
image-to-image translation may be able to apply key characteristics of
these areas to any other location. This study provides an investigation
along these lines, focussing on the differences in streetscape imagery
from areas with good and bad perceived health and wellbeing out-
comes. The proposed research has two objectives: (i) to present the
application of a new technique for streetscape analysis based on big
data and artificial intelligence; and (ii) to present findings of relation-
ships between health outcomes and specific design elements discovered
using this method.

2. Methods

This study used GANs to augment the design of streetscapes captured
in GSV images, as GSV provides an impression of streetscape design from
an observer's point of view. The locations at which to obtain these GSV
images were determined using survey-based health and wellbeing data.

2.1. Health and wellbeing

The data used to identify the health, wellbeing and demographic
characteristics of areas of the Melbourne metropolitan region were
derived from a Victorian Population Health Survey (Department of
Health & Human Services, 2017). This health survey is a population-
weighted computer-aided telephone interview survey that collected
information from 34,000 residents across the State of Victoria relating
to self-reported health outcomes and health behaviours. For this re-
search, health outcomes and behaviours relating to perceptions of
general health, social capital and life satisfaction across metropolitan
Melbourne were included. Specifically, individuals were asked to rate
their perceptions of general health on a five-point Likert scale ranging
from 1 (excellent) to 5 (poor). Social capital was measured by asking
individuals to recall the number of people they had spoken to on the
day before. Overall life satisfaction was estimated by asking individuals
how satisfied they were with life overall, with ratings from 1 (very
satisfied) to 4 (very dissatisfied). This was supplemented with popula-
tion and housing density data for validation purposes.

2.2. Google Street View

A GSV dataset was created by sampling the Greater Melbourne area,
Australia. Locations were determined using the nodes of vector lines in
a street network dataset (PSMA Australia Ltd., 2017) to exclude most
indoor imagery. For each selected location, four GSV images were re-
trieved at headings of 0, 90, 180 and 270 degrees and the Google logo
was removed for deep learning purposes. A sample of 100,000 images
was inspected for consistency and the complete dataset was post-pro-
cessed by removing remaining indoor images based on file size, re-
sulting in 4.5 million GSV images at a 256×256 pixels resolution. This
dataset and the underlying methodology is explained in more detail in
the linked Data in Brief paper (Nice and Wijnands, 2019).

For each outcome variable of interest, the 10% most and least de-
sirable locations were selected with respect to self-reported health
outcomes (as defined above) and were grouped into two sets (i.e., do-
mains). The resulting locations were used to select a corresponding
image from the GSV dataset. If no GSV image was available within 50m
of the requested location, the location was excluded, leading to ap-
proximately 160,000 images per outcome variable (i.e., 80,000 per
domain). These images were used as input to the GAN.

2.3. Generative adversarial networks

Since no matched pairs of images exist, supervised learning is not
feasible. However, GANs have proven to be successful for style transfer
using unsupervised learning (e.g., Zhu, Park, et al., 2017). Previous
studies have considered ‘style’ as generating black and white images in
colour, or as a painting (see Section 1.2). In contrast, this study defines
style as the health or wellbeing outcome so images can be translated,
for example, from a bad to a good general health style (as defined in the
population health survey). The main structure and layout of the GSV
image can be considered the ‘content’, such that any differences be-
tween the original and generated image could eventually be considered
amendments that can be incorporated into the current urban environ-
ment (in future research).

Our approach is based on unsupervised image-to-image translation
(Liu, Breuel, & Kautz, 2017) and consists of two variational auto-
encoders (VAEs) (Kingma & Welling, 2013) plus two discriminator
models. The VAEs create a condensed representation of an input image
in a latent space ( ), which is assumed to be shared between the two
domains ( and ). The model configuration is illustrated in Fig. 1.
Encoding functions and extract features from images of domain

and , respectively. Generator functions and decode the
condensed representation from to the respective domain. Hence, the
content is the information stored in , while the style is embedded in
generator functions and . For example, elements that occur in
GSV images of both domains (e.g., people) will likely be stored in
without large differences between and (although this is not di-
rectly enforced), while elements unique to one of the image sets (e.g.,
green space) will only be captured in the generator function for that
specific domain.

In this model configuration, images can be encoded in the shared
latent space and decoded in either the original domain (i.e., a perfect
model will reconstruct the same input image) or the alternative domain.
Ideally, images would also be accurately regenerated when processed
from to , to , to , to and, similarly,
(cycle consistency). The discriminator models ( and ) assess the
quality of images translated to the alternative domains. The associated
loss function combines all discriminator, reconstruction and cycle
consistency losses using hyperparameters λ0, (λ1, λ2) and (λ3, λ4), re-
spectively (see Liu et al., 2017). These hyperparameters are used to
control which of the loss components are emphasised during model
training.

Various experiments with different hyperparameter values were
performed to achieve a balanced translation. For example, when
prioritising generator losses (either reconstruction or cycle consistency)
translated images were very similar to the original, which does not
allow for the identification of relationships between streetscape design
and health outcomes. In contrast, when style transfer is too strong, the
resulting image may appear abstract or the changes cannot be con-
sidered ‘amendments’ to the urban environment, but a complete

Fig. 1. Illustration of model configuration.
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redesign. Compared to the default values, the selected hyperparameters
((λ0, λ1, λ2, λ3, λ4)= (50, 0.1, 100, 0.1, 100)) place more emphasis on
the discriminator loss, prioritising the generation of more realistic
images in the style domain over perfect reconstruction and cycle con-
sistency.

Pre-processing steps included the reduction of image resolution to
128×128 pixels to speed up computation. The use of higher-resolution
images with GANs is possible (Curto, Zarza, De La Torre, King, & Lyu,
2017), but was outside the scope of this study. GANs were then cali-
brated using backpropagation for 1.2 million iterations (approximately
60 h of training on an NVIDIA GTX 1080 GPU), with alternating weight
updates to the generator and discriminator networks.

2.4. Analysis of generated images

The calibrated model was used to translate images from one domain
to the other. Generated images were analysed in the following three
ways: (i) a visual comparison using difference images; (ii) using sta-
tistical measures; and (iii) the computation of the average translation,
providing insights into the neural network's inference patterns.

Visual comparison. To compare a generated image to its original,
pixel-based difference images were constructed using ImageMagick
(ImageMagick Studio LLC, 2018). The visual analysis of a large sample
of translated images identified several themes per outcome variable. In
Section 3, eight translated images are presented for most of the out-
come variables, which are representative of these themes.

Statistical measures. Statistical analysis was used to estimate the
strength of the association between investigated outcome variables and
local urban form. Several hundred images for each combination of
outcome (i.e., general health, social capital, life satisfaction) and do-
main (i.e., low or high) were randomly selected. Each image was
translated to the opposite domain and a difference image was con-
structed. Since the GAN first creates a high-level representation of an
image in the shared latent space, details such as the exact colour value
and positioning are lost. Therefore, even if part of the image is un-
affected by the new style, almost all pixel values of the image change
during translation. In order to identify the extent to which an image
was changed, small changes were discarded (ImageMagick convert
function with parameters compose:difference, fuzz:5%, transparent:-
black). The average proportion of non-white pixels gives an indication
of the amount of change observed using the calibrated model.

The difference between the original and translated images was also
investigated using standard statistical approaches; specifically, the
mean squared error (MSE), peak signal-to-noise ratio (PSNR) (e.g.,
Bing, 2015) and structural similarity index (SSIM) (Wang, Bovik,
Sheikh, & Simoncelli, 2004). These statistics compute the average si-
milarity between the original and translated image. MSE and PSNR
focus on pixel-based differences, while SSIM is geared towards the
degradation of structural information. Specifically, SSIM combines
structure, luminance and contrast measures for many small, corre-
sponding patches in both images. The GAN translates the style of the
GSV image and attempts to preserve its content at the same time.
Therefore, it is expected that perceived changes in structural informa-
tion will be limited by construction, while pixel-based differences could
be more indicative of the amount of style transfer. For example,
translation of a road surface from gravel to sealed road will lead to large
pixel-based differences captured by MSE and PSNR, while the image
structure could still be quite similar.

Average translation. Besides quantifying the amount of change oc-
curring during the translation process, it is also possible to get a better
understanding of the type of changes the GAN makes. Therefore, the
average translation by the generator neural network was computed
using all domain images. This can provide evidence on whether the
identified themes hold overall. First, the average GSV image was
computed pixel-by-pixel for corresponding pixels of all 80,000 images
in a domain. Then, all these images were translated using the calibrated

GAN and the average translated image was computed. Differences be-
tween the average original and translated image give an insight into
what the network prioritises when converting one style to another and
exemplifies the inner workings of the generator neural network.

These three different methods are employed as the validity of results
may be difficult to assess, since the theoretical foundation of associa-
tions between urban form and health and wellbeing outcomes is not
captured by the proposed methodology (i.e., the method is based on
large-scale empirical data). In addition, the face validity (e.g., con-
sistency with expected performance) of the model is first investigated
using domains that are readily understood: (i) density; and (ii) city/
park translations.

3. Results

3.1. Visual comparison – density, city/park

Density translation. Fig. 2a shows the selected locations corre-
sponding to the highest and lowest density in the Greater Melbourne
area, with the highest density observed near Melbourne's central busi-
ness district (CBD). After model training, the GAN reconstructs images
accurately when encoding in the latent space and regenerating (results
not presented). Fig. 3 shows the original GSV and translated images
from low to high-density and vice versa. Specifically, the translation
from low to high-density showed the following themes: (i) the creation
of new buildings, generally in areas currently occupied by trees; and (ii)
the conversion of grass and gravel surfaces to concrete (see Fig. 3a–d).
The reverse translation of high to low-density can be characterised by
(i) the removal of buildings, cars, street lights, road markings and road
signs, which are generally replaced by grass, trees or bushes; (ii) the
conversion of multi-level buildings to single-level; and (iii) the creation
of larger open spaces or plains (see Fig. 3e–h).

Park and city. A more extreme transformation is the translation
between Melbourne's inner-city and parks (i.e., Kings Domain and the
Royal Botanic Gardens), as pictured in Fig. 2b. These domains have
fewer images than the survey-based domains, namely about 6200 city
and 13,800 park GSV images. Various themes were observed for the
park to city translation, including (i) the reduction of open spaces by
creating high-rise buildings; and (ii) the replacement of natural surfaces
such as grass and gravel by concrete (see Fig. 4a–d). Other features,
such as cars, trees and pedestrians, are maintained. The reverse trans-
lation also shows several themes, namely (i) the generation of addi-
tional green space; (ii) the conversion of sealed surfaces to gravel; and
(iii) the elimination of vehicles, buildings and power lines, which are
scarcely observed in park GSV images (see Fig. 4e–h).

Fig. 4h shows the translation of a large facade to multiple trees,
although the translated image still contains remnants of the original
building. Importantly, this indicates that large facades do not (or,
rarely) occur in the park domain, leading to complete replacement.

The changes described above are in line with expectations when
translating between low and high-density, and city and park domains,
respectively. Translating from low to high-density leading to the addi-
tion of buildings is self-evident, as is building removal for the opposite
translation. Similarly, the creation of natural surfaces in a park style
and the addition of high-rise buildings in an inner-city style is clear.
Visually the results have high face validity, providing confidence in the
proposed method. Specifically, these experiments highlight that GANs
can capture differences between selected image sets as distinct styles,
even though streetscapes are heterogeneous and the image sets contain
significant overlap (e.g., low-density areas may have some multi-level
buildings) and not every element in the GSV image may be related to
concepts as ‘city’ and ‘park’. These results allow us to move forward and
explore the transformation of health-related domains, where the cap-
tured styles are less obvious.
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Fig. 2. Selected domains: (a) locations with the highest (red/light grey) and lowest (green/dark grey) 10% of density, and (b) city (red/light grey) and park (green/
dark grey) locations. Figures were generated using QGIS (QGIS Development Team, 2018). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. Sample images showing translation of low-density GSV images to a high-density style (sub-figures a–d) and vice versa (e–h). Each sub-figure shows the
original GSV image (left; source of map data: Google), the generated image (middle) and their pixel-by-pixel differences (right).
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3.2. Visual comparison – health and wellbeing

The selected locations for general health, social capital and life sa-
tisfaction are presented in Fig. 5. Some clustering of the domains is
apparent, especially for general health and social capital. Self-reported
general health is better in the CBD and coastal suburbs, while social
capital is higher in the suburbs. For life satisfaction, the locations cor-
responding to the best responses are distributed over the Greater Mel-
bourne area.

General health. The translation from a good to a bad general health
style shows that buildings appearing close to the GSV camera are
moved further away (see Fig. 6a–d). This indicates that compactness of
the urban environment in Melbourne is mostly observed in areas with
good general health. GSV images with nearby structures are generally
not present in the bad general health domain, causing buildings to be
moved and sky to appear during the translation. Fig. 6e and f exemplify
the reduction in green space for the same translation, where trees be-
come smaller and grass areas are reduced or removed. Natural surfaces,
such as gravel footpaths in Fig. 6f, become sealed. The reverse trans-
lation (Fig. 6g and h) supports these findings, showing more grass and
larger, denser trees.

Social capital. The translations related to social capital show that
grass areas disappear, while trees become taller and more dense, when
translating to the style based on low social capital GSV images (see
Fig. 7a–d). The opposite pattern is apparent in the reverse translation,
as exemplified in Fig. 7e. Interestingly, the identified themes for general
health show a change in the amount of green space (i.e., grass, bushes
and trees), while this is not the case here: more grass and smaller trees
appear in GSV images related to high social capital. Wider and/or new
footpaths (see Fig. 7e and f) and the removal of fences (see Fig. 7g and
h) indicate that the selected image sets also differ for these features.

Life satisfaction. For life satisfaction no clear themes were observed,
except a somewhat similar green space pattern as for social capital.

3.3. Statistical measures

Table 1 shows the amount of change (i.e., the proportion of non-
white pixels in difference images) observed following translation. Fur-
ther, Table 2 investigates the difference between the original and
translated images using MSE, PSNR and SSIM. Note that an image-to-
image translation showing many changes corresponds to a high MSE,
low PSNR and low SSIM. Both Tables 1 and 2 show that the largest
changes occur for the park to city conversion, with on average the
highest proportion of changed pixels, highest MSE and lowest PSNR.
These domains contain minimal overlap (i.e., most images from the city
domain are distinctly different from the images in the park domain),
which results in larger changes when translating an image from park to
city and vice versa. Other domains, especially life satisfaction, show
more overlap (also see the lower degree of clustering in Fig. 5c). For life
satisfaction, the translated images are most similar to the original
images with, on average, the lowest proportion of changed pixels,
lowest MSE and highest PSNR. This is in line with the lack of themes
identified for this variable during the visual analysis of the generated
images (see Section 3.2). Therefore, it seems that life satisfaction is not
as strongly related to local urban form as the other investigated out-
come variables.

3.4. Average translation

Fig. 8 shows the average translations for general health and social
capital. The changes in red, green and blue channels have been am-
plified to better visualise the spatial spread of changes in each channel.

Fig. 4. As Fig. 3, but for the translation of park GSV images to a city style (sub-figures a–d) and vice versa (e–h).
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The RGB differences for the translation of images from bad general
health locations to a good health style show more natural colours (i.e.,
yellow, green) below the horizon, supporting the findings in the visual
analysis on the generation of additional grass and natural surfaces. The
opposite translation shows more blue above the horizon, consistent
with the visual analysis where buildings close to the GSV camera were
partly replaced by sky and moved further away. The average translation
to a high social capital style indicates changes mainly occur near the
horizon, with more grass and more sky because of changes in vegetation
(in line with the visual analysis). Finally, the reverse translation was
linked to the replacement of grass areas by concrete, which is also ex-
emplified by the blue colours below the horizon in Fig. 8.

Similar to the analysis above, the average pixel value and change in
red, green and blue channels were calculated for all outcome variables
and translations (see Table 3). The statistics show an increase in the
green (and red) channels for translations towards styles related to low
density, parks, good general health, high social capital and high life
satisfaction. This confirms various findings of the visual analyses re-
garding increased green space (see Section 3.1 and 3.2).

4. Discussion and conclusion

This study presented an innovative approach to understanding
variations in streetscape design through computer-generated visuali-
sations. As described in the introduction (see Section 1.1), the ideal
urban form has been a point of discussion for more than a century.

Utopian visions have been formulated as a response to issues of that
time, leading to new developments or revitalisation of current urban
areas. The impacts of these new conceptual frameworks are difficult to
evaluate and are generally only visible after many years. The results
presented in this paper are not derived from theory-driven urban
planning concepts, but from a completely different perspective: the
empirical exploration of unique features in large streetscape image
datasets using artificial intelligence. When translating images to a new
‘style’, the method automatically focusses on features that differentiate
the image sets of selected domains (i.e., unsupervised learning). These
translations show that areas in Melbourne with good general health are
characterised by sufficient green space, compactness of the urban en-
vironment and natural surfaces. Further, streetscape imagery re-
presentative of neighbourhoods where residents had high levels of so-
cial capital contained more and wider footpaths, fewer fences and more
grass. The themes observed in the translated imagery, such as com-
pactness and greening, are pointing towards sustainable design philo-
sophies as the compact city and eco-city as viable ways to enhance the
health of city residents.

To identify if GANs are capable of capturing health and wellbeing
styles, the analysis was expanded by including statistical measures and
the average translation, supporting the conclusions. Findings are also in
line with previous research, providing confidence in the new method
and the validity of its results. For example, the positive impact of green
space on general health was also identified by various other studies
(e.g., Groenewegen, van den Berg, de Vries, & Verheij, 2006; Maas

Fig. 5. Selected domains: locations with the best 10% (green/dark grey) and worst 10% (red/light grey) of (a) general health, (b) social capital, and (c) life
satisfaction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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et al., 2006; Tzoulas et al., 2007). In addition, the positive health im-
pact of compactness of the urban environment was quantified by
Stevenson et al. (2016), finding compact city design yields health gains
of 420–826 disability-adjusted life-years per 100,000 population. With
respect to non-compact urban form, various studies indicate urban
sprawl has negative effects on public health, caused by increases in air
pollution, transport-related crashes and reduced physical activity (e.g.,
Frumkin, 2002; Giles-Corti, Ryan, & Foster, 2012). In contrast, the re-
lationship between urban sprawl and social capital is less clear. Sprawl
could support some types of social capital while negatively impacting
others (Nguyen, 2010), indicating why compactness of the city was not
observed in the social capital analyses. More green and other outdoor
spaces, on the other hand, are associated with higher social capital. For
example, Sullivan, Kuo, and Depooter (2004) found that suitable out-
door green space leads to a significant increase in the amount of social
activity that takes place in these areas. Further, community gardens
lead to increased social cohesion and social support (Kingsley &
Townsend, 2006). Perceived greenness of the urban environment is
correlated with recreational walking, social cohesion and local social
interaction (Sugiyama, Leslie, Giles-Corti, & Owen, 2008). Further,
Leyden (2003) found that walkable neighbourhoods lead to higher so-
cial capital. This is consistent with our findings relating social capital to
outdoor space and infrastructure (i.e., grass and footpaths), although
findings related to trees could be indicative of more remote areas.

This indicates a limitation of this study, as our method (as many
other studies) does not provide causality of the identified relationships.
For example, for both general health and social capital changes in green
space were found, while Maas, van Dillen, Verheij, and Groenewegen
(2009) indicate that loneliness and perceived shortage of social support
could be a mediator for the relation between green space and health.

Outcomes such as general health are influenced by many factors; the
design of streetscapes is not their only driver. For example, the urban
form at a larger scale, including land use mix and access networks, is
not captured in a streetscape image. In addition, many factors not re-
lated to design (e.g., genetics, education, diet) influence these out-
comes. However, if there would be no relationship between the design
of streetscapes and health and wellbeing outcomes, changes between
the original and generated images would be minimal without any clear,
outcome-dependent themes. As shown in this research, this is not the
case. In addition to imagery, future studies could aim to explicitly in-
corporate these other factors (e.g., distance to public transport, ame-
nities, neighbourhood walkability) in the modelling. Various studies
stress the need to change policies and amend local urban environments
as a method to improve health and safety, as the impact of local en-
vironment improvements may be larger than interventions targeted at
individuals (e.g., Kondo, South, & Branas, 2015). Eventually, GAN-
based methods could be capable of suggesting amendments to specific
streetscapes that improve health and wellbeing outcomes, by gen-
erating targeted interventions that also retain the current infrastructure
of the local environment.

Note that images in this study were obtained for Melbourne,
Australia and applicability of the findings to other international cities
has not been investigated. Validity of these findings beyond Melbourne
could be investigated using a similar approach, but different input
imagery and health outcome data. A further limitation is that not all
images are of great quality and some contain artefacts; for example, the
reconstruction of cars could be more accurate. Inaccuracies in these
renderings do not influence the major themes identified through visual
analysis in this research.

We identify several additional avenues for future research. First,

Fig. 6. As Fig. 3, but for the translation of GSV images at locations with good general health to a style related to bad general health (sub-figures a–f) and vice versa (g
and h).
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GAN architectures based on multimodal unsupervised image-to-image
translation (Huang, Liu, Belongie, & Kautz, 2018; Zhu et al., 2017b) can
generate multiple realisations based on a single input image, as there
are generally multiple valid solutions when translating to a different
domain. For the theme analysis performed in our study, multimodal
translation was not required, but it could be explored in future research.
Second, the Place Pulse 2.0 database (Dubey et al., 2016) captured the
perception of GSV images using crowd-sourcing. This directly measures

the perception of a specific urban environment and could replace the
survey part of our method. However, note that the Place Pulse study
only measures a few factors (e.g., safety, beauty), limiting the options
for streetscape analysis, while the style definition in our study is flexible
and not necessarily restricted to health and wellbeing outcomes. Fi-
nally, the new method could eventually be used for virtual reality ap-
plications, where computer-generated design allows for an immersive
and cost-effective evaluation of citywide design interventions, without
the need for a potentially slower, more expensive, bottom-up design
approach. Note that consecutive images along a single street were
rendered in a consistent manner (results not presented).

Overall, this study has utility for researchers, urban planners and
urban designers seeking to understand the perception and impact of
streetscape design. It may, in the future, directly assist designers and
policy-makers to implement our understanding of these relationships
using targeted design interventions to improve the health and wellbeing
of city residents. Finally, our study provides a tool that could be used in
local urban design initiatives to inspire citizen-stakeholders who take
an active role in designing their neighbourhood.

Fig. 7. As Fig. 3, but for the translation from high to low social capital (sub-figures a–d) and vice versa (e–h).

Table 1
Average proportion of pixels that changes during translation.

Low to high High to low

Density 53.2% 57.8%
Park/city 86.1% 80.9%
General health 44.2% 54.2%
Social capital 42.2% 39.5%
Life satisfaction 35.5% 37.3%

Table 2
Average MSE, PSNR (dB) and SSIM statistics between original and translated images. A higher MSE, lower PSNR and lower SSIM indicate less similarity.

Low to high High to low Average

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

Density 942 19.0 0.57 1151 18.0 0.55 1047 18.5 0.56
Park/city 2191 15.1 0.59 1149 17.9 0.65 1670 16.5 0.62
General health 811 19.6 0.63 1055 18.5 0.61 933 19.0 0.62
Social capital 893 19.0 0.58 876 19.2 0.60 885 19.1 0.59
Life satisfaction 695 20.1 0.65 673 20.4 0.64 684 20.3 0.64
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Fig. 8. Average changes the generator neural network makes for different style conversions. For the red, green and blue channel differences, white indicates an
increase in that channel, grey (128, 128, 128) no change and black a reduction.

Table 3
Changes in colour channels for the average image per domain.

Original Translated Difference (%)

Red Green Blue Red Green Blue Red Green Blue

Density – low to high 125 127 121 123 124 118 −1.7 −2.5 −2.1
Density – high to low 123 123 118 128 127 118 4.6 3.4 −0.6

Park to city 114 116 108 94 93 91 −17.8 −19.5 −16.3
City to park 107 108 104 109 111 106 1.8 2.9 1.7

General health – low to high 124 125 120 128 128 119 3.5 2.2 −0.4
General health – high to low 123 124 119 123 124 121 −0.1 −0.3 1.5

Social capital – low to high 121 122 117 124 125 120 3.2 2.6 2.3
Social capital – high to low 124 125 120 114 118 116 −7.3 −5.1 −3.4

Life satisfaction – low to high 124 125 120 128 130 122 3.3 3.8 1.8
Life satisfaction – high to low 122 123 118 117 122 115 −4.0 −0.7 −3.1
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