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Abstract—Footpath mapping, modeling, and analysis can pro-
vide important geospatial insights to many fields of study,
including transport, health, environment and urban planning.
The availability of robust Geographic Information System (GIS)
layers can benefit the management of infrastructure inventories,
especially at local government level with urban planners respon-
sible for the deployment and maintenance of such infrastructure.
However, many cities still lack real-time information on the
location, connectivity, and width of footpaths, and/or employ
costly and manual survey means to gather this information.
This work designs and implements an automatic pipeline for
generating footpath networks based on remote sensing images
using machine learning models. The annotation of segmentation
tasks, especially labeling remote sensing images with specialized
requirements, is very expensive, so we aim to introduce a pipeline
requiring less labeled data. Considering supervised methods
require large amounts of training data, we use a self-supervised
method for feature representation learning to reduce annotation
requirements. Then the pre-trained model is used as the encoder
of the U-Net for footpath segmentation. Based on the generated
masks, the footpath polygons are extracted and converted to
footpath networks which can be loaded and visualized by
geographic information systems conveniently. Validation results
indicate considerable consistency when compared to manually
collected GIS layers. The footpath network generation pipeline
proposed in this work is low-cost and extensible, and it can
be applied where remote sensing images are available. Github:
https://github.com/WennyXY/FootpathSeg.

Index Terms—footpath segmentation, remote sensing, self-
supervised learning, computer vision, deep learning, GIS.

I. INTRODUCTION

Walking as a mode of transportation provides many health

and economic benefits and is crucial for accessible transport

systems [1]–[4]. While city planners and local government

agencies make significant investments in walking infrastruc-

ture, there is a lack of robust, real-time geolocated data

capturing network detail. Such data is paramount for analysis

such as walkability, safety, efficiency and maintenance of

walking-oriented infrastructure.

Footpath networks require detailed and regular assessment,

monitoring, and updating [5] to identify network flaws and

Fig. 1. An example of the ground truth footpath network in an area of
Melbourne. The figure on the top is the ground truth footpath network and
the figure on the bottom is generated by our pipeline automatically. The
background map is provided by Bing Aerial.

potential risks to safety and accessibility ahead of time [6].

There are several existing efforts to detect and segment

footpaths using Bird’s-Eye-View (BEV) or images captured

by mobile phone applications [5], [7]. However, the data

availability of such crowd-sourced methods is limited because

captured images depend on the paths more frequently used by

application users and are difficult to extend to more regions.

Instead, the development of remote sensing technology offers

an opportunity as there is a large amount of open-access aerial

imagery available to researchers. Therefore, the effective use

of remote sensing images to generate map information has a
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Fig. 2. The pipeline of generating geographic footpath network based on the remote sensing images. The input of the pipeline is a series of remote sensing
images of a specific area and the output is a generated footpath network about this area. First, we use an unlabeled remote sensing dataset to pre-train a feature
extractor in a self-supervised learning method. Then, we fine-tune the U-Net to do the downstream segmentation task on a labeled footpath remote sensing
dataset. The encoder of the U-Net is a pre-trained backbone network of the self-supervised model which is mainly used to generate the representations for
the input, while the decoder is a custom convolutional neural network that takes the extracted features from the encoder and reconstructs the segmentation
masks with the same dimensions as the input images.

high potential for exploration. Combined with recent advances

in computer vision models that have demonstrated their ef-

fectiveness in image segmentation, there is an opportunity to

apply vision models to solve existing footpath identification

and monitoring issues. However, annotation is very expensive,

time-consuming, and error-prone, so there is a widening gap

between the proliferation of satellite imagery and the limited

availability of high-quality labels [8], [9]. Another problem

is that the target segmentation object is obscured. Sidewalks

are always adjacent to trees, so they are often partially or

completely blocked in remote sensing images, i.e., canopy

occlusion in the overhead images [10]. In this case, we still

want our pipeline to identify the part of the footpath that is

obscured in order to transform the segmented footpath into a

whole network.

To address these issues, this work introduces a pipeline

for constructing a footpath network from remote sensing

images of a given area only requiring a minimum of manually

produced annotations. As shown in Fig. 1, the real sidewalk

network map is the top image, while the sidewalk map auto-

matically generated by our proposed method is at the bottom.

Considering that supervised training requires considerable

labeled data, we use a self-supervised learning method to pre-

train our model on an unlabeled remote sensing dataset, which

is known to be an effective strategy for segmentation tasks

[11]. Then, we obtain a generalizable feature extractor for

the subsequent footpath segmentation task. We then attempt

to solve for the problem of occluded segmented objects in

terms of dataset construction. When annotating the segmen-

tation task, we ignore the occlusion and directly generate the

corresponding real footpath mask for the image. In conclu-

sion, our contributions are: first, we create two datasets for

pre-training and fine-tuning separately, then we present our

pipeline which is able to generate footpath maps with minimal

manual effort (Sec. III). We evaluate our segmentation model

on both validation and test set and our model obtains better

F1-score and mIoU results than the supervised pre-training

baseline model. Our quantitative and visualized results on a

remote sensing dataset in the Melbourne area are present in

Sec. IV. In particular, our pipeline can be easily extended to

new datasets or other map-building tasks at a very low cost.

II. RELATED WORK

A. Self-supervised Learning

The main goal of self-supervised learning is to learn task-

independent representations of the input data that can be eas-

ily generalized to downstream tasks [9]. The self-supervised

model designs a pretext task whose annotations can be ob-

tained from the dataset automatically without the need for

manual annotations or a labeled dataset. Contrastive learning,

a type of self-supervised method, has recently attracted a

lot of attention in the field of self-supervised learning and

become an essential component for natural language process,

computer vision, and other domains [12]. This method does

not rely on a single and specific pretext task, it aims to make

similar images closer and different images far away from

each other in the feature space. Therefore, it avoids learning

task specific representations and is able to generalize well in
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different downstream tasks such as classification, detection,

segmentation, and so on. [13] proposes Bootstrap Your Own

Latent (BYOL) consisting of two neural networks named on-

line and target which take positive pairs as the input and learn

from each other. A simple but effective data augmentation

named multi-crop is proposed by [14] which uses a series of

images of different resolutions instead of augmented images

with a fixed resolution. Inspired by BYOL, [15] introduces

a simple contrastive learning method with a form of self-

distillation with no labels (DINO). They observe that the

features extracted by a self-supervised Vision Transformer

(ViT) trained by DINO deliver useful knowledge for semantic

segmentation. Based on DINO and multi-crop, [16] proposes

DINO-MC which uses multi-size local crops instead of a series

of fixed-size local crops which is proven that the features

extracted are more useful than DINO on some remote sensing

tasks. There has been some work on the utilization of computer

vision methods based on remote sensing imagery to generate

footpath or sidewalk maps, but most of them are based on

supervised methods. The application of the self-supervised

model which is capable of achieving comparable results even

requiring less labeled images still lacks exploration in this

field. This work applies DINO-MC [16], a self-supervised

learning method specialized for remote sensing imagery by

considering the variation in feature sizes present in remote

sensing imagery, to learn effective representations for footpath

segmentation.

B. Footpath Segmentation

Physical site or aerial image surveys can generate accurate

and high-quality footpath maps, but they are also a time-

consuming and laborious work [17]. With the development

of remote sensing technology, many automatic mapping tools

have been proposed, like pedestrian Global Positioning System

(GPS) trajectories and airborne Light Detection and Ranging

(LiDAR). While GPS trajectories of pedestrians can result

in lower costs of data collection, it has limited accuracy,

in contrast, LiDAR has higher geometric accuracy but also

higher cost [3]. Therefore, many existing works [18]–[21]

have explored combining LiDAR technology with deep learn-

ing models. However, these methods still require specialized

equipment and are labor-intensive, and our goal is to propose

a generic, low-threshold, practical, and scalable pipeline for

certain map generation tasks. In line with our work, a few

papers focus on applying computer vision techniques only to

extract footpath maps from remote sensing imagery [3], [22],

[23]. However, these strategies rely on extra different views of

images or a large amount of labeled data support for training,

which increase the threshold for other specific applications,

like combining horizontal disparity, height above ground, and

angle (HHA) features with RGB-D image features to get more

accurate maps than using HHA or RGB only [18]. In contrast,

our work uses self-supervised learning and a much smaller

dataset (1000 images or less) for training, thus considerably

reducing labeling requirements. Considering the convenience

and accessibility of a large amount of remote sensing image

Augmented Views
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global cropsall crops
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Fig. 3. The structure of DINO-MC used in this work. A self-supervised
contrastive model with knowledge distillation.

data nowadays, it is worth exploring the use of computer

vision methods to automatically generate footpath maps from

the remote sensing images only, without the need for large

amounts of annotated data. While some work has attempted

to explore this as a classification problem [24], we argue that

it is important to predict segmentation results for generating

fine-grained spatial insights and measurement.

III. METHODOLOGY

Our pipeline consists of two phases, image segmentation

(mask generation) and GIS layer generation. To generate

masks, we first pre-train a convolutional neural network for

feature extraction in a self-supervised manner. Then we use an

encoder-decoder model named U-Net to detect and segment

the footpath mask for a specific area of remote sensing

images. In the second phase, we extract the polygons from

the generated masks and stitch them into a whole network

according to their latitude and longitude coordinates.

A. Datasets

In this work, we build two remote sensing imagery datasets

for the whole pipeline. Both datasets (the self-supervised

training set and the footpath segmentation set) are downloaded

from MetroMap, a provider of high-resolution aerial imagery

that is updated frequently. Our datasets are collected based on

XYZ Tiles, which is also known as slippy map tiles. It is a

system using Web Mercator coordinates, X and Y represent

the index and Z represents the zoom level of the tiles. The

collected images are 256×256 pixel, and we request the slippy

tiles with Z = 21. The training set of the self-supervised

representation learning consists of 100,000 unlabeled remote

sensing images of Sydney, Australia. We collect approximately

10 million remote sensing images of Melbourne in 2020 for

the downstream task of sidewalk segmentation. The ground

truth footpath segmentation masks are generated automatically

by converting the geographic network into binary masks. We

download the footpath geographic network of a small area
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Fig. 4. The structure of the U-Net used in this work consists of two modules. The left part of the figure is the encoder module of the U-Net. In this work,
we use the pre-trained Wide ResNet as the encoder to calculate the representations of the inputs. The right part of the figure is the decoder module of the
U-Net. It is a custom convolutional neural network used to reconstruct the mask. The decoder module is composed of four blocks, and the structure of each
block is also shown in this figure. The block takes both the output of the previous layer and the output of the encoder layer as the input and concatenates
them together to process.

of Melbourne and partition this network into a series of small

polygons. These polygons are segmented based on latitude and

longitude coordinates which correspond to the remote sensing

image tiles. The segmented polygons are then converted to

binary images and used as ground truth masks for remote

sensing images with the coordinates. In this way, we generated

footprint masks for a total of 40,363 images. Among the

labeled data, 1200 images with good annotations are manually

selected, of which 1000 are used as the training set and 200

as the validation set. The remaining 39,163 labeled images are

used as the test set.

B. Models

Self-supervised model. The labeling of remote sensing im-

age tasks, especially the segmentation task, is time-consuming,

labor-intensive, and requires expertise. Loading pre-trained

model weights, rather than initializing with random weights,

can accelerate model convergence and improve performance.

However, applying the traditional supervised method to pre-

train the model requires a large amount of labeled data. So

in this work, we choose to use a self-supervised approach

named DINO-MC to pre-train the model to learn a general

feature representation for remote sensing images. After pre-

training, the model is able to have an initial ability for

feature extraction, which significantly reduces the amount of

training data required for the downstream task. DINO-MC is

a contrastive self-supervised method that does not depend on

a specific pretext task. Relying on a single pretext task can

only learn pretext-specific features, which may lead to poor

generalization of the model. DINO-MC utilizes the knowledge

distillation architecture instead of a single pretext task, to train

the model to learn the relationship between the whole and the

parts and capture the essential features that do not change

when using various image augmentations. As illustrated in

Fig. 3, there are two networks in DINO-MC named teacher

and student networks which have identical architecture but

different weights. The inputs of the student network include

different sizes of crops (global and local crops) of the initial

image, while the teacher network is only fed with two global

crops of the same size. In addition to the different sizes,

the input crops are applied with different and random data

augmentation methods, including Gaussian Blur, color jitter,

solarization, and flip. The goal of the training process is to

make the image representations extracted by two networks

as similar as possible in the feature space. Therefore, the

model does not require any labeled datasets to learn a generic

representation that is invariant to different augmentations.

Compared to DINO, DINO-MC employs different sizes of

local crops instead of a single size which is proven to improve

the performance of the representations learned by the model

on different downstream tasks [16].

Since Wide ResNet was proven to achieve better results

than ResNet from the results of [16], in this task, we apply

Wide ResNet as the backbone (teacher and student network)

of DINO-MC.

Segmentation model. We choose U-Net, a U-shape seg-

mentation network, to do the footpath segmentation task. It

takes an image as input, outputs a dense prediction that assigns

a category to each pixel, i.e., a binary mask showing where

the footpath is. It mainly consists of two modules named

encoder and decoder. In addition, a special structure of U-

Net is the skip connection that connects the shallow features

to the decoder directly. The pre-trained backbone model Wide

ResNet is used as the encoder to generate the representations

for the input images. The output of the first convolution layer

and the last four blocks of Wide ResNet are saved and passed

to the corresponding layers of the decoder module which

is called skip-connection, so the semantics information can
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be forwarded to deep layers. The decoder used in U-Net

is a custom convolutional neural network for generating the

segmentation masks by upsampling the feature maps.

Implementation details. In this section, we present more

details about the implementation in the experiments. For self-

supervised training, we pre-train the self-supervised model on

100, 000 unlabelled remote sensing images. The optimizer we

use to update the weights of the model is adamw. During the

training process, the batch size is set to 16 per GPU, and four

GPUs are employed in total. Following DINO, we apply the

learning rate warmup for the first 10 epochs, during which the

learning rate will linearly increase. Then the learning rate starts

to decrease following a cosine schedule. Following DINO-MC,

we crop the input image into two global crops of the same

size 224 × 224 and six local crops of different sizes which

are 184 × 184, 164 × 164, 144 × 144, 124 × 124, 104 × 104,

which is called multi-crop. We use the bicubic interpolation

to resize images which is the same crop setting as DINO.

After cropping, we apply HorizontalFlip, color jittering and

GaussianBlur on the generated crops then additionally apply

the Solarization on one of the global crops.

In the segmentation task fine-tuning, the implementation of

the U-Net refers to the codes of SeCo [25], which is mainly

based on the Pytorch Lightning, a deep learning framework.

We initialize the Wide ResNet with the pre-trained weights and

apply it as the encoder of the U-Net to do feature extraction.

During fine-tuning, the batch size is 32 on a single GPU

and the learning rate is 6e − 5. The fine-tuning process may

result in feature loss, and we need to retain as many useful

features learned from pre-training as possible, so the learning

rate cannot be set too large. The loss function proved to be

the best model in our experiments is dice bce loss [26], which

combines the BCE (binary cross entropy) and dice coefficient.

The parameters of the segmentation model are updated by two

different experimental schemes. The first one is to freeze the

feature extractor (Wide ResNet) to compute the representations

of the input images and only adapt the weights of the decoder

network. Another is to update the whole U-Net including both

the pre-trained encoder and the custom decoder networks.

C. Evaluation

We perform experiments with our model by applying both

end-to-end fine-tuning and the encoder-frozen fine-tuning. The

main object of the assessment is the footpath segmentation

results. Because of the imbalance in the number of categories

(at the pixel level), the pixel accuracy is not able to accurately

reflect the performance of the segmentation task. Therefore,

we employ both F1-score and mean Intersection over Union

(mIoU) evaluation metrics to calculate how well the generated

masks match the ground truth masks.

F1-score is the harmonic mean of precision and recall. The

calculation of F1-score is shown in Eq.1, 2, and 3, with TP
denoting the number of positive examples that are properly

predicted, FP denoting the number of positive instances

that are wrongly forecasted, and FN denoting the number

of negative cases that are incorrectly predicted. mIoU, also

referred to as the Jaccard Index, is one of the most widely

used assessment measures for segmentation tasks. As shown

in Eq.4, IoU is the number of pixels that overlap between

the generated segmentation mask and the ground truth mask

divided by the number of their union pixels.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1− score = 2× Precision×Recall

Precision+Recall
(3)

IoU =
overlap pixels

union pixels
(4)

D. GIS Layer Generation

After the image segmentation phase is completed, we obtain

the predicted footpath masks in raster format. As shown in

Fig. 2, we first extract the footpath contour from raster images

and get the coordinates of the contour. We calculate the

coordinates of the contours in the image and translate them

into real-world latitude and longitude. The contour represented

by real coordinates can then be converted into a polygon. We

apply Douglas-Peucker algorithm to simplify the generated

geometry by removing some points of the polygons then filter

out polygons that are smaller than the threshold value in area.

The generated polygons are the geometry objects and can be

combined and processed according to their locations. Finally,

the generated network is saved in GeoJSON files by an open-

source Python tool named GeoPandas. The produced file is

able to be loaded and operated as a layer of the subsequent

project across multiple GIS software applications.

IV. EXPERIMENTS AND RESULTS

The experiments mainly focus on the footpath segmentation

to generate the binary mask for the input remote sensing

imagery. We utilize two fine-tuning methods to train our model

on different sizes of training sets and the fine-tuned models are

evaluated on the validation set quantitatively, and there is no

overlap between the training and validation sets. Two baseline

models are applied to the footpath segmentation task, and we

only fine-tune them on 1000 training images to compare with

our model. Then we provide some visualization results of this

work.

A. Quantitative Results

Comparing models fine-tuned on different-sized training
sets. A machine learning model’s performance is thought to

be significantly influenced by the dataset size [27]. We create

datasets randomly in four different sizes including 100, 400,

500, and 1000 remote sensing images, and the smaller datasets

are incorporated into the larger datasets. The validation set

consists of 200 images with no overlap with the training

set. We load the Wide ResNet pre-trained in DINO-MC as

the encoder of U-Net and experimented with two fine-tuning
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TABLE I
F1-SCORES WHEN APPLYING TWO FINE-TUNING STRATEGIES ON

DIFFERENT SIZES OF DATASETS. WE BUILD FOUR FOOTPATH

SEGMENTATION TRAINING SETS OF DIFFERENT SIZES TO EXPLORE THE

RELATIONSHIP BETWEEN THE MODEL PERFORMANCE AND THE SIZE OF

THE TRAINING SET.

Dataset size Decoder Encoder+Decoder
(#images) val val test

100 57.00 63.11 51.06
400 62.02 71.84 59.03
500 64.33 72.14 60.25
1000 68.35 76.58 63.97

Fig. 5. F1-scores for models fine-tuned on training sets of different sizes.

modes, one is to freeze the encoder and update only the

decoder, and the other is to update all parameters of U-Net.

The quantitative results are shown in Tab. I. Decoder (val)

is updating decoder only and evaluated on the validation set

after fine-tuning. Encoder + decoder represents updating all

parameters of U-Net and evaluated on the validation set and

the test set respectively. The results shown in this table are

the F1-score of models pre-trained on different training sets

in different fine-tuning modes evaluated on the same validation

set (containing a total of 200 images) and the same test set

(consisting of 39,163 images in total).

Comparing the F1-scores of the two fine-tuning strategies

on the validation set, updating the parameters of both en-

coder and decoder achieves better results in the quantitative

evaluation. When fine-tuning on 100, 400, 500, and 1000

images respectively, updating all parameters achieves higher

F1-scores of 6.11, 9.82, 7.81, and 8.23 than only updating

the decoder model. From Fig. 5, the F1-scores achieved by

the model become progressively larger as the training data

increases. When the number of images increases from 100 to

500, the improvement of the model is obvious: the F1-scores

of updating all parameters increase by 9.03 on the validation

set and 9.19 on the test set, the F1-score of updating the

decoder parameters only increase by 7.33 on the validation

set. But when the number of images increases from 500 to

1000, the F1-score of updating all parameters increase by

4.44 on the validation set and 3.72 on the test set, the F1-

score of updating the decoder parameters only increase by

4.02 on the validation set. Therefore, the performance of both

TABLE II
COMPARISON BETWEEN BASELINES AND OUR MODEL.

Model F1-score mIoU
val test val test

Random WRN101 63.19 50.11 46.4 33.49
ImageNet1K WRN101 69.77 55.86 53.7 38.81
DINO-MC WRN101 76.58 63.97 62.2 47.09

models improves significantly when the number of images

increases from 100 to 500, but the improvement reduces when

the number of images increases from 500 to 1000.

Comparing with baseline models. We experiment Wide

ResNet initialized with different pre-trained weights as the

encoder of U-Net to extract features of the input image.

Two baseline models are utilized in this experiment. One is

Wide ResNet with random weights without any pre-training,

the other is Wide ResNet pre-trained on ImageNet1K in the

supervised manner. Tab. II provides the quantitative results

of two baseline models and our best performance model.

These three models are fine-tuned and evaluated on the same

footpath segmentation dataset with 1000 training images, 200

validation images, and 39,163 test images. The first two

models listed in the table are the baseline models. Random

WRN101 is the Wide ResNet initialized with random weights,

while ImageNet1K WRN101 is the Wide ResNet pre-trained

on ImageNet1K in a supervised manner. DINO-MC WRN101

is the Wide ResNet pre-trained as the backbone of DINO-MC

in a self-supervised manner.

From the table, Wide ResNet pre-trained in DINO-MC

achieves better results of F1-score and mIoU metrics on both

validation and test sets than other two baseline models. DINO-

MC WRN101 achieves 6.81 and 13.39 higher F1-score than

ImageNet1k WRN101 and Random WRN101 on validation

set, and 8.11 and 13.86 higher F1-score on test set. DINO-MC

WRN101 achieves 8.5 and 15.8 higher mIoU than ImageNet1k

WRN101 and Random WRN101 on validation set, and 8.28
and 13.6 higher mIoU on test set.

B. Visualization

We use the fully fine-tuned U-Net with Wide ResNet pre-

trained in DINO-MC for mask generation which achieves

the best quantitative results on both validation and test sets.

Fig. 6 shows five instances of the footpath segmentation,

where the first column is the input of the model (original

remote sensing images), the second column is the ground

truth mask, and the last column presents the output mask of

the segmentation model. From the visualization results of the

generated masks, we can find that our model is capable of

detecting the footpath from the remote sensing imagery and

restoring occluded and missing sidewalks even in the presence

of tree canopy occlusion (see the third row in Fig. 6).

Fig. 7 presents the entire GIS footpath network map with

the ground truth footpath layer at the top and the generated

footpath map layer at the bottom. We observe that the gen-

erated map is able to depict the whole network structure of

this area, which is quite similar to the ground truth map. In
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Fig. 6. Examples of the mask output from the best performing fine-tuning
model. The model is pre-trained as the backbone of DINO-MC in a self-
supervised manner and then fine-tuned on footpath segmentation task training
set with 1000 remote sensing images. The first column (from left to right)
shows the original remote sensing images, the second row shows the ground
truth masks, and the third row shows the generated binary masks.

conclusion, our model can detect the location and shape of the

footpath from remote sensing images, but there are prediction

errors in the specific width as well as in the edges.

C. Discussion and Error Analysis

From the quantitative results, we find that pre-training on

larger datasets can produce better results, but this improvement

reduces as the amount of data increases. Updating all the

parameters during fine-tuning phase achieves better results

than freezing the encoder model, since during this process,

the features extracted by the encoder generalize to the specific

footpath downstream task which helps the encoder construct

better segmentation mask.

We observe that when updating all parameters of U-Net, the

improvement resulting from increasing the size of the training

set is greater than when updating only the decoder module.

One possible reason is that when freezing the encoder module,

the fine-tuned model contains only the decoder, which can be

seen as training a smaller model than the whole U-Net, and

the feature learning ability of the smaller model is to some

extent more limited compared to the larger model. Compared

Fig. 7. Visualization of the whole GIS footpath networks. Top: the ground
truth footpath network in an area of Melbourne. Bottom: the final generated
footpath network using our pipeline.

to the random initialized Wide ResNet, our self-supervised

Wide ResNet gains better performance which proves the effec-

tiveness of the pre-training process again. We even outperform

the supervised baseline model showing the large potential of

applying self-supervised learning in GIS map generation based

on remote sensing imagery.

From the visualization results, our pipeline is able to iden-

tify the shape and location of the footpath, and the errors are

mainly in the prediction of the specific footpath’s precise width

prediction and the edge segmentation details. The possible

reason could be that the zoom level of the remote sensing

imagery tiles we use for segmentation input is large, and

each image only covers a small area. Therefore, for each

image, the segmentation model can only observe and learn

less contextual information. Another possible reason is the

problem of occluded segmented objects. Due to the camera

angle, lighting problems, and the diversity of occlusions, the

model suffers more interference in dealing with the contour

of the footpath.

In the future - by combing our outputs with existing data

collection processes such as OSM, and Captial Works pro-

grams (within Councils) - the output quality will be progres-

sively improved enabling increasingly robust urban analytic
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outputs and improving data drived urban design decision-

making.

V. CONCLUSION

This paper has shown the potential of applying a self-

supervised model to footpath map generation only using

remote sensing imagery. We propose a pipeline for generating

a geographic footpath map only based on the corresponding

remote sensing images. First, we employ a self-supervised

learning model DINO-MC to train the Wide ResNet to learn

general feature representations. Then we load the pre-trained

Wide ResNet as the encoder of the segmentation model U-

Net and fine-tune it on the footpath segmentation task. After

training, the best-performing fine-tuned model is applied to

the remote sensing imagery of a specific region to obtain the

generated masks of raster format. Based on the masks, we

extract the contour of the predicted footpath and convert them

to polygons, which are saved in the GeoJSON files for the

following application. Our approach is highly automated, has

a low threshold, and is ready to extend to other datasets or

applications. Our model achieves better F1-score and mIoU

than the supervised WideResNet baseline model.
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