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Abstract

Analysis of overhead imagery using computer vision is a problem that has re-
ceived considerable attention in academic literature. Most techniques that op-
erate in this space are both highly specialised and require expensive manual
annotation of large datasets. These problems are addressed here through the
development of a more generic framework, incorporating advances in represen-
tation learning which allows for more flexibility in analysing new categories of
imagery with limited labeled data. First, a robust representation of an un-
labeled aerial imagery dataset was created based on the momentum contrast
mechanism. This was subsequently specialised for different tasks by building
accurate classifiers with as few as 200 labeled images. The successful low-level
detection of urban infrastructure evolution over a 10-year period from 60 mil-
lion unlabeled images, exemplifies the substantial potential of our approach to
advance quantitative urban research.

Keywords: Computer vision, Urban Analysis, Representation learning,
Transport

1. Introduction

Advances in deep learning methods [1] have enabled the analysis of very
large datasets, including those containing overhead and satellite imagery, in a
fully automated manner. High-definition aerial imagery datasets are becoming
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increasingly available as a result of improved capture and storage techniques,
as well as advances in processing power. Combined, this is enabling detailed
analysis of higher resolution remote sensing scenes. The traditional deep learn-
ing process follows the steps of data collection, data labeling, model training
and inference on unlabeled data to assign labels automatically to the unlabeled
data.

Due to the sheer volume of available data, computer vision techniques are
uniquely suited to efficiently process them for different tasks such as classifica-
tion, object detection and semantic segmentation. In machine learning, super-
vised learning, which operates on labeled data to build a predictive model, has
been extensively used to harness information from aerial imagery. Supervised
learning techniques excel when provided with a large volume of labeled data.
However, such data needs to be labeled manually which is labour-intensive and
therefore expensive and difficult to scale. In contrast, unlabeled data such as
satellite imagery is more freely available and exists in greater quantities. Sev-
eral learning paradigms have investigated how to harness unlabeled data sources
more efficiently including self-supervised learning and semi-supervised learning.

Recent advances in aerial imagery techniques have led to a rapid increase in
the amount of overhead imagery available. This increase is led primarily by the
higher resolution of imagery capture (for example - imagery captured at 10cm
resolution would generate 100 times more data compared to imagery captured at
100cm (1m) resolution. However, in order to make use of this data, storage and
processing power must also keep up. It is therefore imperative that analytical
pipelines are capable of handling such data while maintaining key performance
metrics such as analytical accuracy and speed.

High-resolution aerial imagery captures detailed urban characteristics, en-
abling the potential identification of important urban features [2] such as cycling
infrastructure at scale. This work introduces methods for effectively exploring
such large volumes of data (scaling up to 60 million images), using a much
smaller labeled set of images (as few as 200 images). Methods leveraging self-
supervision, semi-supervision are introduced, evaluated and deployed across 15
cities in Australia.

1.1. Advances in neural network training techniques

1.1.1. Self-supervised representation learning

Self-supervised learning extracts knowledge from unlabeled datasets by set-
ting up a pretext task on which the model can be pretrained in a supervised
manner [3]. In self-supervised workflows, the focus is on the intermediate rep-
resentation that is learned by the self-supervision pretext task, rather than
maximising prediction accuracy. This intermediate representation is used in
downstream tasks such as object detection, with the expectation that the rep-
resentation learned during the pretext task is robust from a semantic and struc-
tural perspective.

There is currently a large body of work focused on learning task-independent
representations using these techniques. For example, Noroozi and Favaro [4]

2



formulated a jigsaw puzzle task by selecting several adjacent blocks of pixels.
After shuffling the blocks, the model’s task is to recover the correct spatial order
(see Fig. 1a). This task requires high-level reasoning based on the objects and
details visible in the image. Therefore, a model that excels in the pre-training
task is likely to contain a useful representation of the image. Similarly, Doersch
et al. [5] designed the task of retrieving the relative position of a tile compared
to a selected image section (see Fig. 1b).

(a) Solving jigsaw puzzles [4] (b) Relative position [5]

Figure 1: Examples of pretext tasks. By performing such tasks, the neural network develops
an initial understanding of the types of tasks it will be trained for in the future. This reduces
the difficulty and magnitude of future training.

Importantly, while self-supervised learning tends to reduce the labelling re-
quirements for training neural networks, it does not provide a means for la-
belling large datasets. This is because self-supervised learning generally pro-
vides psuedo-labels for the model to build an initial representation of the world,
which helps to reduce the number of labeled data points it needs to see to build
a hypothesis about a particular category, but does not necessarily label data
points related to those particular categories.

1.1.2. Semi-supervised learning

Semi-supervised learning corresponds to the class of machine learning tech-
niques where a large amount of unlabeled data is available alongside a smaller
collection of labeled data. These approaches attempt to use the small volume
of labeled data to assign labels to the much larger volume of unlabeled data,
in an iterative fashion. Thereby, the set of labeled data grows during analysis,
leading to more accurate models.

Prior work has used semi-supervised approaches (also referred to as boot-
strapping approaches in some research areas) to improve prediction accuracy
of predictive models by generating more training data. However, very few op-
erate in a fully automated manner. An early work in this paradigm of mod-
els learning by themselves is by Yarowsky [6], who investigated the possibility
of using labeled sentences coupled with unlabeled data to perform word-sense
disambiguation. Several works also explored applicability of this technique in
computer vision. For example, Cui et al. [7] iteratively grew their dataset by
merging in high-confidence predictions from their model. However, a manual
vetting process was employed at each step. Huang et al. [8] used morphology
and colour-based indices using predefined formulae, as well as openly available
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information sources to generate training sets and classify images into the classes
of buildings, roads, soil, water, shadow, and vegetation. A key issue with clas-
sification approaches is often that classes are assumed to be mutually exclusive.
However, in aerial images of urban scenes, it is possible for roads, vegetation,
soil, water and buildings to co-exist within the same image.

In general, the key improvements due to semi-supervised learning strategies
can be incorporated at two levels:

• Model level involves improvements incorporated into model training pro-
cesses and focus on providing models with a more robust representation
from fewer initially labeled image samples.

• Data level involves improvements in the semi-supervised labelling process
itself, allowing model-independent improvements via techniques such as
heuristics and morphological feature extraction.

Model level improvements generally include techniques which are useful even
outside of the scope of semi-supervised learning as well. In fact, many of these
techniques are used to improve supervised learning models. As examples, Miy-
ato et al. [9] use adversarial training, Siddharth et al. [10] use disentangled
feature learning and augmentation strategies such as RandAugment introduced
in Cubuk et al. [11] are also commonly used.

Data level techniques operate outside of the scope of the model. These in-
crease the probability of the model correctly labelling unlabeled image samples
without human intervention. For example, Kothari and Meher [12] use unla-
beled neighbourhood information to improve model performance.

As these two types of techniques apply at different levels, it is additionally
possible to overlap them for potential combined improvements as well.

Most work in semi-supervised learning focuses on images captured in the
horizontal perspective (images generated by cameras in non-aerial settings),
due the abundance of labeled data which enables much easier model evaluation.
By treating a large part of the dataset as unlabeled, it is still possible to easily
evaluate model behaviour with small labeled datasets while also providing very
robust accuracy, precision and recall metrics as required. Using an unlabeled
dataset only enables the provision of estimates of such performance metrics,
as the ground truth of a large part of the dataset is unknown. However, this
type of analysis more accurately matches use of the technique with unlabeled
datasets in the wild.

Table 1 contains a comparison of such techniques based on labeled set size,
perspective and unlabeled set size. This comparison indicates reported results
for the model using the lowest number of labeled images and not the number
corresponding to the best results.

Many techniques compare performance based on a percentage of unlabeled
data used as labeled data (for example, 1% of data used as labeled data). How-
ever, this is not necessarily representative of annotation effort, which is a func-
tion of the absolute number of labeled images. As evaluation is primarily carried
out using labeled data which is treated as unlabeled data (by hiding the label
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Work Perspective labeled unlabeled

Kothari and Meher [12] Vertical 1200 15000
Yalniz et al. [13] Horizontal 1M 100M
Zhai et al. [14] Horizontal 12800 1.2M
Xie et al. [15] Horizontal 250 25000(S)

This work Vertical 200 60M

Table 1: Dataset details for semisupervised learning work. (S) indicates synthetic/augmented
data generation as the main source of data for semisupervised learning. Perspective refers to
the capture angle with vertical perspective corresponding to overhead imagery.

from the model), it is straightforward to do so. However, for use in the wild
with a new unlabeled dataset, data annotation effort is often the limiting factor.
Additionally, most techniques report performance based on the training set size
as a percentage of unlabeled/total set size, disregarding the labelling require-
ments for validation data. In this article, a major objective is to limit the total
labelling requirement, and aim to work with smaller validation sets as well.

1.1.3. Active learning

In machine learning, active learning refers to the class of techniques where
the model can iteratively query a human user regarding the ground truth of
a subset of input data. Based on the user’s input, the model then performs
additional learning to improve its prediction accuracy. This requires manual
intervention at each iteration of the learning process. Active learning has been
successfully used for a multitude of tasks including crystal structure prediction
[16], vehicle detection [17] and facial recognition [18]. These approaches work
well in theory, by using an oracle or already annotated dataset for evaluation
purposes. However, Settles [19] argues that, when attempting to bootstrap
a new dataset in practice, it is generally not time efficient to wait for model
training to finish before annotating more images. A key difference between semi-
supervised learning and active learning is that the agent doing the annotation
in semi-supervised learning is an automated model, whereas in active-learning
it is generally a human.

1.2. Applications of overhead imagery

Overhead (satellite and aerial) imagery has been used in previous research
for a wide variety of applications. The features of the urban fabric provide
important pointers to explore pressing issues in contemporary society. For ex-
ample, information extracted from high-resolution satellite imagery has been
used to estimate poverty in African countries [20] and provide disaster and
crisis-management support [21]. Further, it has proven valuable for inferring
population size [22], assessing land cover changes [23], and monitoring food se-
curity through agricultural crop mapping [24]. Beyond imagery, satellite remote
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sensing has enabled global analyses of air pollution [25], vegetation changes [26],
and economic activity using night-time lights as a proxy indicator [27].

The studies above provide evidence of the significant potential of space-
based observations to explore and understand the effect of contemporary social
issues on spatial organisation. While some studies implicitly use features in
satellite imagery to find associative evidence, other research has focused purely
on feature extraction from imagery. Importantly, the primary task of feature
detection could lead to a detailed understanding of environment characteristics
and enhance the explainability of research findings. In this case, the task can
be formulated as an object detection problem. This research direction has been
taken by various studies, generally specialised for the detection of a single object
category visible in satellite imagery. For example, Vakalopoulou et al. [28] and
Yuan [29] developed algorithms for building detection. Further, many studies
have explored the extraction of road networks from satellite imagery [e.g., 30,
31, 32]. Wang et al. [30] achieved this by predicting the road direction in satellite
images and constructing the network by analysing imagery at adjacent locations.
Zhang et al. [31] created an image segmentation approach based on U-Net [33]
to extract road networks. More detailed characteristics of the road network
can also be detected, such as specific intersection designs [34]. Cadamuro et al.
[35] assessed road quality from satellite imagery, using a combination of an
autoencoder [36] and Long Short-Term Memory neural networks [37] to extract
and analyse features. Further, Chen et al. [38] designed a methodology that can
be used to detect the number of vehicles on roads. An illustration of some of
these approaches is provided in Fig. 2.

1.3. Objective

Over the past decades, technical advances in satellite remote sensing have
greatly improved the quality of satellite imagery. Further improvements in im-
age resolution have been achieved through aerial photography using airplanes,
resulting in an increased availability of very high-resolution overhead imagery
datasets. The additional details in high-definition aerial imagery provide op-
portunities for improving the accuracy of object detection methods. Further,
it allows for the detection of new object classes previously undetectable from
satellite imagery and difficult to collect otherwise. For example, uncommon
types of infrastructure (such as cycling infrastructure) are poorly represented
or incomplete in existing datasets, but can be analyzed using aerial imagery.
Besides taking advantage of improvements in input data, this article explores
new methods for object detection. As described above, current object detection
methods are either highly specialised towards extracting a single characteristic
from the environment (e.g., buildings or vehicles), or detect many classes at once
with extensive manual annotation requirements. Therefore, the gap addressed
in our research is the lack of a resource-efficient, generic method that can extract
a more complete set of features to describe the environment in a single image.
As indicated by Mnih and Hinton [32], pre-training using unsupervised learning
methods can improve model accuracy substantially, providing opportunities to
develop such a generic approach.
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(a) (b)

(c) (d)

Figure 2: Specialised object detection models: (a) buildings [29], (b) vehicles [38], (c–d) roads
[31]

The main motivation of this work is to enable an extensible pipeline that
simplifies the collection of data for the purpose of predictive analysis across
different infrastructure classes in a scalable manner. Wherever possible, the
pipeline was optimized with the following objectives in mind:

• Minimize human annotation effort.

• Flexibility to easily add more classes .

2. Methodology

While existing methods have explicitly explored many road related infras-
tructure analyses, cycling infrastructure has been poorly explored using aerial
imagery. Additionally, cycling infrastructure is often clearly demarcated using
specialized symbols and colorful lanes which enables its use as a well-defined
type of infrastructure to explore initially using an aerial imagery analysis work-
flow. Therefore, while initial analysis was carried out on such infrastructure,
several additional types of infrastructure and urban features were also explored
to highlight the generalisability of the developed pipeline.
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City Images Area(km2)

Melbourne 9,018,518 3249
Sydney 6,700,303 2414
Perth 13,205,906 4758

Canberra 4,856,845 1750
Adelaide 1,286,671 464
Brisbane 12,884,242 4642
Geelong 4,601,846 1658
Bendigo 2,112,860 761
Darwin 392,492 141
Ballarat 3,017,364 1087
Hobart 1,043,840 376

Townsville 948,061 342
Cairns 822,028 296

Wollongong 781,521 282
Toowoomba 876,648 316

Total 62,549,145 22,536

Table 2: Imagery details

2.1. Data collection

2.1.1. Aerial imagery

A large image dataset was obtained using an aerial imagery provider. The
image collection spanned 15 of the most populated cities across Australia for
a total of 62.5 million images of size 256×256 pixels taken at a zoom level of
21 (corresponding to 0.074 metres per pixel at the equator, a tile edge size of
roughly 20 metres and an area of roughly 400 square metres covered by each
tile). The total area covered by the study was 22, 536km2. Data collection by
city/state is indicated in Table 2.

2.1.2. Cycling infrastructure

For the exploration of cycling infrastructure in urban environments, an initial
sample of labeled imagery was obtained through an observational study [39].
A total of 100 participants were recruited between March 2015 and January
2017 near on-road locations in Western Australia where a crash was observed
previously. Cyclists were intercepted as they stopped at traffic lights and offered
a slap-band for their wrist which had the study website recruitment address
printed on it. Cyclists then completed an online questionnaire and were asked
to leave their contact details within the questionnaire if they were willing to
be contacted to be part of the study. Potential participants were contacted
by phone to further explain the study and were sent a consent form by email.
Cyclists were eligible to participate if they had not been involved as a cyclist
in a bicycle crash requiring hospitalisation in the previous three years, were 18
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years or older, lived in the Greater Perth area, spoke English, and cycled at least
once per week. If the cyclist agreed to participate, an appointment was made to
attach the GPS tracking sensors to their bicycle. Data collection included the
recording of up to six hours of cycling video footage and associated GPS data
per participant. Participants were asked to record any cycling they participated
in and ride exactly as they normally would.

After the conclusion of the observation period, the recorded GPS informa-
tion was allocated to specific participant trips. The most common routes that
each participant travelled on covered a total road network of 1680 kilometres in
Western Australia (see Fig. 3). This consisted of 280 kilometres of bicycle paths
and 1400 kilometres of on-road routes. The recorded GPS tracks were then used
to annotate aerial imagery in Perth with the presence of cycling infrastructure,
leading to an initial dataset of labeled imagery.

Figure 3: Cycling network extracted from GPS traces near Perth, Western Australia

2.2. Self-supervised representation learning

As discussed in 1.1.1, self-supervised learning techniques allow the use of an
unlabeled dataset to build a task-independent representation of the images in
the dataset. This representation can then be used for other downstream tasks.
In this work, our motivations for the use of self-supervised learning techniques
are that they:

• scale well in terms of predictive accuracy with datasets where a large
portion of the data is unlabeled.

• allow for the rapid creation of classifiers by either transfer learning or by
building a single layer on top of the existing representation.

• allow a single learned representation to be reused across multiple infras-
tructure identification tasks, allowing a considerable amount of computa-
tional work to become front-loaded and one-off.
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An experiment was carried out to evaluate the suitability of such techniques,
which are traditionally used on images taken from a horizontal perspective, for
use with overhead imagery and map imagery.

As an initial selection step, SimCLR [40] and Momentum Contrast (MoCo)
[41, 42] were evaluated alongside a convolutional autoencoder (AE). Evaluation
was carried out for the city prediction task in [43] using satellite image data
for 200 cities. MoCo (95%) had the highest validation accuracy, while SimCLR
(24%) and AE (20%) performed significantly worse. Utilising the large batch size
for SimCLR reported in the original paper (8192) for building the self-supervised
representation was problematic due to computing resource limitations in terms
of GPU memory. Instead, a much smaller batch size (64) had to be utilized for
evaluation purposes. The original paper discusses the representation learning
batch size as an important parameter for learning a general representation, as
it impacts the difficulty of the pretext task used for self-supervised learning.
Since MoCo provided considerably better results with a manageable batch size
(256) and has been previously successfully used with remote sensing imagery[44],
MoCo was selected for future experimental work.

For validating the utility of MoCo further for this use case, we refer to [45].
Seneviratne et al. [45] conducted an experiment to verify the applicability of
MoCo and to identify the scalability of this method to unseen classes (cities).
The city prediction task discussed previously was used, but while representa-
tion learning (the pretraining step) was carried out on either 200 or 1667 cities,
model training and testing was carried out under two settings: 200 cities and
1667 cities. For the 200 cities, the same 200 cities as in pretraining were used:
checking for the ability for the representation to cover tasks or classes captured
within the pretraining data itself. With pretraining on 200 cities and train-
ing/evaluating on 1667 cities, consistency of the model in representing both
previously seen classes and unseen classes was evaluated. This result is im-
portant as the class-independent or generic nature of the representation would
be crucial for allowing reusability across other problem domains with multiple
classes (such as different types of infrastructure). Pretraining and training was
carried out on the ResNet50 architecture with a batch size of 256. For training,
a high learning rate of 30 was used with stochastic gradient descent since only
a single layer needed to be trained (matching a standard workflow employed
in previous self-supervision based studies) [41, 44]. Detailed results in Table
3 indicate significant potential for the use of self-supervision to extend to new
classes previously unseen by the pre-trained representation.

2.2.1. Ablation on using self-supervision

An ablation test was performed on the above workflow, for validating its use-
fulness with the aerial imagery. This was achieved by sampling 100 images each
for training and 1000 images each for validation for two classes (cycle infrastruc-
ture vs other) from the aerial dataset mentioned in Section 2.1.1. A ResNet50
model was then built and trained on this task following three separate configura-
tions. The first was instantiated with the pre-trained weights from ImageNet[46]
for ResNet50, which is a commonly used approach in computer vision. An ob-
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Imagery V1/V2 Pretrain cities Pretrain epochs test cities Acc

Satellite V1 200 200 200 95%
Satellite V2 200 200 200 99%
Satellite V1 200 200 1667 81%
Satellite V2 200 200 1667 95%
Satellite V2 1667 145 1667 98%

Maps V1 1667 200 1667 67%
Maps V2 1667 200 1667 61%

Table 3: Testing on 1667 cities with 1000 images per city with an 80%/20% training/validation
split on the city prediction task. V1/V2 refers to the version of MoCo used.

jective of this experiment is to evaluate the suitability of such a technique for
use with overhead imagery. A single fully connected layer was trained for the
purposes of class prediction, and was placed on top of the final bottleneck layer
of the ResNet network (identical to ImageNet training except for the number of
classes). The second configuration used a pretrained representation built from
100,000 unlabeled images from the aerial imagery dataset. These pretrained
weights were used instead of the weights loaded from the pretrained ImageNet
model. For both these configurations, the layers of the ResNet are frozen and
the corresponding weights are not updated during training. This ensures that
the model is forced to rely on only its pretrained representation as a feature
extractor, while learning only very high level abstract concepts relating to the
task at hand. A high learning rate of 30 was used with stochastic gradient de-
scent since only a single linear layer was to be trained. The third configuration
uses the pretrained representation learned in the second configuration, but uses
it for end-to-end transfer learning. In this configuration, all the weights of the
ResNet are updated during the training process, which is not the case in the
other configurations. A learning rate of 0.001 was used with stochastic gradi-
ent descent in order to minimize changes to the pre-trained weights under this
configuration. This low weight aims to minimize the destruction of pre-learned
features in the model, by only performing small tweaks instead of big shifts in
existing features. The neural network was trained for 200 epochs and the check-
point with the best validation performance was used for reporting performance.
The results are in Table 5 under Section 3.1.1.

2.2.2. Characterizing self-supervised performance

As an initial evaluation of transfer learning from the self-supervised represen-
tation, an experiment was carried out to evaluate ResNet50 based on finetuning
by transfer learning from the frozen MoCo representation. Results are in Ta-
ble 6. The objective of this experiment was to better characterize performance of
the two configurations built on the pretraining workflow. The complete dataset
of training set, validation set and test set each representing 2 classes, contained
33,337 images. These aerial images were randomly selected from a large set of

11



labeled road images sampled from areas known to have cycling infrastructure.
Images containing cycling infrastructure were manually filtered such that 18,642
images contained cycling infrastructure, and 14,695 did not contain any cycling
infrastructure. The ResNet50 architecture was used in all experimentation and
the highest validation accuracy model was picked as the final model. For the
“Frozen” configuration, a learning rate of 30 and a batch size of 4 was used with
stochastic gradient descent, while for the “Transfer” configuration, a learning
rate of 0.001 was used alongside a batch size of 16 with stochastic gradient de-
scent. By testing different configurations of training and validation set sizes,
the expectation was that a better understanding of model performance scaling
with larger training set sizes could be obtained. This would in turn serve to
confirm the results in Table 5 while indicating potential thresholds in terms of
manual annotation requirements for solving tasks of this nature. The overall
size of the dataset is kept fixed to more accurately mirror the actual situation
of using a model to iteratively grow a dataset from a pool of unlabeled images:
the size of the unlabeled image set would shrink as more images are moved out
of the unlabeled dataset. The results are in Table 6 under Section 3.1.2.

2.3. Semi-supervised learning

Semi-supervised learning was explored as a means of generating more ac-
curate models as well as for creating a workflow capable of utilizing the large
dataset available to its maximum potential.

There are two main configurations used in this regard, with training details
broadly in line with previous experiments: Frozen and Transfer. The main focus
of this section is exploring techniques that allow the training set of the model
workflow to continually expand, thereby creating more accurate models. This
creates a positive feedback loop that can be used with minimal manual tuning
to automatically label and process the entire dataset.

2.3.1. Initial semi-supervised experiment

To evaluate the suitability of semi-supervised learning, an experiment was
carried out using the above configurations. These configurations were evaluated
on a single task (cycling infrastructure categorization) on the same dataset of
33,337 images as in Section2.2.2. The results can be found in Table 7 under
Section 3.2.1.

2.3.2. Semi-supervised consistency

As a follow-up experiment, the consistency of continued semi-supervised
learning was explored as a single-class fixed dataset experiment. A priority
queue based implementation was used to track the top 500 highest and lowest
cycle symbol confidence predictions from the test set to merge into the training
set. The validation set was fixed at 1000 images each. Continuous evaluation of
the bootstrapping approach using the transfer learning from the Frozen config-
uration was carried out, starting with 1000 training and validation images per
class with a step size of 500. The results are in Table 8 under Section 3.2.2 .

12



2.3.3. Analysis of multiple classes using Frozen configuration

While previous experiments were exclusively single class (looking at cycle
symbol classification), this experiment aims to evaluate the methodology in a
more generic manner. A practical limitation in this regard is the image anno-
tation requirement for attempting many different tasks. To make the most of
limited annotator time, a limit of 200 annotations per class per task was im-
posed, with 100 images each for the training and validation sets respectively. As
before, the two classes correspond to a “Task” class vs a ”Background” class.
The main reason for this experimental setup is that it is highly likely for multiple
infrastructure classes to be present in the same image. Therefore, by creating a
binary classification task, we are able to overlap annotations from multiple mod-
els on the same image in a similar fashion to object detectors, without needing
to generate bounding boxes for the different tasks which would severely limit
annotator time availability to explore multiple classes. Within this limitation of
100 training images, prior experiments (Section 2.2.1) indicate that the Frozen
configuration performs best and that a validation set of 100 images should be
sufficient in this respect. Evaluation of the Frozen configuration trained on 100
images of each class in training and validation is provided to compare the base
performance of the methodology on each task. The Frozen configuration is used
as it is useful for providing a baseline level of performance to compare against.
Further, it has the added benefit of being trained very fast due to the high
learning rate used. The percentages reported correspond to the precision of the
class under investigation. No false negatives were detected during this set of ex-
periments. Evaluation was carried out on a random sample of 100 images drawn
uniformly from the top 1000 predictions at each location ordered by confidence.
The results of this experiment can be found under Section 3.2.3.

2.3.4. Automated analysis using archival semi-supervised learning

This experiment explored the development of a workflow centered around
using historic images at locations for improving model accuracy. In particular,
the main objective was to build upon the results from Section 2.3.3 by using
historical imagery as a data augmentation/semi-supervised learning strategy.

To this end, several key semantics of the task at hand are exploited. The
key insight for this methodology is that infrastructure is static: if it is available
at a location at present, it is likely to have been present at that location in the
recent past. It is also reasonable to expect that the probability of finding that
infrastructure would decrease if the image was taken at an earlier date than a
later date, simply because the infrastructure might have been constructed at an
intermediate date. By contrast for the background class: if a particular image
does not contain some infrastructure it is highly unlikely to have been there in
the past: effective planning schemes mean that cities and other infrastructure
are usually planned well ahead of time, and drastic changes are unusual in the
short term.

Hence, the following assumptions are made regarding historical images at a
location:
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• The probability of finding the task class in historical images at a location
correctly labeled as the background class is negligible.

• The probability of finding the task class in historical images at a location
correctly labeled as the task class is high, with the probability of finding
the task class in more recent images being higher than in older images.

Considering the model as a “task” class detector, a false positive confounder
would be an image of the “background” class being incorrectly classified as
belonging to the “task” class (identical to a false positive). Let Φ be the class
of all historical images at all background image locations from the training
set. Then, consider the set Θ ⊂ Φ which contains all the confounders from
the model performing inference on images contained in Φ. The set Θ is then
a very informative dataset for the current model to learn from, as the model
has been unable to classify them correctly, despite having seen a preceding
image in the training set in the background class. Additionally, more recent
confounders would be more useful than older ones, as the more recent images
could be expected to look more structurally similar to the image at present
and therefore contain more interesting features to include in the background
class (as opposed to, for example, an unbuilt area from a long time ago which
would likely not add much predictive value to the background class). Note
that this logic is not necessarily commutative if the “task” and “background”
classes are swapped: the infrastructure under investigation might have been
constructed/painted very recently and thus, may not necessarily be misclassified
as being “background” class (since if the “task” class is not present in the
image, it belongs, by definition, to the “background” class). Conceptually, this
is similar to boosting[47] in machine learning, as images misclassified by the
model are assigned with an increased weight into the training set thus increasing
their importance in terms of contribution to the decision boundary of the model.

Let ΦT be the set of all historical images corresponding to training set lo-
cations and ΦB be the set of all historical images corresponding to background
locations, with Φ = ΦT ∪ΦB . Note that the latest available images also count as
historical images by definition and as such would be included in these sets. Due
to being historical images of labeled locations, clearly the sets ΦT ,ΦB contain
images that the model could learn from, in a supervised manner. However, not
all images would be equally useful or correct to learn from. Thus, assigning
a weight to each individual historical image allows the training process to be
controlled (when assigned a weight of zero, an image would essentially have no
impact on the training process). Therefore, the problem at hand can be defined
as follows:

Let Φi
T and Φj

B correspond to the above sets with i, j corresponding to
arbitrary orderings (indices). Then let the individual loss of each training sample
be determined by the function L(x), which would apply the loss function used
in the neural network to the corresponding output of x. Then, the overall loss
function becomes:
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Loss =
∑
i

αi
TL(Φi

T ) +
∑
j

αj
BL(Φj

B) (1)

Where αi
T ∈ N corresponds to individual historical task weights and αj

B ∈
N corresponds to individual historical background weights. Without loss of
generality and for simplicity, let the first N elements of both orderings Φi

T and

Φj
B be set to an arbitrary ordering of the initial human labeled training set of

N images per class. As the model trains in a semi-supervised manner, the main
difference in the data composition is tracked by the different values of α over
the entire dataset. Note that images with α = 0 have no contribution to model
training, and may be omitted during training.

The following operations are defined in order to modularise the workflow
for the semi-supervised learning process for improving the performance of the
models using archival imagery. It is important to note that confidence metrics
are defined with respect to the “task” class. The confidence metric corresponds
to the probability of a particular image belonging to the “task” class and is
related to the probability of the image belonging to the background class as
PT = 1− PB due to the presence of only 2 classes.

• Train - Builds a classifier from the currently available training dataset as
defined by Equation 1.

• Predict - Uses the most recently built classifier to perform prediction
on the historical datasets (ΦT and ΦB separately) and assigns confidence
scores based on the task class (not the background class).

The semi-supervised learning process relies only upon training several it-
erations of computer vision models which have access to different training
sets. The train and predict operations provide interfaces for this func-
tionality. As any modifications to the data/weights only affect the pro-
cess once a model is trained and prediction is carried out on ΦT and ΦB

(thus updating the confidence metrics), each step/iteration of the semi-
supervised learning process begins with training the model and predicting
on ΦT and ΦB .

• Update Task - Increments αi
T corresponding to the MT highest confi-

dence task detections in ΦT .

• Update Background - Increments αj
B corresponding to the MB lowest

confidence task detections in ΦB .

• Update Confounders - Increments αj
B corresponding to the MC high-

est confidence task detections in ΦB (hence matching the definition of
confounder: high confidence, but assigned to the wrong class).

The update operations are used for managing the datasets over iterations
of the semi-supervised learning process. By updating the contribution of
each individual image to the loss function, the decision boundary of the
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model is modified as well, with some images receiving a higher importance
than others. It is important to note that order statistics (such as the MT -
th largest confidence value) need to be maintained independently for the
two datasets ΦT and ΦB as the underlying semantics and class probability
distributions for the two datasets are very different.

In combination, these operations define the behaviour of the semi-supervised
technique. The temporal control of image availability over time is managed by
gradually broadening the time frame over which the model is allowed to up-
date values of α: initially, only values corresponding to more recent images
may be updated but in later iterations, α values corresponding to earlier im-
ages may be updated as well. This greatly decreases the probability that the
model will incorrectly classify an image due to having less of a connection (struc-
turally or otherwise) to the image’s present predecessor image. This behaviour
is determined by the parameters DT and DB corresponding to the “task” and
“background” classes and denotes the maximum duration (in months) from the
latest image in the dataset that an image would need to have been captured, in
order for the α value to be updatable. In other words, αi

T may be updated if
and only if the image Φi

T was captured within DT months of the last image in

ΦT , and similarly for αj
B , DB ,Φ

i
T and ΦT .
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Algorithm 1: Update algorithm

Signature: Update(Φ[1...N ], α[1...N ], conf [1...N ], D,K, top, dateref )
Φ - dataset of N images corresponding to α values
α - array of individual image loss contributions
conf - array of confidence values corresponding to dataset
D - duration corresponding to dataset Φ
K - number of α values to be modified
top - Boolean indicating if top or bottom K alpha should be updated
dateref - reference date for duration comparison

Execution:
if top == True then

# Select k-th largest confidence
confK = QuickSelect(conf, N-K)

else
# Select k-th smallest confidence
confK = QuickSelect(conf, K)

end
while 0 ≤ i < N do

if top == True and conf [i] > confK and
(Φ[i].date− dateref ) < D then
alpha[i] = alpha[i] + 1

if top == False and conf [i] < confK and
(Φ[i].date− dateref ) < D then
alpha[i] = alpha[i] + 1

end

end

As some of the novelty of this work is concentrated in the update operations,
we provide an algorithmic implementation of the base update functionality in
Algorithm 1. Note that an implementation which uses a heap-based approach
for tracking the top and bottom K-th confidence items in a given dataset with
complexity O(N log K + K log K) for maintaining and iterating over such a list
of items. An alternate implementation is to use the QuickSelect[48] algorithm
to generate the K-th order statistics for a given unsorted dataset. This allows
the creation of a list of the top or bottom K confidence items in O(N + K)
time and is presented in Algorithm 1. Since the discussed applications are not
time-critical and because K is generally much smaller than N in most situations,
both implementations are expected to have similar performance and are listed
here for the sake of completion. The update operations previously mentioned
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are implemented in Algorithm 2.

Algorithm 2: Updates for Task,Background and Confounder

Signature: UpdateTask(ΦT [1...N],
αT [1...N],confT [1...N],DT ,MT ,dateref )

Execution:
Update(ΦT , αT ,confT ,DT ,MT ,top=True,dateref )

Signature: UpdateBackground(ΦB [1...N],
αB [1...N],confB [1...N],DB ,MB ,dateref )

Execution:
Update(ΦB , αB ,confB ,DB ,MB ,top=False,dateref )

Signature: UpdateConfounder(ΦB [1...N],
αB [1...N],confB [1...N],DB ,MC ,dateref )

Execution:
Update(ΦB , αB ,confB ,DB ,MC ,top=True,dateref )

Algorithm 3 contains the overall procedure (corresponding to a single step
from Table 4), building upon Algorithms 1 and 2. Additional subscripts are
provided to indicate the recommended parameters for the function based on the
previously defined data arrays.

Algorithm 3: Semi-supervised model step(SSMS)

Signature:
SSMS(Φ[1...N], α[1...N ], conf[1...N], DT , DB , MT , MB , MC , dateref )
Execution:
#Train the model based on equation 1
model = Train(Φ, α)
#Update the predictions based on the new model
conf = Predict(Φ)
UpdateTask(ΦT , αT ,confT ,DT ,MT ,dateref )
UpdateBackground(ΦB , αB ,confB ,DB ,MB ,dateref )
UpdateConfounder(ΦB , αB ,confB ,DB ,MC ,dateref )

After the steps corresponding to Algorithm 4, all αj
B are incremented by one

to guarantee inclusion in the training set (justified by the assumption that the
class of infrastructure being detected was never present at background image
locations). The final model used for querying the unlabeled non-archival dataset
is then trained using transfer learning as in previous experiments. The results
from this experiment are in Section 3.2.4.

2.3.5. Specialized Representation Learning experiment

A natural follow up to the experiment in Section 2.3.4 is to specialize the
initial representation learned in a task-independent fashion. Additionally, the
results from the ablation study in Section 2.2.1 indicate the benefits of special-
izing the representation in a more domain specific manner: ImageNet weights
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Step DT DB MT MB MC

∑
i α

i
T

∑
i α

j
B

0 0 0 0 0 0 100 100
1 6 24 0 0 500 100 600
2 6 24 50 0 500 150 1100
3 12 24 100 0 500 250 1600
4 12 24 150 0 500 400 2100
5 24 48 150 250 0 550 2350
6 48 84 350 350 0 900 2700

Table 4: Summary of semi-supervised learning iterations

are often used as a generic task-independent representation, but by specializing
the representation for aerial imagery, significant improvements are obtained.

The road images in this experiment were generated as the top 100,000 con-
fidence predictions from the overall dataset by the road model from Table 11
which had a very high precision. This pre-training set was validated by sam-
pling 10,000 images uniformly at random and performing manual annotation.
The precision over this sample was 100%. Using this 100,000 image dataset, a
further specialized representation was created by using an identical workflow to
the initial task-independent representation. With this specialization, the rep-
resentation is still task-independent, however, it is no longer as generic as the
previous pre-trained representation (used in section 2.3.4) and better perfor-
mance can be expected on tasks specifically associated with roads, and poorer
performance otherwise. The results of this experiment are in Section 3.2.5.

2.3.6. Archival Imagery analysis

(a) (b) (c) (d)

Figure 4: Manual archival imagery evaluation at two sample locations in Melbourne, Australia.
Both locations were captured in 2018 (a,c) and 2020 (b,d).

The results of archival analysis are in Fig. 4. From an infrastructure anal-
ysis perspective, this allows analysis of the growth of infrastructure at the city
level. Since infrastructure forms a key cornerstone of cities that affects all other
aspects including transport and health, being able to analyse when specific
classes of infrastructure were introduced is very useful. In particular, analysis
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across multiple classes of infrastructure is very valuable in understanding the
relationship between such classes and other aspects of cities such as inhabitant
behaviour and population health outcomes. This can also be used to identify the
trajectory of cities with regards to how well they are supporting healthy habits
through initiatives such as provision of safe, active transport infrastructure for
citizens.

From a computer vision perspective, datasets such as these introduce new
ways of utilizing geographical information spanning multiple time-steps. For
example, in this work we have exploited the static nature of infrastructure.
However, it is possible to take this even further by exploiting the fact that
once infrastructure is introduced to a location, it is very likely to stay there.
This “expectation of the maintenance of infrastructure” allows the introduction
of additional analytical steps that can improve model performance. In this
situation, for example, we can expect an example vector over multiple time
steps at the same location to look like (False, False, False, True, True) with
the infrastructure class not being present in the first three time-steps and being
introduced sometime between the third and fourth time-steps. It is reasonable,
then, to assume that it will also be present thereafter. Therefore, if we assume
that for some time-step t0, that the infrastructure was introduced to the location
between t0 and t0 + 1, then the prediction for that location would take the form
of a “step” function, with confidence zero upto t0 and confidence one beyond
t0 + 1. This could be used to optimize the infrastructure detection models
either by introducing this as a consistency loss which penalizes how different
the model’s characteristic function is from a step function, or by enforcing such
behaviour by performing smoothing operations on the confidence scores across
multiple time-steps at the same location.

3. Results

3.1. Self-supervised learning

3.1.1. Ablation on using self-supervision

The results (Table 5) for the ablation on using self supervision detailed in
Section 2.2.1 indicate that the representation learned by MoCo is superior. In-
terestingly, allowing the model to modify the representation learned by MoCo
(Configuration 3) leads to a drop in holdout accuracy from 72% (from Configu-
ration 1) to 61% for the smaller training set size, which is indicative of the issue
of overfitting to the data.

3.1.2. Characterizing self-supervised performance

The results in Table 6 correspond to the validation accuracy obtained us-
ing the self-supervised representation as part of the experiment described in
Section 2.2.2.
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Config Technique Model Training Validation Accuracy

1 MoCoV2 Frozen ResNet50 100 1000 72%
2 ImageNet Frozen ResNet50 100 1000 66%
3 MoCoV2 Transfer ResNet50 100 1000 61%
1 MoCoV2 Frozen ResNet50 1000 1000 70%
2 ImageNet Frozen ResNet50 1000 1000 70%
3 MoCoV2 Transfer ResNet50 1000 1000 92%

Table 5: Evaluation of the impact of different initializations and training set sizes on perfor-
mance. MoCoV2 refers to the self-supervised representation trained as part of this work.
ImageNet refers to the standard deep learning representation of a model pretrained on the
ImageNet dataset. Frozen refers to disabling parameter update in most of the neural net-
work, while Transfer refers to allowing parameter update in most of the neural network.
1000 images were used for validation and a ResNet50 model was used as the architecture.

Method Train Val Test TP TN FP FN Acc(Val) Acc(Test)

Frozen 100 1000 31137 13892 8181 5334 3730 73% 71%
Frozen 100 100 32937 15071 7718 6697 3451 70% 69%

Transfer 1000 1000 29337 16015 10924 1691 707 93% 92%
Transfer 5000 1000 21337 12223 8301 314 499 96.5% 96.2%

Table 6: Characterizing model behaviour over different training/validation configurations on
a fixed size dataset. Train,Val,Test - number of training,validation and testing images
used, respectively. TP = True Positives, FN = False Negatives. Acc(Val) and Acc(Test)
correspond to accuracy on the validation and test set respectively.
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3.2. Semi-supervised learning

3.2.1. Initial Semi-supervised experiment

Evaluation results of the dataset after evaluating using the pretrained rep-
resentation are presented in table 7, corresponding to the experiment described
in Section 2.3.1. Step size refers to the number of the highest confidence pre-
dictions per class which are moved from the test set back into the training set.
Pclass refers to the precision of each class Pclass = correctclass

correctclass+incorrectclass
for

the images that are to be moved into the training set for that class (which cor-
responds to the step size). For example, a Pnon = 0.999 with step size = 1000
would indicate that 1 image belonging to the “non” class has been misclassified.

Method Train Val Test Step Size Pcycle Pnon Test Acc

Transfer 1000 1000 29337
100 1.0 1.0

92%500 1.0 1.0
1000 1.0 1.0

Frozen 100 1000 31137
100 0.8 0.94

71%500 0.812 0.918
1000 0.796 0.909

Transfer 5000 1000 21337
100 1.0 1.0

96%500 1.0 1.0
1000 1.0 1.0

Frozen 100 100 32937
100 0.85 0.89

69%500 0.824 0.89
1000 0.829 0.909

Frozen 500 500 31337
100 0.87 0.99

75%500 0.894 0.984
1000 0.878 0.98

Table 7: Results of a single bootstrapping step over different step sizes.

Using this data from Table 7, several conclusions can be drawn:

• The accuracy of the models built using the Frozen configuration are not
suitable for bootstrapping at this level

• The size of the validation set only has a minor impact on test set accuracy
(2%) based on the results from the two Frozen experiments with 100 train-
ing images. Therefore, 100 validation images may function only slightly
worse than 1000, thus further reducing annotation requirements.

3.2.2. Semi-Supervised Consistency

This section describes the results of the experiment described in Section 2.3.2.
These results indicate that initializing semi-supervised analysis with around
1000 labeled images per class would result in the ability to consistently improve
the accuracy of future iterations of models (based on the PClass results).
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Method Train Val Test step size Pcycle Pnon Test Acc

Transfer 1000 1000 29337 500 1.0 1.0 92%
Transfer 1500 1000 28337 500 1.0 1.0 93.6%
Transfer 2000 1000 27337 500 1.0 1.0 93.2%
Transfer 2500 1000 26337 500 1.0 1.0 93%

Table 8: Results of multiple bootstrapping steps over the single chosen step size

Precision CS Buildings GL Water Trees Roads

Canberra 6% 100% 1% 93% 90% * 100%
Ballarat 1% 100% 0% 100% 100% 100%
Bendigo 1% 100% 0% 100% 94% * 100%
Cairns 8% 100% 2% 100% 99% 100%
Darwin 0% 99% 0% 100% 100% 100%
Geelong 2% 99% 3% 100% 100% 100%
Hobart 0% 99% 1% 100% 100% 100%

Melbourne 1% 100% 6% 100% 100% 100%
Brisbane 2% 99% 5% 100% 100% 100%
Adelaide 10% 100% 1% 100% 100% 100%

Toowoomba 0% 100% 1% N/A 100% 100%
Townsville 5% 100% 3% 100% 100% 100%

Perth 1% 100% 1% 100% 100% 100%
Wollongong 0% 100% 0% 100% 100% 100%

Table 9: Results of evaluation across different cities. CS = Cycle Symbols, GL = Green
Cycling Lanes. N/A - Detection not present at location, * - corrupted images detected by
model accounted for all erroneous detections.

However, noticing the trend of test set accuracy introduces another issue: the
accuracy increases and then starts decreasing despite more images being present
in the training set. Due to the limited size of the testing set, the reduction in
the overall size of the test set can be seen to affect evaluation in this case. This
is because it becomes increasingly harder to correctly predict from a smaller
test set of harder examples, as more confident predictions (i.e., samples that
are ‘easier to predict’) are moved out of the test set and harder test-cases are
left in. For example, in results in Table 8, the test set has shrunk by 3000
images (from 29337 to 26337) corresponding to over 10% of the test set. These
results indicate that a larger test set would be beneficial to further analyse this
methodology, additionally allowing exploration into more classes.

3.2.3. Analysis of multiple classes using Frozen configuration

This section presents the results of the experiment described under Sec-
tion 2.3.3. The results in Table 9 indicate that more specialized (hence rarer)
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classes are harder to detect. This is because the potential for misclassification
with a dataset of this scale increases when the probability of occurrence of a
class decreases. Importantly, this is because more common classes are easier
to retrieve as the probability of misclassifying them is lower. As an extreme
example, even for a model with perfect accuracy, it would be impossible to re-
trieve a class which does not exist in the imagery dataset, such as trying to
retrieve ’desert’ in Antarctica. This experiment concluded that some classes are
much harder to detect using self-supervised approaches in datasets of this scale.
Therefore, further analysis was focused on improving the performance on such
classes, which is discussed under Section 2.3.5. Since results are broadly con-
sistent across different cities (performance is consistent across different columns
in Table 9, indicating that the impact of location is minimal), further analysis
was conducted on the entire dataset.

3.2.4. Automated analysis using archival Semi-supervised learning

Accuracy results using the semi-supervised method described in Section 2.3.4
are given in Table 10. As precision (of the category under exploration) is a useful
indicator of performance, precision results on the 60-million image dataset can
be found under Table 11. The results are compared against a supervised model
trained using the same original training set taken over 5 different runs.

Class Runs supervised semi-supervised ∆

cycle symbols 5 77.6 ± 1.32 95.3 ± 1.33 +17.7
basketball courts 5 84.4 ± 1.39 99.8 ± 0.24 +15.4

solar panels 5 76.0 ± 1.52 99.2 ± 0.51 +23.2
flat unbuilt 5 99.1 ± 0.58 99.8 ± 0.24 +0.7
road writing 5 79.7 ± 4.86 98.2 ± 0.93 +18.5
railway lines 5 74.0 ± 1.87 98.4 ± 0.66 +24.4

sheep 5 92.3 ± 4.06 99.3 ± 0.51 +7.0
cycle lanes 5 87.0 ± 0.71 99.6 ± 0.37 +12.6
road arrows 5 81.4 ± 3.76 96.8 ± 2.22 +15.4

cars 5 72.7 ± 2.54 95.4 ± 0.80 +22.7
green cycle lanes 5 67.6 ± 2.15 96.2 ± 1.12 +28.6

footpaths 5 79.7 ± 1.36 89.7 ± 1.29 +10.0
buildings 5 81.7 ± 2.42 98.6 ± 0.58 +16.9

roads 5 82.1 ± 0.66 96.83 ± 1.70 +14.7
trees 5 77.3 ± 0.51 96.75 ± 0.75 +19.4

water bodies 5 95.2 ± 1.6 99.625 ± 0.65 +4.4
pools 5 96.4 ± 0.8 99.5 ± 0.32 +3.1

sports facilities 5 92.3 ± 2.29 99.9 ± 0.20 +7.6

Table 10: Average validation accuracy (and standard deviation) results over 5 model training
runs indicate that the proposed semi-supervised method is more accurate and more consistent
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Class Precision(Frozen) Precision(Archival)

Cycle Symbols 0% 85%
Green Lanes 15% 98%

Buildings 100% 100%
Cars 100% 98%
Trees 100% 100%

Water bodies 100% 100%
Solar Panels 100% 100%

Railway Tracks 62% 100%
Footpaths 94% 96%

Lane Arrows on Roads 44% 7%

Table 11: Precision results across multiple tasks on the entire dataset

3.2.5. Specialized representation learning experiment

The results in Table 12 are compared to the baseline results of this technique
from Section 2.3.4 corresponding to the use of a more generic representation.
The results indicate that specializing the representation using road imagery has
improved performance on categories of infrastructure which coincide with roads,
whereas some categories (such as water features) become harder to detect using
the proposed methodology.

Class Precision Difference from baseline

Cycle Symbols 99% 14% ↑
Green Lanes 100% 2% ↑

Buildings 99% 1% ↓
Trees 100% 0%

Water bodies 84% 16% ↓
Solar Panels 100% 0%

Railway Lines 100% 0%
Footpaths 100% 4% ↑

Lane Arrows on Roads 99% 92% ↑

Table 12: Results of specializing the frozen representation using road imagery as a first step.
It is important to note that urban features correlated with roads have enjoyed an improvement
in accuracy, while water bodies(less common near roads) sees a reduction in accuracy.

4. Discussion

4.1. Speed and scalability

With modelling of this scale, it is important to consider how such analysis
could be scaled across computing infrastructure to deliver results at speed. The
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proposed method was able to generate results covering 15 cities in Australia
spanning 22,000 km2 and more than 60 million images in 3 hours. This is a
throughput of 20 million images per hour or roughly 7,000 square kilometres
per hour. These results were generated leveraging the trivial parallelism due
to the inherent independent nature of the inference process in neural networks.
Processing was performed on 12 V100 GPUs split across 3 nodes (4 GPUs per
node) on the Spartan HPC platform[49]. On a single GPU, the same work-
load took 24 hours to complete on a single task. This run-time performance
evaluation corresponds to the semi-supervised workflows discussed as part of
Section 3.2.4.

4.2. Archival imagery analysis
A straightforward use-case of the models on the task of exploring the evo-

lution of infrastructure over time was used to highlight its utility. Analysis is
conducted across the city of Melbourne, and cycling infrastructure over time
was analyzed. The first instance of identified infrastructure at a particular lo-
cation was anotated by the year of detection. This information was used to
generate a GIS layer loaded into QGIS which was then visualized as in Fig. 5.
This highlights the utility of the proposed models in providing accurate and
consistent data spanning multiple years over a large geographical area. The
same data collected by manual processes is laborious to collect and involves
repetitive work for the annotator. Beyond providing additional training data,
the exploration of archival imagery provides further insights on the growth and
change of infrastructure networks.

Figure 5: Generated GIS layer of cycling infrastructure over Melbourne

26



4.2.1. Semi-supervised learning mixed with active learning/human-in-the-loop
verification

While the methods introduced in this work attempt fully automated analysis
using semi-supervision, there are error rates associated with such analysis. It
is possible to lower these error rates in between iterations by performing a
manual labelling step on the results to prune out any anomalous detections.
These erroneous detections can be quite helpful in directing the model away
from such mistakes in future iterations by incorporating these samples into the
negative class for the problem at hand. Additionally, even “failed” runs where
the model cannot provide a high level of accuracy can still be quite useful if
the precision is higher than the natural occurrence rate of the detection in the
overall dataset. For example, consider a dataset of 100 million images with a
detection which occurs in about 0.1% of images. The dataset would have about
10,000 images containing the class under investigation. If the precision of the
generated model is at least 20% over the top 1000 confidence images, then by
annotating those 1000 detections, at least 200 detections will be obtained and
can be used to further expand the labeled training dataset. In contrast, it would
require manual annotation of at least 200,000 images, on average, to do the same
without using a model or some other method of filtering the data.

4.3. Interpretability

A key issue in neural network based methods is the interpretability of the
generated model. Since the final predictive function the model commits to is
the product of multiple complex layers interacting together, it is important to
verify that the decision boundary learned by the model is consistent. There
are many works in the area of model explainability and interpretability that
relate directly to neural networks. Several of these methods were incorporated
to provide further validation of our models, by visualizing the activation of the
models on input images which contain the corresponding class.

Two methods (Extremal perturbations [50] and Guided backpropagation
[51]) were used in this regard with the results appearing in Fig. 6.

Zhang et al. [52] provide a framework for evaluating attribution techniques
by getting the model to ”Point” at a single pixel and then scoring based on how
far that point is from the given class in the image (15 pixel distance). Points
are derived for each technique in a method-dependent fashion.

To generate confidence in the results generated by the neural network mod-
els, a similar workflow was implemented using [50]. The single most important
image region activated by the neural network was highlighted within the image
and manually verified. An example from cycling symbols can be found in Fig-
ure 7. Similar results were observed across other classes, however, as this is a
class where only a single area within the image corresponds to the task under
consideration, this forms one of the harder cases for the model and interpretabil-
ity technique. Thus, this result was used to highlight and further validate the
behaviour of the model.
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(a) (b)

,
(c)

Figure 6: White activations can be seen in the images (b) (Extremal perturbations) and (c)
(Guided backpropagation) corresponding to the activation of the neural network within the
image for the original image (a)

(a) (b)

,
(c)

Figure 7: A red box is drawn around the region within the image most associated with the
category under consideration (cycling symbols in this case) by the trained model

4.4. Significance of scalable methods in infrastructure analysis

Cycling and active transport can address the increasing congestion on road
networks from motorised transport, reduce air pollution, and tackle concerning
levels of population inactivity. However, cycling is not without risk of injury
[53] and within increasing numbers of cyclists, comes consequent - though not
matched - increases in cycling injury if separated infrastructure is not present
[54]. Specifically, the number of cyclists suffering life-threatening injuries has
increased by an average of 7.5% every year [55]. More recently, social distancing
measures related to the COVID-19 pandemic have led to an accelerated increase
of cycling activity and strong growth in new bicycle sales, globally [56]. The
promotion and increased uptake of cycling requires investigation into features
associated with the accompanying increased numbers of injuries. One of these
features is the availability of specific cycling infrastructure, such as marked or
physically separated lanes. Our study provides an approach to create such a
catalogue of cycling infrastructure, which can have many useful downstream
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applications such as the development of infrastructure typologies[57]. Impor-
tantly, this work showcases how the method can be extended to other types of
urban features as well.

5. Conclusion

This article proposes a generic method to extract a broad set of features
from aerial imagery, which describe the environment in a single image. Al-
though an image segmentation approach can achieve similar results in a single
model, one of the major limitations is the requirement of a large amount of sam-
ples for model calibration. For example, Azimi et al. [58] annotated 31 semantic
categories, including low vegetation, tree, paved road, non-paved road, paved
parking place, non-paved parking place, bike-way, sidewalk, entrance/exit, and
12 lane-marking types. As user requirements vary, multiple datasets were cre-
ated by merging some of the detailed categories into higher-level classes (e.g.,
‘nature’). These image segmentation methods have significant potential for ur-
ban infrastructure identification. However, creating annotated training datasets
is a highly resource intensive process, with no guarantee that the segmentation
categories match the requirements of alternative research questions. In contrast,
our method requires only 200 label annotations per category, which is substan-
tially more efficient. Several variations of the methods introduced were also
explored, modifying aspects of the self-supervised and semi-supervised learning
workflows. Deep learning explainability techniques were applied to verify the
hypothesis learned by the model.

This article describes the accuracy of feature detection for various type of
infrastructure (e.g., footpaths, cycling lanes), showing commonly encountered
infrastructure is easier to detect than rare objects such as cycle symbols. How-
ever, the deep learning methods discussed in this article are able to accurately
detect any of the investigated types of infrastructure given a sufficient num-
ber of training samples. Although the level of initial image annotations can
be debated (i.e., set to 200 in this study), a low threshold prevents excessive
annotation efforts for features that are easy to distinguish, such as rail tracks.
When a higher prediction accuracy is required for certain classes, approaches
such as obtaining additional historical imagery at already annotated locations
can boost accuracy without the need for further annotation.
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