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Abstract—Self-supervision based deep learning classification
approaches have received considerable attention in academic
literature. However, the performance of such methods on remote
sensing imagery domains remains under-explored. In this work,
we explore contrastive representation learning methods on the
task of imagery-based city classification, an important problem
in urban computing. We use satellite and map imagery across 2
domains, 3 million locations and more than 1500 cities. We show
that self-supervised methods can build a generalizable representa-
tion from as few as 200 cities, with representations achieving over
95% accuracy in unseen cities with minimal additional training.
We also find that the performance discrepancy of such methods,
when compared to supervised methods, induced by the domain
discrepancy between natural imagery and abstract imagery is
significant for remote sensing imagery. We compare all analysis
against existing supervised models from academic literature and
open-source our models1 for broader usage and further criticism.

Index Terms—Remote Sensing, Urban Computing, Deep
Learning, Self-Supervision, Computer Vision

I. INTRODUCTION

Deep learning based methods have enabled significant
breakthroughs in automating parts of the computer vision
analysis process. However, these methods generally require
a large amount of labelled data. Such data can be expensive
and time consuming to collect, especially in domains such as
remote sensing, where experts are required to annotate images.
Reusing trained neural networks via transfer learning, which
enables a model to be fine-tuned to perform a different task,
has gained popularity due to the ability to address this problem
to some extent. However, most neural networks are trained on
tasks and imagery domains where image capture occurs from
a horizontally captured perspective, whereas remote sensing
operates on vertically captured imagery. Therefore, neural
networks trained on datasets such as ImageNet, have limited
utility for transfer learning in this regard.

Due to the proliferation of satellite imagery programs such
as Sentinel, unlabelled satellite imagery is readily available
for researchers. Therefore, the ability to leverage unlabelled
data for deep learning methods is desirable. Self-supervised
learning methods [7], [20], [30] have emerged as a paradigm
of deep learning capable of leveraging unlabelled imagery in
such a manner. The advantage of these methods is in the ability
for networks to learn in an unsupervised manner, while using

1https://github.com/sachith500/self-supervision-remote-sensing-abstraction

a ”pretext task” to train the network with a supervised loss
function. Pretext tasks are such that labels and data required
for the task can be automatically generated from unlabelled
imagery data. The neural network is then trained on this
pretext task, creating a representation usable in downstream
tasks. This can include tasks such as jigsaw puzzle solving
[29], relative position prediction [13] or image colorization
[42], which require the neural network to learn a generic
representation of the dataset in order to solve the pretext
task. While self-supervised methods have been exhaustively
explored in horizontal perspective imagery domains, vertical
imagery domains such as remote sensing imagery remain an
under-explored area.

Remote sensing imagery, and vertical perspective images
in general have some special considerations with respect to
self-supervision. Computer vision analyses in these domains
are generally conducted on datasets of a single resolution.
This means that the observations under exploration tend to
occur at similar sizes within the image, unlike in horizontal
imagery, where the observation may be at various depths
with respect to the image capturing sensor. Therefore, un-
derstanding how this affects self-supervised performance is
important. Additionally, remote sensing imagery tends to have
counterparts incorporating abstract information (such as in
maps, a domain distinct from natural remote sensing imagery).
Such information can also be utilized as imagery co-variates in
analysis (such as in [31], which combines natural and abstract
remote sensing imagery for species prediction) or form the
basis for separate analysis. Such types of imagery include
geographical information such as altitude levels (available as
topographical maps such as from the NASA Shuttle Radar
Topography Mission2), land use data and general information
available in maps (such Google maps, OpenStreetMaps3).
This information is usually more abstract than natural images
and presented using distinct colours for human consumption,
introducing a clear domain discrepancy with respect to natural
satellite imagery. Understanding how self-supervised methods
operate on such data is important, as it affects how information
from such sources can be used to augment remote sensing
imagery analysis workflows, when using self-supervision. In
general, exploration of self-supervised methods on imagery

2https://lpdaac.usgs.gov/products/srtmgl1v003/
3https://www.openstreetmap.org/
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abstractions is poorly explored in academic literature, with
most work focused on sketch based methods [3], [41].

Taking these factors into consideration, we explore three
important questions in this paper. Firstly, given that remote
sensing imagery may have low-level visual features in a
more consistent manner than horizontal natural imagery, how
does this affect the generalizability of representations learned
in a self-supervised manner from unlabelled remote sensing
images. We evaluate this by learning a representation on
a small subset of classes from a remote sensing task, and
evaluate the representation on the ”hold-out” classes which
the self-supervised representation has not been exposed to
within the scope of a classification task. Secondly, we build
representations for abstract (map) imagery which correspond
to the vertically captured imagery domain due to the geo-
graphical information represented in them. We evaluate the
performance of our representations and explore the question
of how pretext task operations affect downstream task perfor-
mance in abstract imagery. Finally, we quantitatively explore
the domain discrepancy between using remote sensing imagery
and imagery containing abstractions of remote sensing im-
agery in supervised and self-supervised workflows. We do this
by comparing against existing supervised methods and results
from the literature and by comparing the gap in performance
between the supervised (existing work) and self-supervised
(this paper) methods exploring the same problem. In order
to evaluate the domain discrepancy effectively, we select a
task that is achievable using both types of imagery and is
identical in all respects. This allows for the exploration of
model performance at several levels by evaluating:

• the supervised domain discrepancy between natural and
abstract remote sensing imagery;

• the self-supervised domain discrepancy for the above; and
• the gap between the supervised and self-supervised do-

main discrepancies.
Given the above considerations, the choice of task to base

our evaluation on is not straightforward. The task would
require the following properties:

• applicable to remote sensing (natural) imagery;
• applicable to abstractions of remote sensing imagery;
• availability of a large dataset covering multiple geogra-

phies; and
• is an established computer vision problem (for supervised

comparison with existing literature).
A key challenge in this case is identifying a task that can

be performed using both natural remote sensing imagery and
abstracted imagery of vertical scenes. We find that the city
prediction task defined in [35] meets all these requirements.
In conjunction with this task, an imagery dataset spanning
more than 3 million geographic locations was collected for
robust evaluation. The task has been shown to have important
implications in city design [27], [28], health [33] and injury
prevention [35] due to the ability to allow the quantification of
inter-city comparisons at a structural level. Most importantly,
the task has more than 1500 classes per each of the two

imagery domains, and 1000 images per class, which puts it at
a scale roughly 3 times that of ImageNet [24]. Therefore, the
city prediction task and associated datasets have been selected
as the basis for analysis, while using RGB imagery during all
stages of our analysis.

II. RELATED WORK

A. Optical remote sensing analysis using machine learning

Remote sensing imagery analysis using machine learning
techniques is a broad area in academic literature with much
research attention dedicated to it. Most works explore natural
remote sensing imagery [10], [12], [39], while some works
explore abstractions of remote sensing imagery within the
context of machine learning [28], [35], [43]. Methods in
these areas almost exclusively follow supervised or unsu-
pervised approaches, with very few, such as [34], following
self-supervised approaches. [31] and [34] are of particular
interest as they show that self-supervised pretraining (using
Momentum Contrast [8] and Contrastive Multiview Coding
[36] respectively) can outperform supervised pretraining in the
remote sensing imagery domain, which forms the inspiration
for most exploration in this paper. In this work, we explore
established tasks from remote sensing based urban computing
using machine learning techniques leveraging self-supervision,
which falls under the broader area of deep learning.

B. Self-supervised representation learning

Self-supervised representation learning has received consid-
erable attention in academic literature. These methods use a
pretext task to perform representation learning. The pretext
task forms a task that can usually be performed without any
manual image annotation and thus allows supervised loss
functions to be applied to unlabelled imagery. The selection of
a specific self-supervised pretext task is an important consider-
ation as it has considerable implications on the representation
learned as well as the downstream tasks the representations
are suitable for. MoCo [20], SimCLR [7], BYOL [19], Sim-
Siam [9] and InstDisc [40] all use an instance discrimination
pretext task. Methods such as SWAV [5] operate on the task
of cluster discrimination. Contrastive Predictive Coding [30]
performs the pretext task of mutual information maximization.
PIRL [26] uses jigsaw puzzle solving, while RotNet [23]
uses rotation prediction. Several works such as BigGAN
[4] and BigBiGAN [14] draw insipiration from the image
reconstruction problem commonly used in Autoencoders for
performing self-supervised representation learning. However,
the general performance of these methods on representation
learning across different data domains is poorly understood
[11]. In this work we address two such domains: remote
sensing and abstract imagery.

C. Remote-sensing based self-supervision

Very few works, such as [1], [25], explore remote-sensing
imagery-based self-supervision. However, the suitability of
these methods for abstract imagery is uncertain. Most prior
work leverages existing self-supervised workflows which have
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been extensively explored on varying datasets, such as those
discussed in Section II-B. In this work we follow such work
and leverage generic self-supervised methods for implementa-
tion on vertical perspective natural and abstract remote sensing
imagery.

D. Evaluation of Self-Supervision

Evaluation of Self-Supervision is approached from several
directions in prior research. In this work we use the standard
frozen representation approach which is the commonly used
protocol for evaluating the learned representation generated
by a self-supervised method [22]. This involves evaluating
the learned visual representation by using it for training
a simple logistic regression model to solve a downstream
multiclass image classification task. By freezing all parts of
the network except this final linear layer, the network is
unable to adapt to the task beyond combining the high-level
features already encapsulated within the model. Thus, this
allows objective criticism of the learned representation on
the downstream task, while additionally minimizing compu-
tational requirements. This is because the number of trainable
parameters in the network under this protocol is much lower
compared to standard supervised training. Other approaches
have also been proposed, such as employing Support Vector
Machines (SVMs) on the output of the embedding learned
by the model [38]. Multiple works benchmark self-supervised
performance on different datasets [18], [22], [38] to enhance
the understanding of method performance in different domains
and downstream tasks. These works are particularly insightful
due to the innately high computational requirements associated
with building self-supervised models. Our work fits within
this growing body of work as we compare supervised and
self-supervised performance across an established classifica-
tion task from academic literature. However, we additionally
identify separate domains (and collect datasets) to apply the
same task to, thus performing a stronger evaluation of the
domain discrepancy and the gap in performance between self-
supervised and supervised methods.

In general, work discussed in the previous paragraph allows
the discrimination of self-supervision based approaches. Such
work is primarily driven by exploration of the performance
gains within self-supervised methods. In principle, this area
of research is largely similar to other work which explores
feature extraction from deep neural networks such as [32].
Our work also falls into this category as it explores the per-
formance of self-supervision on remote-sensing and abstract
imagery, and contributes to the understanding of the behavior
of representation learning techniques in the domains of remote
sensing and abstract imagery. In particular, in this work we
use self-supervision techniques and the ResNet50 [21] and
Vision Transformer [15] (ViT) architectures as deep feature
extractors.

E. Self-supervision and abstract imagery

The intersection of self-supervision and abstract imagery is
an underexplored area in academic literature. Most prior work

[3], [41] focuses on sketch based abstractions. We hypothesize
that this is because the utility of image abstractions is limited
outside of the remote sensing domain. This is because for
the horizontal perspective, natural images have too much
variation within them, as there is considerable spatial (depth
of object of interest) variation between images. In remote
sensing imagery, this variation (we hypothesize) is lower
due to the fixed perspective of the camera and the fixed
resolution of the imagery. Additionally, abstract imagery in
remote sensing provides more useful ”knowledge” for human
consumption. In horizontal perspective natural imagery, such
information is usually generated by semantic segmentation
or object detection techniques, which have error rates asso-
ciated with them. This limits the utility of their use as co-
variates for analysis in data fusion approaches. This work
contributes to the understanding of the performance of self-
supervised methods on abstract imagery, with a particular
focus on abstractions of remote sensing imagery. In particular,
the evaluation of learnt representations on down-stream tasks
provides contributions to their use in ensembling approaches,
either using self-supervised representations (such as in [31])
or otherwise.

III. METHODOLOGY

A. Datasets

Imagery from the largest global cities with populations
greater than 300,000 people, as specified by [37], was collected
from Google Maps and has been used in a number of studies
[27], [28], [35] examining urban form and to quantify the
structural similarity between cities. The sampling procedure
used a circular sampling area with the radius scaled by popu-
lation size by a power of 0.85, according to [2], and aligned to
the city’s centre (as specified by [37]) to provide a standardised
method to define urban boundaries. Large water-bodies were
removed from the sampling area. These procedures resulted in
a population and water body-adjusted circular area centred on
the city’s central coordinates, capturing the widest extent of
each city while minimising the amount of non-urban locations.

Random sampling of 1000 images within these boundaries
was performed for each city to build two types of imagery
datasets. The first was of map imagery, using the Google
Static Maps API [17] with an image type of ‘map’. Images
were sized 256×256 pixels using a zoom level of 16 (approx-
imately 400m×400m). These were obtained from the selected
locations using a custom style. This style abstracted roads,
public transport networks, green space, and water bodies into
solid colors of black, orange, green, and blue, respectively.
Any remaining space was coded white. Due to mapping
inconsistencies in South Korea, all 25 South Korean cities
were removed from the dataset, reducing the number of cities
to 1665 for a total data set of 1,665,000 images in 1665 classes
(i.e., the corresponding city names). See Figure 1a for an
example, of Paris, France.

A second set of imagery was collected using the Google
Static Maps API [17] with an image type of ‘satellite’, zoom
level of 16 (approximately 400×400m), and image size of
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256×256. Google Maps satellite imagery is a mosaic of
cloud-free imagery from multiple sources and with different
acquisition times. Originally based on Landsat 7 imagery, this
has largely been replaced by Landsat 8 since 2013 and has
a 15m/pixel resolution [16]. The majority of the imagery
collected dated from March and April 2017, with the rest
from 2016 and early 2017. A few locations (such as Iraq and
Afghanistan) date back as far as 2010. Suitable imagery was
not available for two cities, bringing the number of cities to
1690 and leading to a total data set of 1,690,000 images in
1690 classes. Figure 1b shows a sample image, from Adelaide,
Australia. A list of all locations used in this dataset is available
4, so that our results are fully reproducible.

a) b)

Fig. 1. Sample imagery for a) Google Maps dataset (from Paris, France
[17]) and b) Google Satellite dataset (from Adelaide, Australia [17]).

A random train-test split of 80% vs 20% was used for
analysis, providing 800 training images and 200 testing images
per class (per city). The same data splits are used in all
experiments. Representation learning is performed only on the
training split.

B. Task Definition

The task we explore is a classification task, with many
similarities to ImageNet classification [24], but from a remote
sensing/vertical perspective. There are more than 1500 classes
of images per dataset, with each image belonging to a partic-
ular city. The task we explore is the classification of those
images to the city it was captured in. To accomplish this,
the neural network must build a set of features to identify
the unique characteristics of each city. This is generally
quite difficult for humans to do without unique identifiable
landmarks present, however neural networks have been shown
to achieve a much higher accuracy, even over a large number
of classes [28]. This task is ideal for evaluation of class-
independent representation learning capabilities, as the intra-
class differences are low. This is because each image is from
a vertical perspective of a city and would contain similar
low-level image features such as trees, buildings and roads.
Additionally, the possibility of performing the same task on
both natural and abstract imagery allows us to better explore
the domain discrepancy between the types of imagery across
both supervised and self-supervised methods.

4https://github.com/sachith500/self-supervision-remote-sensing-abstraction

C. Self-supervised Representation Learning
Self-supervised learning utilizes pretext tasks to train a

model in a supervised manner. Contrastive Representation
Learning is a subset of self-supervised representation learning
which exploits the similarity between augmented views of the
same image, and the dissimilarity between different images,
using a contrastive loss such as InfoNCE [30]. This contrastive
loss is computed based on the query’s ability to match
positive samples corresponding to augmentated views of the
source image together, with negative samples corresponding
to augmented views of other images acting to confound this
classification. Here, the query denotes an augmented view of
the source image. InfoNCE can be considered as a softmax
loss with the objective of classifying the query as belonging
to the class corresponding to the positive sample (with the
other negative samples acting as negative classes).

We utilize three such representation learning workflows in
this work, which are annotated as V1, V2 and DINO for
easier comparison. We utilize the ResNet50 and ViT-S/16
architectures in our evaluation.

V1: Momentum Contrast
The first workflow, annotated as V1, used for representation

learning utilizes Momentum Contrast (MoCo) [20], which
utilizes a queue and a momentum update in order to avoid
the need to use large memory banks corresponding to encoded
representations of the dataset. The pretext task used is instance
discrimination [40] and we set experimental settings to be
consistent with V2. We use the parameters suggested in [20]
– learning rate of 0.03 and a batch size of 256 on a 4 GPU
node.

V2: V1 with projection head and augmentations
The second workflow utilizes the above workflow, but

additionally incorporates aspects of SimCLR [7] into the
representation learning workflow in the form of additional
augmentations and a projection head. This workflow has been
shown to significantly improve performance of the learned rep-
resesentations on downstream tasks [8]. In our experiments, we
evaluate V1 and V2 in order to better understand performance
across both natural and abstract vertical perspective imagery.
Of particular interest is the effect of the extra augmentations in
V2 (some of which are based on distorting the colours in the
image) on the performance of representations on downstream
abstract imagery (which use colour to indicate important
aspects of the image). We use the same parameters as V1
for consistency - with a learning rate of 0.03, a batch size of
256 on a 4 GPU node, a softmax temperature of 0.2, and the
additional augmentations and cosine learning rate schedules
suggested in [8].

DINO: Self Distillation with Vision Transformers
DINO [6] utilizes representation learning through knowl-

edge distillation to perform self-supervised learning. Student
and teacher networks are trained on different zoomed views
of the data. The student network generally encodes smaller
crops of the image, while the teacher network encodes larger
crops of the image. The encodings generated by both networks
are passed through a softmax function effectively mapping the

Authorized licensed use limited to: University of Melbourne. Downloaded on January 09,2023 at 00:59:39 UTC from IEEE Xplore.  Restrictions apply. 



encodings to a probability distribution over a large number of
psuedo-classes (65,536 by default and in our work). By calcu-
lating the loss as a cross-entropy function over these psuedo-
classes, the student network is updated. The teacher network is
only modified using a momentum based exponential moving
average update based on the student parameters.

We evaluate the ViT-S/16 architecture using this workflow
as the basis for representation learning. This architecture
has 21 million parameters (comparable to ResNet50 with 23
million). We distribute pre-training on 28 GPUs over a week,
using a patch-size of 16 to enable faster training. Otherwise,
we use the same hyper-parameters as those suggested for
ImageNet in [6]. Due to the higher computational requirements
in this workflow, we only evaluate it on abstract imagery.

D. Evaluation

Evaluation of the workflows from Section III-C proceeds
according to the standard protocol for representation learning,
as discussed in Section II. First, V1 or V2 is used to build
a representation with a ResNet50 architecture. Then, a fully
connected linear layer is built following the final bottleneck
layer of the ResNet50. This layer connects the outputs of the
bottleneck layer (with 2048 neurons) to the class prediction
output neurons (1665 or 1690 neurons depending on imagery
type and equal to the number of classes in each task). This
single layer is trained on the task, leveraging the representation
from V1 or V2 using a learning rate of 30 and a batch size of
256 on a 4 GPU node for a total of 100 epochs with learning
rate decreased by a factor of 10 at the 60th and 80th epochs,
respectively. Categorical cross-entropy was used as the loss
function. The large learning rate is justified as most of the
network is frozen [20].

For the evaluation using Vision Transformers, we use an
approach similar to the above. The ViT-S/16 architecture
contains 12 Transformer blocks, from which we use the last 4
and concatenate the output. As the output of each block has a
dimension of 384, the combined output is 1536 dimensional.
This combined output is connected to the class prediction
output neurons (1665 in this case) in a fully connected manner.

E. Experiment 1: Representation Generalizability

In this experiment, we evaluate the class generalizability of
the representation learned using the methodology defined in
Section III-C, evaluating workflows (V1 and V2). This is done
by evaluating a representation learned on a subset of cities
on the city prediction task defined in Section III-B. In this
experiment we use the satellite imagery dataset described in
Section III-A. Representation learning is performed on images
from a subset of available cities, in an unsupervised manner
with different experimental variations based on workflow,
number of cities for representation learning and number of
cities for evaluation. The cities used for representation learning
are always used for evaluation, with additional holdout cities
included as well. For robust evaluation, evaluations were car-
ried out on the 200 cities used for representation learning, and
separately on the full 1665/1690 cities as well. Evaluation was

performed by first training a new linear layer on top of a given
representation as described in Section III-C. The representation
has its weights frozen which forces the new linear layer to use
the provided unsupervised representation without any further
modification. This is followed by evaluation on the test set. We
report the best performance across the different experimental
settings in Section IV. We allow the representation learning
process a maximum of either one week (wall-clock time) of
training on a 4 GPU node or 200 epochs of training. Where this
led to termination of the process before 200 epochs, we use the
representation generated in the final epoch prior to termination.
This is in line with prior work [8] which indicates that longer
pretraining on the pretext task provides better representations
as evidenced by evaluation on downstream tasks.

F. Experiment 2: Abstraction

This experiment is identical to the previous experiment in
all respects, except we evaluate on the additional domain
of abstract map imagery (across 1665 cities as discussed in
Section III-A). In this experiment, we extend representation
learning time to two weeks on a 4 GPU node, allowing
all experiments to reach 200 epochs of training prior to
termination. This is to keep the representation learning process
consistent allowing for better comparability of results as we
always pick the latest representation generated by the self-
supervised training on the pretext task. We present results in
a manner consistent with the previous experiments for easier
comparability within the same table (Table I).

IV. RESULTS

A. Generalizability and Abstraction

The combined results of the generalizability experiment
defined in Section III-E and the abstraction experiment in
Section III-F are presented in Table I. This table contains sev-
eral interesting results generated by different representations
trained with varying data using self-supervised representation
learning. ”Pretrain cities” indicate the number of cities used
for representation learning. ”Test cities” indicate the number
of cities used for evaluation, and is equal to the number of
cities seen by the representation (”Pretrain cities”) and the
number of cities unseen by the representation. It is important
to note that the representations remain frozen during the
training process, which means they are unable to perform
any additional learning on cities during this stage. Thus, the
representation is trained only on cities listed as ”Pretrain
cities” in the results, with other cities remaining unseen. This
highlights the generalizability of the methods presented in this
work.

Based on this table, we can make the following observations
and draw several conclusions:

• Workflow V2 is superior to V1 for natural satellite
imagery (Rows 1 and 2, Rows 3 and 4). This discrepancy
is more pronounced when evaluating on classes unseen
by the representation (Row 3 and 4 - 14% discrepancy
in accuracy). This implies that workflow V2 is able to
learn more generalizable representations with respect to
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Row Experiment Imagery Workflow Pretrain cities Pretrain epochs test cities Accuracy

1 Generalizability Satellite MoCo V1 200 200 200 95%
2 Generalizability Satellite MoCo V2 200 200 200 99%
3 Generalizability Satellite MoCo V1 200 200 1690 81%
4 Generalizability Satellite MoCo V2 200 200 1690 95%
5 Generalizability Satellite MoCo V2 1690 1451 1690 98%
6 Abstraction Maps MoCo V1 1665 200 1665 67%
7 Abstraction Maps MoCo V2 1665 200 1665 61%
8 Abstraction Maps DINO 1665 1801 1665 36%

1terminated at the end of 1 week of wall clock time.
TABLE I

TOP-1 ACCURACY RESULTS FOR GENERALIZABILITY AND ABSTRACTION EXPERIMENTS (FROM SECTIONS III-E AND III-F).

unseen classes. This means that workflows using V2 are
able to learn a more general representation from classes
used for representation learning, and able to maintain
performance on classes unseen during the representation
learning process compared to V1.

• The representations learned using V2 on natural imagery
across 200 classes are able to generalize well over 1490
unseen classes (Rows 4 and 5 indicate only a 3% dis-
crepancy between pretraining on 200 vs 1690 classes).

• For abstract map imagery, V2 underperforms V1 (Rows
6 and 7). We suspect this is due to the importance of
colours in the abstract imagery classification task, how-
ever further studies are required before any conclusive
general conclusions can be drawn.

• Results indicate a significant domain discrepancy for self-
supervised methods between abstract and natural imagery
in remote sensing (Rows 5 and 6).

Importantly, by limiting representation learning to 200 cities
(Row 1) as part of this experiment, we show that the self-
supervised workflow is able to learn generic features that
makes it generalizable across 1490 unseen cities. This provides
confidence that the method we utilize is able to learn a generic
representation capable of generalizing across geographies, and
learn discriminatory features that are useful across many
unseen classes (cities).

B. Domain Discrepancy and Supervised Comparison

In this section we compare the results generated in our
experiments against existing results from the literature. While
we use a different backbone for our analysis, the similar results
(98% vs 99% in prior work) generated by our method on
satellite imagery indicates that this architecture is suited to
the task. These comparable results on the natural imagery
city classification task allow us to directly compare the results
generated by the other self-supervised training configurations
we explore in this work, with results from prior work in the
literature.

Table II indicates that self-supervised methods are capable
of generating similar results for this task on satellite imagery,
but indicates a large discrepancy for map imagery. This is
further highlighted in Table III, which indicates a 31% domain
discrepancy in performance between satellite and map imagery
while only a 13% gap is observed under supervised settings.
Due to performing evaluation under identical experimental

Work Imagery Method Architecture Test cities Acc

[28] Satellite Supervised InceptionV3 1690 99%
[35] Maps Supervised InceptionV3 1665 86%
Ours Satellite Self-supervised ResNet50 1690 98%
Ours Maps Self-supervised ResNet50 1665 67%

TABLE II
COMPARISON WITH EXISTING WORK IN THE LITERATURE

settings, we can draw the following conclusions based on these
results:

• Self-supervised methods are able to achieve comparable
performance to supervised methods for natural imagery
on this task (Column ”Satellite” of Table III).

• Self-supervised methods display a significant domain dis-
crepancy compared to supervised methods for abstract
imagery on this task (Column ”Map” of Table III).
Clearly, the domain discrepancy is more significant in
self-supervision under identical evaluation settings.

Method Satellite Map Difference (Satellite - Map)

Supervised 99% 86% 13%
Self-supervised 98% 67% 31%

TABLE III
DOMAIN DISCREPANCY - SUPERVISED VS SELF-SUPERVISED

CONCLUSION

In this paper we show that self-supervised methods are
able to achieve similar performance to supervised methods on
natural satellite imagery. We base our analysis on a well mo-
tivated task from the literature on more than 3 million images
across 2 domains with over 1500 classes. We show that remote
sensing imagery representations built using natural imagery
from as few as 200 classes can be effectively expanded to more
than 1000 unseen classes with minimal additional training
to achieve comparable performance to supervised workflows.
This is important as the self-supervised representations may be
utilized in different tasks with minimal additional training. We
show that the domain discrepancy introduced in abstractions
of imagery based on remote sensing data is significant. We
find that this domain discrepancy is further exaggerated in
self-supervised workflows. We share our trained models5 and

5Trained models available at: https://github.com/sachith500/self-
supervision-remote-sensing-abstraction
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inference scripts, with a list of exact locations used in our
study so that our results are fully reproducible. Overall,
our work indicates considerable promise for self-supervision
based methods for the area of remote sensing. However, our
experimental results indicate that the ability for these methods
to operate well on natural imagery does not translate well for
handling abstract imagery. In particular, our comparisons with
past work indicate that supervised neural networks are able
to learn compatible representations on the task of abstract
imagery classification. Therefore, we believe that the large
discrepancy we observe in the performance of state of the
art self-supervision techniques in this domain warrants further
investigation.
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