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We analysed mobility and pollution data from more
than 500 cities during the Covid-19 pandemic in
2020.

¥

We compared trends in mobility and transport-
related pollution data associated with pre-, mid-,
and late-stage of the pandemic across all cities using
previously identified urban design classifications.

¥

We showed that mobility and associated transport-

related air-pollution declined across all city types in

the early to mid-stages of the pandemic, leading to
reduced risk of chronic disease.

¥

We show that in late 2020, levels of transport-
related pollution and chronic disease risk rebounded
most strongly in cities that afforded a mode shift
toward private motor vehicles and away from public
transit. We show this shift is also since associated
with higher rates of road trauma.

¥

We suggest that, in the face of infectious disease
threats, city designs able to maintain levels of public
transport and constrain growth in private vehicle
use expose citizens to lower disease and transport
injury risk.

Figure S1: Overview of the study’s methodology, combining mobility and pollution data for 507 global cities during 2020 to
demonstrate city design can enable or constrain public health measures leading to either better or worse disease and

transportation injury risk.
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Figure S2: Location of the 507 cities used in this study.

Growing availability of spatial big data have led to increasing usage of graph neural networks (GNN) in urban studies,
using urban street networks to explore the urban form, discover urban growth patterns and socioeconomic statuses,
derive the functions of urban features in street view imagery, or to enable the fusion of multiple sources of information
to uncover the cultural characteristics of neighbourhoods from street view imagery ¥°. GNNs work by forming high-
dimensional hypotheses that can represent input data; in this case, road networks, public transit networks, and active
transport networks (e.g., walking and cycling paths) derived from OSM data. In the context of understanding mobility
patterns, the utilisation of OSM data offers significant advantages over sampled imagery data used in previous studies
(e.g. ®") due to OSM data’s high density and its capacity to represent features of an entire city, rather than relying upon
sampled data from locations across cities. To conduct global studies, OSM has proven to be an essential source of
data, especially in data poor regions of the world where it might be the only source of that information. The coverage
of cities analysed are shown in Figure S2 and Figures S9-S14.

We trained a graph neural network using self-supervised learning; a method demonstrated to capture urban form
comparably to supervised learning 7. Importantly, this allows the graph neural network used here to represent the data
without requiring a labelled output to the neural network, as used in a recent study 6. Masked Auto-encoding (MAE)
was used as the training objective of the graph neural network. This objective has demonstrated effective performance
in neural networks across various data modalities such as graphs !, images *2, graphs represented as images *3 and
text 1*. MAE trains the neural network by ‘masking’ part of the input data, then tasking the model with predicting
the masked (unknown) portion. Here, we masked both road (edge) features—such as length, start and end locations of
roads—as well as node features such as latitude and longitude. The model then attempted to predict surrounding OSM
sections from the remainder of the available sample.

The results of this analysis were then converted to a t-SNE *® graph which organised the average value of each city’s
OSM sample in a 2-dimensional plane where the distance between cities on the graph represented their similarities
across urban characteristics (see Figure 1). t-distributed stochastic neighbour embedding (t-SNE) is a method to
visualise higher-dimension data by reducing it to two or three dimensions.

Box S3: Graph neural network




Starting with the list of the largest cities in the world, taken from the 2015 United Nations” World Urbanization
Prospects report 6, Thompson et al. (2020) ¢ classified 1692 cities into types based on urban design characteristics and
the associations of these types to road transport injury. This study and Wijnands et al. (2022) " also used this list as
a starting point and collected data (OSM data (Box S3) and pollution data (below)), to maximise the coverage of as
many of these cities as possible.

The pollution data used in this study was derived from data generated by Wijnands et al. (2022) ’. That study found
remote-sensing data to be of insufficient resolution (often 10km) to detect pollution anomalies of NO, PM;.s, PMyq,
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hourly pollution observations from 2015-2019, combined with ERA5'® weather observations for this same period,
individual pollutant and city specific XGBoost models were trained and validated as suitable to predict daily air
pollution levels in each city. Cities with less than 365 training samples over 2015-2020 and less than 330 measurements
in 2020 were not included in the set of 900 cities. Features selected for the model training include air temperature
on day t and days t-3, 2, and 1, net solar radiation on day t and days t-3, 2, and 1, total precipitation on day t and
sum of days t-3, 2, and 1, wind speed on day t, wind direction on day t, leaf area index on day t, and year as well as
the daily pollutant levels. Excluded features included day of week and day of year, so that those variables could be
examined in the later analysis. The resulting models could account for seasonal and long-term trends as well as daily
conditions and anomalies can be attributed to mobility restrictions and how they contribute to pollution levels. Using
2020 weather observations, 2020 pollution levels in the absence of a pandemic (counterfactual business as usual) were
predicted and anomalies calculated.

Apple *° and Google % provided mobility indexes in 2020. Apple’s index calculates differences in map requests for
modes of walking, driving, or public transit over a January 2020 baseline provided as a ratio. Google generated an
index using phone-tracking-based changes in mobility across several types of locations, including retail and recreation,
grocery stores and pharmacies, parks, public transit stations, workplaces, and private residences. These daily indexes
were linked to the 507 cities with available air pollution data with changes representing percentage differences in
attendance from a 5-week pre-pandemic baseline from January 3rd to February 6th, 20202,

Google’s COVID-19 Open Data repository 22 provides data for daily COVID-19 cases using a consistent set of region
keys. Daily values were linked to the 507 cities when city case data was available, matching country-level to cities
when city-level data was unavailable. This data was curated by Wahltinez et al. (2020) 2, retrieved directly from the
relevant authorities (e.g., departments of health within countries).

Box S4: Air pollution and city mobility changes during COVID-19



Table S1: Relative health risks (and 95% confidence interval) associated with air pollution reductions across continents and

phases. Numbers >1 indicate increased health risks.

Region

| Early Phase

| Mid Phase

| Recovery Phase

Mean NO. anomaly(ppb) : Estimated Relative Health Risks Due to NO2 (All-Cause Mortality) (Lower — Upper bound)

Africa 1.86: 1.011 (1.007 — 1.015) | 0.72: 1.004 (1.003 — 1.006) | -0.28 : 0.998 (0.999 — 0.998)
Asia -4.66: 0.972 (0.981-0.963) | -2: 0.988 (0.992 — 0.984) -1.58: 0.991 (0.994 — 0.987)
Europe 2.81:0.083 (0.9890.978) | -3.31: 0.98 (0.987 —0.974) | -2.5: 0.985 (0.99 — 0.98)

North America | -0.48 : 0.997 (0.998 — 0.996) | -1.29 : 0.992 (0.995 —0.99) | -0.09 : 0.999 (L — 0.999)

Oceania -0.22: 0.999 (0.999 - 0.998) | -3.04: 0.982 (0.988 — 0.976) | -2.72 : 0.984 (0.989 — 0.978)
South America | -1.23: 0.993 (0.9950.99) | -2.77 : 0.983 (0.989 - 0.978) | -1.39 : 0.992 (0.994 — 0.989)
Overall 3.72: 0078 (0.985-0.97) | -2.15: 0.987 (0.991 - 0.983) | -1.58 : 0.991 (0.994 — 0.987)

Mean NO, anomaly(ppb) : Estimated Relative He

alth Risks Due to NO2 (Respiratory Disease) (Lower — Upper bound)

Africa 1.86: 1.009 (1.004 —1.015) | 0.72: 1.004 (1.001 — 1.006) | -0.28 : 0.999 (0.999 _ 0.998)
Asia ~4.66: 0.977 (0.991 _0.963) | -2: 0.99 (0.996 — 0.984) -1.58; 0.992 (0.997 — 0.987)
Europe -2.81: 0.986 (0.994 —0.978) | -3.31: 0.983 (0.993 _ 0.974) | -2.5: 0.988 (0.995 _ 0.08)
North America | -0.48 : 0.998 (0.999 — 0.996) | -1.29 : 0.994 (0.997 —0.99) | -0.09: 1 (1 0.999)

Oceania -0.22: 0.999 (1 0.998) -3.04: 0.985 (0.994 _0.976) | -2.72 : 0.986 (0.995 — 0.978)
South America | -1.23: 0.994 (0.998 —0.99) | -2.77: 0.986 (0.994 —0.978) | -1.39 : 0.993 (0.997 — 0.989)
Overall -3.72:0.981 (0.993_0.97) | -2.15: 0.989 (0.996 — 0.983) | -1.58 : 0.992 (0.997 — 0.987)

Mean NO2 anomaly(ppb) : Estimated Relative He

alth Risks Due to NO; (Cardiovascular Disease) (Lower — Upper bound)

Africa 1.86: 1.02 (1.013 _ 1.03) 0.72: 1.008 (1.005 _1.012) | -0.28 : 0.997 (0.998 — 0.996)
Asia -4.66: 0.949 (0.967 _0.925) | -2 0.978 (0.986 _ 0.968) -1.58 0.983 (0.989 _ 0.975)
Europe 2.81:0.969 (0.98 _0.955) | -3.31: 0.964 (0.977 — 0.947) | -2.5: 0.972 (0.982 _ 0.96)
North America | -0.48 : 0.995 (0.997 — 0.992) | -1.29 : 0.986 (0.991 _0.979) | -0.09 : 0.999 (0.999 — 0.999)
Oceania -0.22:0.998 (0.998 _ 0.996) | -3.04: 0.967 (0.979 — 0.951) | -2.72: 0.97 (0.981 — 0.956)
South America | -1.23 : 0.986 (0.991 _0.08) | -2.77: 0.97 (0.981 _0.956) | -1.39 : 0.985 (0.99 _ 0.978)
Overall 3.72: 0959 (0.074 _0.94) | -2.15: 0.976 (0.985 _ 0.966) | -1.58 : 0.983 (0.989 _ 0.975)

Mean PM s ano

maly(ug/m?) : Estimated Relative

Health Risks Due to PM2 s (Al

I-Cause Mortality) (Lower — Upper bound)

Africa

-1:0.98(0.986 _0.974)

4.1 0.017 (0.942 —0.892)

~4.92: 0.901 (0.931 —0.871)

Asia -13.18 0.734 (0.814 —0.653) | -3.63: 0.927 (0.949 —0.905) | -5.99 : 0.879 (0.916 — 0.842)
Europe 1.49: 097 (0.979-0.961) | -1.76: 0.964 (0.975—0.954) | -0.76 : 0.985 (0.989 — 0.98)
North America | -0.61 : 0.988 (0.991 —0.984) | -0.27 : 0.995 (0.996 — 0.093) | 2.47 : 1.05 (1.035 — 1.065)
Oceania -1.04: 0.979 (0.985_0.973) | -0.93: 0.981 (0.987 —0.976) | -2.22 : 0.955 (0.960 _ 0.942)
South America | -0.74: 0.985 (0.99 _0.981) | -1.73: 0.965 (0.976 — 0.955) | -0.15: 0.997 (0.998 — 0.996)
Overall -9.35: 0.811 (0.868 — 0.754) | -2.89 : 0.942 (0.950 — 0.924) | -4.04 : 0.918 (0.943 — 0.894)

Mean PM; s ano

maly(ug/m?) : Estimated Relative

Health Risks Due to PM2 s (IH

D Mortality) (Lower — Upper bound)

Africa -1:1(1-1) -4.1:0.999 (1-0.998) -4.92:0.999 (1-0.998)
Asia -13.18: 0.997 (0.999 —0.995) | -3.63:0.999 (1 —0.999) -5.99: 0.999 (0.999 — 0.998)
Europe -1.49:1(1-0.999) -1.76 : 1 (1-0.999) -0.76:1(1-1)

North America | -0.61:1(1-1) -0.27:1(1-1) 2.47:1.001 (1-1.001)
Oceania -1.04:1(1-1) -093:1(1-1) -2.22:0.999 (1-0.999)
South America | -0.74:1(1-1) -1.73:1(1-0.999) -015:1(1-1)

Overall -9.35:0.998 (0.999 -0.996) | -2.89:0.999 (1-0.999) -4.04:0.999 (1-0.998)

Mean PM s ano

maly(ug/m?3) : Estimated Relative

Health Risks Due to PM2.s (Asthma) (Lower — Upper bound)

Africa

1:0.95(0.98_0.93)

4.1:0.795 (0.918 — 0.713)

~4.92 : 0.754 (0.902 — 0.656)

Asia -13.18: 0.341 (0.736 — 0.077) | -3.63 : 0.818 (0.927 — 0.746) | -5.99: 0.7 (0.88 _ 0.581)
Europe -1.49: 0.926 (0.97 —0.896) | -1.76: 0.912 (0.965— 0.877) | -0.76 : 0.962 (0.985 — 0.947)
North America | -0.61: 0.97 (0.988 —0.957) | -0.27 : 0.986 (0.995 _0.981) | 2.47 : 1.124 (1.049 — 1.173)
Oceania -1.04: 0.948 (0.979 _0.927) | -0.93 : 0.954 (0.981 —0.935) | -2.22 : 0.889 (0.956 — 0.845)
South America | -0.74 : 0.963 (0.985 _0.048) | -1.73: 0.914 (0.965 _ 0.879) | -0.15: 0.992 (0.997 — 0.99)
Overall -9.35: 0532 (0.813-0.346) | -2.89 : 0.855 (0.942 — 0.798) | -4.04: 0.798 (0.919 — 0.717)

Mean PM; s ano

maly(ug/m?) : Estimated Relative

Health Risks Due to PM2 s (IH

D Morbidity) (Lower — Upper bound)

Africa -1:1(1-1) -4.1:0.999 (0.999 - 0.999) | -4.92:0.999 (0.999 — 0.998)
Asia -13.18: 0.996 (0.997 —0.996) | -3.63:0.999 (0.999 —0.999) | -5.99: 0.998 (0.999 — 0.998)
Europe -149:1(1-1) -1.76 : 1 (1-0.999) -0.76:1(1-1)

North America | -0.61:1(1-1) -027:1(1-1) 2.47:1.001 (1.001 - 1.001)
Oceania -1.04:1(1-1) -093:1(1-1) -2.22:0.999 (1-0.999)
South America | -0.74:1(1-1) -1.73:1(1-0.999) -015:1(1-1)

Overall -9.35:0.997 (0.998 - 0.997) | -2.89:0.999 (0.999 —0.999) | -4.04:0.999 (0.999 — 0.999)
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Figure S5: An overview of observed modal shift from public transit to private motor vehicles observed during 2020 for all
analysed cities highlighting an increased reliance on private vehicle use over public transit during the course of the COVID-
19 pandemic. Values >0 indicate a proportional replacement of public transit trips to private vehicles for individual cities in
comparison to pre-pandemic conditions.
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Figure S6: Nine global city design types identified in Thompson et al. (2020) ¢ for the 507 cities used in this study. City

locations and grid references correspond to those in Figure 1
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Figure S7: Mean reported COVID-19 cases per 100,000 population across continents in 2020 for the Early, Mid-Crisis,
and Recovery pandemic phases with error bars representing standard deviations across countries within regions.
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Figure S8: Changes in total road traffic fatalities among the 43 member countries contributing to the International Traffic
Safety Dataand Analysis Group (IRTAD) showing a post-pandemic (2020-2021) rebound (figure adapted from 4).
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Figure S9: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with
insufficient data in Africa. Text annotations show proportions of total (in percents) for each country.
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Figure S10: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with
insufficient data in Asia. Text annotations show proportions of total (in percents) for each country.
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Figure S11: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with
insufficient data in Europe. Text annotations show proportions of total (in percents) for each country.
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Figure S12: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with
insufficient data in North America. Text annotations show proportions of total (in percents) for each country.
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Figure S13: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with
insufficient data in Oceania. Text annotations show proportions of total (in percents) for each country.
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Figure S14: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with
insufficient data in South America. Text annotations show proportions of total (in percents) for each country.
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