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Figure S1: Overview of the study’s methodology, combining mobility and pollution data for 507 global cities during 2020 to 

demonstrate city design can enable or constrain public health measures leading to either better or worse disease and 

transportation injury risk. 
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Growing availability of spatial big data have led to increasing usage of graph neural networks (GNN) in urban studies, 

using urban street networks to explore the urban form, discover urban growth patterns and socioeconomic statuses, 

derive the functions of urban features in street view imagery, or to enable the fusion of multiple sources of information 

to uncover the cultural characteristics of neighbourhoods from street view imagery 1–5. GNNs work by forming high- 

dimensional hypotheses that can represent input data; in this case, road networks, public transit networks, and active 

transport networks (e.g., walking and cycling paths) derived from OSM data. In the context of understanding mobility 

patterns, the utilisation of OSM data offers significant advantages over sampled imagery data used in previous studies 

(e.g. 6,7) due to OSM data’s high density and its capacity to represent features of an entire city, rather than relying upon 

sampled data from locations across cities. To conduct global studies, OSM has proven to be an essential source of 

data, especially in data poor regions of the world where it might be the only source of that information. The coverage 

of cities analysed are shown in Figure S2 and Figures S9-S14. 

We trained a graph neural network using self-supervised learning; a method demonstrated to capture urban form 

comparably to supervised learning 7. Importantly, this allows the graph neural network used here to represent the data 

without requiring a labelled output to the neural network, as used in a recent study 6. Masked Auto-encoding (MAE) 

was used as the training objective of the graph neural network. This objective has demonstrated effective performance 

in neural networks across various data modalities such as graphs 11, images 12, graphs represented as images 13 and 

text 14. MAE trains the neural network by ‘masking’ part of the input data, then tasking the model with predicting 

the masked (unknown) portion. Here, we masked both road (edge) features–such as length, start and end locations of 

roads–as well as node features such as latitude and longitude. The model then attempted to predict surrounding OSM 

sections from the remainder of the available sample. 

The results of this analysis were then converted to a t-SNE 15 graph which organised the average value of each city’s 

OSM sample in a 2-dimensional plane where the distance between cities on the graph represented their similarities 

across urban characteristics (see Figure 1). t-distributed stochastic neighbour embedding (t-SNE) is a method to 

visualise higher-dimension data by reducing it to two or three dimensions. 

 

 

 

Figure S2: Location of the 507 cities used in this study. 

 

 

 

 

 

 

Box S3: Graph neural network 
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Starting with the list of the largest cities in the world, taken from the 2015 United Nations’ World Urbanization 

Prospects report 16, Thompson et al. (2020) 6 classified 1692 cities into types based on urban design characteristics and 

the associations of these types to road transport injury. This study and Wijnands et al. (2022) 17 also used this list as 

a starting point and collected data (OSM data (Box S3) and pollution data (below)), to maximise the coverage of as 

many of these cities as possible. 

The pollution data used in this study was derived from data generated by Wijnands et al. (2022) 17. That study found 

remote-sensing data to be of insufficient resolution (often 10km) to detect pollution anomalies of NO2, PM2.5, PM10, 
and O3 during 2020. Instead, ground-based observations were collected from as many locations across approximately 
900 cities, supplied by the environmental protection agencies for 132 countries. Using city-level daily averages of 
hourly pollution observations from 2015-2019, combined with ERA518 weather observations for this same period, 

individual pollutant and city specific XGBoost models were trained and validated as suitable to predict daily air 

pollution levels in each city. Cities with less than 365 training samples over 2015-2020 and less than 330 measurements 

in 2020 were not included in the set of 900 cities. Features selected for the model training include air temperature 

on day t and days t-3, 2, and 1, net solar radiation on day t and days t-3, 2, and 1, total precipitation on day t and 

sum of days t-3, 2, and 1, wind speed on day t, wind direction on day t, leaf area index on day t, and year as well as 

the daily pollutant levels. Excluded features included day of week and day of year, so that those variables could be 

examined in the later analysis. The resulting models could account for seasonal and long-term trends as well as daily 

conditions and anomalies can be attributed to mobility restrictions and how they contribute to pollution levels. Using 

2020 weather observations, 2020 pollution levels in the absence of a pandemic (counterfactual business as usual) were 

predicted and anomalies calculated. 

Apple 19 and Google 20 provided mobility indexes in 2020. Apple’s index calculates differences in map requests for 

modes of walking, driving, or public transit over a January 2020 baseline provided as a ratio. Google generated an 

index using phone-tracking-based changes in mobility across several types of locations, including retail and recreation, 

grocery stores and pharmacies, parks, public transit stations, workplaces, and private residences. These daily indexes 

were linked to the 507 cities with available air pollution data with changes representing percentage differences in 

attendance from a 5-week pre-pandemic baseline from January 3rd to February 6th, 202021. 

Google’s COVID-19 Open Data repository 22 provides data for daily COVID-19 cases using a consistent set of region 

keys. Daily values were linked to the 507 cities when city case data was available, matching country-level to cities 

when city-level data was unavailable. This data was curated by Wahltinez et al. (2020) 23, retrieved directly from the 

relevant authorities (e.g., departments of health within countries). 

 

Box S4: Air pollution and city mobility changes during COVID-19 
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Table S1: Relative health risks (and 95% confidence interval) associated with air pollution reductions across continents and 

phases. Numbers >1 indicate increased health risks. 

 
Region Early Phase Mid Phase Recovery Phase 

Mean NO2 anomaly(ppb) : Estimated Relative Health Risks Due to NO2 (All-Cause Mortality) (Lower – Upper bound) 

Africa 1.86 : 1.011 (1.007 – 1.015) 0.72 : 1.004 (1.003 – 1.006) -0.28 : 0.998 (0.999 – 0.998) 

Asia -4.66 : 0.972 (0.981 – 0.963) -2 : 0.988 (0.992 – 0.984) -1.58 : 0.991 (0.994 – 0.987) 

Europe -2.81 : 0.983 (0.989 – 0.978) -3.31 : 0.98 (0.987 – 0.974) -2.5 : 0.985 (0.99 – 0.98) 

North America -0.48 : 0.997 (0.998 – 0.996) -1.29 : 0.992 (0.995 – 0.99) -0.09 : 0.999 (1 – 0.999) 

Oceania -0.22 : 0.999 (0.999 – 0.998) -3.04 : 0.982 (0.988 – 0.976) -2.72 : 0.984 (0.989 – 0.978) 

South America -1.23 : 0.993 (0.995 – 0.99) -2.77 : 0.983 (0.989 – 0.978) -1.39 : 0.992 (0.994 – 0.989) 

Overall -3.72 : 0.978 (0.985 – 0.97) -2.15 : 0.987 (0.991 – 0.983) -1.58 : 0.991 (0.994 – 0.987) 

Mean NO2 anomaly(ppb) : Estimated Relative Health Risks Due to NO2 (Respiratory Disease) (Lower – Upper bound) 

Africa 1.86 : 1.009 (1.004 – 1.015) 0.72 : 1.004 (1.001 – 1.006) -0.28 : 0.999 (0.999 – 0.998) 

Asia -4.66 : 0.977 (0.991 – 0.963) -2 : 0.99 (0.996 – 0.984) -1.58 : 0.992 (0.997 – 0.987) 

Europe -2.81 : 0.986 (0.994 – 0.978) -3.31 : 0.983 (0.993 – 0.974) -2.5 : 0.988 (0.995 – 0.98) 

North America -0.48 : 0.998 (0.999 – 0.996) -1.29 : 0.994 (0.997 – 0.99) -0.09 : 1 (1 – 0.999) 

Oceania -0.22 : 0.999 (1 – 0.998) -3.04 : 0.985 (0.994 – 0.976) -2.72 : 0.986 (0.995 – 0.978) 

South America -1.23 : 0.994 (0.998 – 0.99) -2.77 : 0.986 (0.994 – 0.978) -1.39 : 0.993 (0.997 – 0.989) 

Overall -3.72 : 0.981 (0.993 – 0.97) -2.15 : 0.989 (0.996 – 0.983) -1.58 : 0.992 (0.997 – 0.987) 

Mean NO2 anomaly(ppb) : Estimated Relative Health Risks Due to NO2 (Cardiovascular Disease) (Lower – Upper bound) 

Africa 1.86 : 1.02 (1.013 – 1.03) 0.72 : 1.008 (1.005 – 1.012) -0.28 : 0.997 (0.998 – 0.996) 

Asia -4.66 : 0.949 (0.967 – 0.925) -2 : 0.978 (0.986 – 0.968) -1.58 : 0.983 (0.989 – 0.975) 

Europe -2.81 : 0.969 (0.98 – 0.955) -3.31 : 0.964 (0.977 – 0.947) -2.5 : 0.972 (0.982 – 0.96) 

North America -0.48 : 0.995 (0.997 – 0.992) -1.29 : 0.986 (0.991 – 0.979) -0.09 : 0.999 (0.999 – 0.999) 

Oceania -0.22 : 0.998 (0.998 – 0.996) -3.04 : 0.967 (0.979 – 0.951) -2.72 : 0.97 (0.981 – 0.956) 

South America -1.23 : 0.986 (0.991 – 0.98) -2.77 : 0.97 (0.981 – 0.956) -1.39 : 0.985 (0.99 – 0.978) 

Overall -3.72 : 0.959 (0.974 – 0.94) -2.15 : 0.976 (0.985 – 0.966) -1.58 : 0.983 (0.989 – 0.975) 

Mean PM2.5 anomaly(µg/m3) : Estimated Relative Health Risks Due to PM2.5 (All-Cause Mortality) (Lower – Upper bound) 

Africa -1 : 0.98 (0.986 – 0.974) -4.1 : 0.917 (0.942 – 0.892) -4.92 : 0.901 (0.931 – 0.871) 

Asia -13.18 : 0.734 (0.814 – 0.653) -3.63 : 0.927 (0.949 – 0.905) -5.99 : 0.879 (0.916 – 0.842) 

Europe -1.49 : 0.97 (0.979 – 0.961) -1.76 : 0.964 (0.975 – 0.954) -0.76 : 0.985 (0.989 – 0.98) 

North America -0.61 : 0.988 (0.991 – 0.984) -0.27 : 0.995 (0.996 – 0.993) 2.47 : 1.05 (1.035 – 1.065) 

Oceania -1.04 : 0.979 (0.985 – 0.973) -0.93 : 0.981 (0.987 – 0.976) -2.22 : 0.955 (0.969 – 0.942) 

South America -0.74 : 0.985 (0.99 – 0.981) -1.73 : 0.965 (0.976 – 0.955) -0.15 : 0.997 (0.998 – 0.996) 

Overall -9.35 : 0.811 (0.868 – 0.754) -2.89 : 0.942 (0.959 – 0.924) -4.04 : 0.918 (0.943 – 0.894) 

Mean PM2.5 anomaly(µg/m3) : Estimated Relative Health Risks Due to PM2.5 (IHD Mortality) (Lower – Upper bound) 

Africa -1 : 1 (1 – 1) -4.1 : 0.999 (1 – 0.998) -4.92 : 0.999 (1 – 0.998) 

Asia -13.18 : 0.997 (0.999 – 0.995) -3.63 : 0.999 (1 – 0.999) -5.99 : 0.999 (0.999 – 0.998) 

Europe -1.49 : 1 (1 – 0.999) -1.76 : 1 (1 – 0.999) -0.76 : 1 (1 – 1) 

North America -0.61 : 1 (1 – 1) -0.27 : 1 (1 – 1) 2.47 : 1.001 (1 – 1.001) 

Oceania -1.04 : 1 (1 – 1) -0.93 : 1 (1 – 1) -2.22 : 0.999 (1 – 0.999) 

South America -0.74 : 1 (1 – 1) -1.73 : 1 (1 – 0.999) -0.15 : 1 (1 – 1) 

Overall -9.35 : 0.998 (0.999 – 0.996) -2.89 : 0.999 (1 – 0.999) -4.04 : 0.999 (1 – 0.998) 

Mean PM2.5 anomaly(µg/m3) : Estimated Relative Health Risks Due to PM2.5 (Asthma) (Lower – Upper bound) 

Africa -1 : 0.95 (0.98 – 0.93) -4.1 : 0.795 (0.918 – 0.713) -4.92 : 0.754 (0.902 – 0.656) 

Asia -13.18 : 0.341 (0.736 – 0.077) -3.63 : 0.818 (0.927 – 0.746) -5.99 : 0.7 (0.88 – 0.581) 

Europe -1.49 : 0.926 (0.97 – 0.896) -1.76 : 0.912 (0.965 – 0.877) -0.76 : 0.962 (0.985 – 0.947) 

North America -0.61 : 0.97 (0.988 – 0.957) -0.27 : 0.986 (0.995 – 0.981) 2.47 : 1.124 (1.049 – 1.173) 

Oceania -1.04 : 0.948 (0.979 – 0.927) -0.93 : 0.954 (0.981 – 0.935) -2.22 : 0.889 (0.956 – 0.845) 

South America -0.74 : 0.963 (0.985 – 0.948) -1.73 : 0.914 (0.965 – 0.879) -0.15 : 0.992 (0.997 – 0.99) 

Overall -9.35 : 0.532 (0.813 – 0.346) -2.89 : 0.855 (0.942 – 0.798) -4.04 : 0.798 (0.919 – 0.717) 

Mean PM2.5 anomaly(µg/m3) : Estimated Relative Health Risks Due to PM2.5 (IHD Morbidity) (Lower – Upper bound) 

Africa -1 : 1 (1 – 1) -4.1 : 0.999 (0.999 – 0.999) -4.92 : 0.999 (0.999 – 0.998) 

Asia -13.18 : 0.996 (0.997 – 0.996) -3.63 : 0.999 (0.999 – 0.999) -5.99 : 0.998 (0.999 – 0.998) 

Europe -1.49 : 1 (1 – 1) -1.76 : 1 (1 – 0.999) -0.76 : 1 (1 – 1) 

North America -0.61 : 1 (1 – 1) -0.27 : 1 (1 – 1) 2.47 : 1.001 (1.001 – 1.001) 

Oceania -1.04 : 1 (1 – 1) -0.93 : 1 (1 – 1) -2.22 : 0.999 (1 – 0.999) 

South America -0.74 : 1 (1 – 1) -1.73 : 1 (1 – 0.999) -0.15 : 1 (1 – 1) 

Overall -9.35 : 0.997 (0.998 – 0.997) -2.89 : 0.999 (0.999 – 0.999) -4.04 : 0.999 (0.999 – 0.999) 
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Figure S5: An overview of observed modal shift from public transit to private motor vehicles observed during 2020 for all 

analysed cities highlighting an increased reliance on private vehicle use over public transit during the course of the COVID-

19 pandemic. Values >0 indicate a proportional replacement of public transit trips to private vehicles for individual cities in 

comparison to pre-pandemic conditions. 
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Figure S6: Nine global city design types identified in Thompson et al. (2020) 6 for the 507 cities used in this study. City 

locations and grid references correspond to those in Figure 1 

. 
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Figure S7: Mean reported COVID-19 cases per 100,000 population across continents in 2020 for the Early, Mid-Crisis, 

and Recovery pandemic phases with error bars representing standard deviations across countries within regions. 

 

 

 

 

 

 

 

 

Figure S8: Changes in total road traffic fatalities among the 43 member countries contributing to the International Traffic 

Safety Data and Analysis Group (IRTAD) showing a post-pandemic (2020-2021) rebound (figure adapted from 24). 
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Figure S9: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with 

insufficient data in Africa. Text annotations show proportions of total (in percents) for each country. 

 

 

 

 

 

 

 

 

 

 

 

Figure S10: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with 

insufficient data in Asia. Text annotations show proportions of total (in percents) for each country. 
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Figure S11: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with 

insufficient data in Europe. Text annotations show proportions of total (in percents) for each country. 

 

 

 

 

 

 

 

 

 

 

 

Figure S12: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with 

insufficient data in North America. Text annotations show proportions of total (in percents) for each country. 
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Figure S13: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with 

insufficient data in Oceania. Text annotations show proportions of total (in percents) for each country. 

 

 

 

 

 

 

 

 

 

 

Figure S14: Number of the largest 1632 global cities in countries and the number of cities after excluding cities with 

insufficient data in South America. Text annotations show proportions of total (in percents) for each country. 
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