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In response to the COVID-19 pandemic, most countries implemented public health ordinances that resulted in
restricted mobility and a resultant change in air quality. This has provided an opportunity to quantify the extent to
which carbon-based transport and industrial activity affect air quality. In this study, confounding factors were
disentangled for a direct comparison of pandemic-related reductions in absolute pollutions levels, globally. The
non-linear relationships between atmospheric processes and daily ground-level NOy, PM1g, PMy 5 and O3
measurements were captured in city- and pollutant-specific XGBoost models for over 700 cities, adjusting for
weather, seasonality and trends. City-level modelling allowed adaptation to the distinct topography, urban
morphology, climate and atmospheric conditions for each city, individually, as the weather variables that were most
predictive varied across cities. Pollution forecasts for 2020 in absence of a pandemic were generated based on
weather and formed an ensemble for country-level pollution reductions. Findings were robust to modelling
assumptions and consistent with various published case studies. NO2 reduced most in China, Europe and India,
following severe government restrictions as part of the initial lockdowns. Reductions were highly correlated with
changes in mobility levels, especially trips to transit stations, workplaces, retail and recreation venues. Further,
NO; did not fully revert to pre-pandemic levels in 2020. Ambient PM; 5 pollution, which has severe adverse health
consequences, reduced most in China and India. Increased O3 levels during initial lockdowns have been
documented widely. However, our analyses found a subsequent reduction in O3 for many countries below what was
expected based on meteorological conditions during summer months (e.g., China, United Kingdom, France,
Germany, Poland, Turkey). The effects in periods with high O3 levels are especially important for the development
of effective mitigation strategies to improve health outcomes.

Wijnands, Jasper S., Nice, Kerry A., Seneviratne, Sachith, Thompson, Jason and Stevenson, Mark (2022) The
impact of the COVID-19 pandemic on air pollution: A global assessment using machine learning techniques,
Atmospheric Pollution Research, 13(6), p. 101438. doi: 10.1016/j.apr.2022.101438.



Pollution modelling process overview
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Combining ERAb weather data with ground level pollution data,
creating pollutant and city specific XGBoost model for 700 cities.
Calculate 2020 pollution anomalies in the absence of the
COVID-19 pandemic.



Data sou Weather and ground level pollution

Beijing past 103 months daily average AQI
Data Sources
Beijing Environmental Protection Monitoring Center (At AP RN L)

Py Plisg 03 NO, 50, co

R Y

Daily ground Ievel NOz, PMig, PM2y 5 and 03 for 132 countrles from AQICN.

ERAS January 2016, Mean Sproad in Temperature

Hourly ERA5 weather (2m air temperature, net solar radiation, total precipitation, mean wind speed, mean wind
direction, mean leaf area index). 2015-2019 for model training, 2020 for validation and analysis.



XGBoost hyperparameter tuning, selected features for

XGBoost models

Grid search to tune XGBoost hyperparameters that influence its learning process (number and length of decision
trees, samples required for single node, etc).

Table 1

Initial and reduced hyperparameter sets for grid search.

Hyperparameter Initial set Final set

" {0.01, 0.05, 0.10} {0.01, 0.05}
o {2,4,5,6, 8,10} {5, 6, 8)

7 {1, 3,5, 7} {5, 7}

Py {0.5, 0.6, 0.7, 0.8, 1} {0.5, 0.6}
o {0.8, 1} 1

Final selection of features included in XGBoost models, including air temperature on day, mean air temperature of
previous 3 days, total precipitation on day and sum of previous 3 days, etc. Note, day of week not included to allow
later mobility reduction analysis.

Table 2
Selected features for XGBoost models.
Variable Description
T Air temperature at 2 m altitude, day r
T Air temperature at 2 m altitude, mean of days 1-3, 1-2, -1
s Net solar radiation at the surface, day
s Net solar radiation at the surface, mean of days -3, -2, -1
P Total precipitation, day 1
P Total precipitation, sum of days =3, 1=2, =1

Wind speed, day 1

® Wind direction, day
L Leaf area index of vegetation, day r
Y Year of observation

Calibrated models for individual cities and pollutants that incorporate weather patterns, pollution seasonal trends,
and long term pollution trends. Can predict 2020 pollution levels (in absence of pandemic).



2020 forecast pollution vs actual

Actual (black) and forecasted (blue) pollution levels
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@ Large February NO, reductions in China resulting from lockdowns.
@ Aug 2020 Belgium heatwave accurately reflected through increased PMy levels.
@ Temperature influence on pollution: seasonal trends of PM5 5 in Mongolia from winter heating.



Unexplained NO,, PM, 5, and O3 across cities, stringency

of COVID-19 restrictions, and mobility patterns from
Google mobility data.

Large reductions in NOj in most places across the first few months of 2020, largely returning to normal levels
afterwards. PMy 5 reductions in many places across 2020. O3 increases in the first half of 2020 (due to NO;
reductions) but below normal levels mid-year.



Correlations between mobility and unexplained NO,,

computed per country from mid-February to mid-April

Country ‘Maximum n Transit Workplaces Retail and Grocery and Parks Residential
stringency stations recreation pharmacy
Croatia %63 %6
Colombia 8.0 61
Serbia 1000 61
Denmark 61
Bosnia and Herzegovina 61 o 89 88
tsracl 177
Finland 122
Bolivia %
Indonesia 61
Spain 693
Romania 183
Hungary 6l
Belgium 60
Austria 61
Portgal 122
France 1213
New Zealand 122
Switzerland 181
taly 1085
Caech Republic 94
ina 427
Brazil 19
Germany 1303
Ircland 28
Estonia 61
South Africa 71
Vietnam 108
United Kingdom
Poland
Bulgaria
Mongolia
United States
Indi
Acgentina

Japan 454
Canada 745
Netherlands 7956
Mexico 2.4
Thailand 769
Turkey 7758
Slovakia w0
Suweden 618
South Korea w4 003 042

Many countries show high correlations between journeys to workplaces and NO3
reductions.



Robustness of results, comparison to other modelling

approaches

Actual (black), XGBoost (blue), linear regression (red), Gamma GLM (orange), random forest (light blue) and time
series (green) forecasts across 2020.
(a) NOy in Urumgi, China; (b) NOy in Santiago, Chile; and (c) PMjg in Pune, India.

MAE of forecasts during the first two weeks of January 2020, for different modelling

approaches.
Time series Linear model Gamma GLM Random forest XGBoost
NO; (ppb) 5.45 5.01 519 4.40 418
PM,, (pg/m’) 28.02 21.76 21.78 2178 21.09
PMy 5 (pg/m?) 20,01 16.69 17.96 16.58 16.68
0; (pph) 6.68 7.52 a.20 6.05 6.28

RMSE of forecasts during the first two weeks of January 2020, for different modelling

approaches.
Time series Linear model Gamma GLM Random forest XGBoost
NO, (ppb) 654 595 6.47 5.37 5.13
' PM,, (pg/m’) 34.07 26.81 27.89 26.50 2618
i PMys (ug/m') 24.44 2120 24.00 2065 21.02
i 1 ’,‘r o, (ppb) B.08 4.93 972 7.37 7.60
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All methods captured seasonal pollution patterns of cities.
XGBoost generally obtained best out-of-sample performance compared to other modelling approaches.



Comparison of results to other studies that quantified air

pollution changes in 2020

Ontario, Canada 22-Mar-25-Apr NO, -2 ppb 1.9 ppb
Ontario, Canada 22-Mar-25-Apr PM; s 0 pg/m® —0.6 pg/m®
Ontario, Canada 22-Mar-25-Apr [+ 3 -1 ppb 1.1 ppb
United States 1-Apr-30-Apr NO, -2.02, 1.3 ppl —2.5 ppb
United States 1-Apr-30-Apr PM, 0.05, 028 pg/m* —0.1 pgsm?®
United States 8-Jan-12-Mar NOy -1.17 ppb —0.6 pph
United States 13-Mar-21-Apr NO, -4.76 ppb —2.9 pph
United States B-Jan—12-Mar PM, —0.29 pg/m’ —0.6 pg/m®
United States 13-Mar-21-Apr PM, —0.28 pg/m’ —0.1 pg/m?
Los Angeles, USA 1-Mar-31-Mar PM. -2.99 pg/m’ —1.9 pg/m®
New York, USA 1-Mar—-31-Mar PM, -2.03 pg/m’ —4.5 pg/m®
Paris, France 1-Mar—31-Mar PM, ~2.56 pg/m’ 2.4 pgim®
Sao Paulo, Brazil 1-Mar-31-Mar PM, -0.54 pg/m’ —0.3 pg/m?
Memphis, USA 25-Mar—4-May PM. 0.3 pg/m’ 0.1 pg/m’
Memphis, USA 25-Mar—4-May o, ~1.9 ppb 1.6 ppb
Europe 15-Mar-30-Apr NO, -9.2, —13.1 pg/m** =107 pg/
Europe 15-Mar-30-Apr 0, 6.2, 0.1 pg/m'’ 4.5 pg/m’
Spain 14-Mar—29-Mar NO, -3.4, —5.6 ppb’ —5.9 ppb
Petetin ot = Spain 30-Mar-9-Apr NO, ~5.2, —7.4 ppb —6.8 ppb
Petetin et al. Spain 10-Apr-23-Apr NO, —-4.3, —6.8 pplr —6.1 pph
United Kingdom 10-Mar-10-Apr NO, —4.16, —7.58 pg/m* —8.1 pg/m®
United Kingdom 10-Mar-10-Apr PM; 4.79, 5 pg/m™ -1.7 pg/m®
United Kingdom 10-Mar-10-Apr [+ 3 6.96, 7.39 pg/m* 5.8 pg/m’
} Pittshurgh, USA 14-Mar—30-Apr PM, ~28 pg/m? —1.7 pg/m?
Venter et al. 20 China 24-Jan—15-May PM; -16 pg/m’ —9.2 pg/m®
Venter e India 26.Feb-15-May PM, -15 pgsm’ -15.6 pg/m®

zh Wuhan, China 23-Jan-22-Feh 11)'12:ﬁ -24.8 pg/m’ —28.9 pg/m’



Global anomalies: PM, 5 on 9 February 2020
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Reductions of PM5 5 in China

PM, 5 anomalies on 2020-02-09



Global anomalies: NO, on 4 April 2020

NO, anomalies on 2020-04-04
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Reductions of NO, in Europe



Global anomalies: O3 on 30 January 2020

O3 anomalies on 2020-01-30
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Increases of O3 in China.



Unexamined questions
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e Fig. S5. Ground-level pollutant time series and lockdown dates. Daily time series of ground-
fivmetd N ‘w/v"{ level NOz, Os and PMzs anomalies (observed subtract benchmark model predicted values) per
Viginia Washinglon

fitted to indicate moving averages. Lines for each pollutant are plotted on the same Y-axis and
thus pollutants with very small temporal variation from the benchmark appear flat (e.g. Os for
Australia). Please consult interactive web application for individual plots:

https://nina. i i lluti

Veticnis Wanain | Wyosg country with dates of lockdown indicated by vertical lines. Smoothed loess regression lines are

P

Pollution anomalies varied globally under different stringencies and
differing transport systems.



Unexamined questions

Mobility for cityl Tokyo, Japan Mobility for city10 New York-Newark, United States of
100 America
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How do pollution levels vary in different cities with different
mobility profiles? (Top) Google mobility showing locations,
(bottom) Apple mobility showing transport mode map requests.



Lancet clusters vs NO2 anomalies, Jan-Jun 2020



Lancet clusters vs O3 anomalies, Jan-Jun 2020



Lancet clusters vs PM10 anomalies, Jan-Jun 2020



Lancet clusters vs PM2.5 anomalies, Jan-Jun 2020



Paper proposal

What urban design characteristics did each
city have to work with?

What limitations and affordances did these
features offer them?

Which cities demonstrated the optimal
combination of outcomes across Mobility
(e.g., economic activity), mode choice (e.g.,
pollution and risk exposure), and infectious
disease outcomes at time t?

Health
Outcomes

Build on 2-dimensional understanding of
trade-off between mobility / liberties and
outcomes from Oliu-Barton, M., etal. (2021).
"SARS-CoV-2 elimination, not mitigation,
creates best outcomes for health, the
economy, and civil liberties." The Lancet
397(10291): 2234-2236.




