Modelling the future health, equity, economic and global impacts of pandemic recovery actions for urban mobility

Dr. Kerry A. Nice A. Prof Jason Thompson

Transport, Health, and Urban Design Research Lab, Melbourne School of Design University of Melbourne

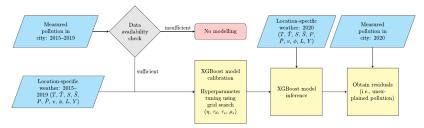
August 24, 2022

Building on:

In response to the COVID-19 pandemic, most countries implemented public health ordinances that resulted in restricted mobility and a resultant change in air quality. This has provided an opportunity to quantify the extent to which carbon-based transport and industrial activity affect air guality. In this study, confounding factors were disentangled for a direct comparison of pandemic-related reductions in absolute pollutions levels, globally. The non-linear relationships between atmospheric processes and daily ground-level NO₂, PM₁₀, PM_{2.5} and O₃ measurements were captured in city- and pollutant-specific XGBoost models for over 700 cities, adjusting for weather, seasonality and trends. City-level modelling allowed adaptation to the distinct topography, urban morphology, climate and atmospheric conditions for each city, individually, as the weather variables that were most predictive varied across cities. Pollution forecasts for 2020 in absence of a pandemic were generated based on weather and formed an ensemble for country-level pollution reductions. Findings were robust to modelling assumptions and consistent with various published case studies. NO2 reduced most in China, Europe and India, following severe government restrictions as part of the initial lockdowns. Reductions were highly correlated with changes in mobility levels, especially trips to transit stations, workplaces, retail and recreation venues. Further, NO2 did not fully revert to pre-pandemic levels in 2020. Ambient PM2 5 pollution, which has severe adverse health consequences, reduced most in China and India. Increased O3 levels during initial lockdowns have been documented widely. However, our analyses found a subsequent reduction in O₃ for many countries below what was expected based on meteorological conditions during summer months (e.g., China, United Kingdom, France, Germany, Poland, Turkey). The effects in periods with high O₃ levels are especially important for the development of effective mitigation strategies to improve health outcomes.

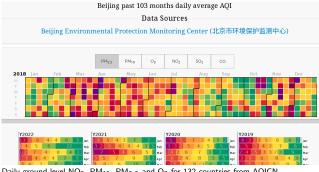
Wijnands, Jasper S., Nice, Kerry A., Seneviratne, Sachith, Thompson, Jason and Stevenson, Mark (2022) The impact of the COVID-19 pandemic on air pollution: A global assessment using machine learning techniques, Atmospheric Pollution Research, 13(6), p. 101438. doi: 10.1016/j.apr.2022.101438.

Pollution modelling process overview

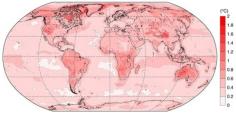


Combining ERA5 weather data with ground level pollution data, creating pollutant and city specific XGBoost model for 700 cities. Calculate 2020 pollution anomalies in the absence of the COVID-19 pandemic.

Data sources: Weather and ground level pollution



Daily ground level NO₂, PM₁₀, PM_{2.5} and O₃ for 132 countries from AQICN. ERA5 January 2016, Mean Spread in Temperature



Hourly ERA5 weather (2m air temperature, net solar radiation, total precipitation, mean wind speed, mean wind direction, mean leaf area index). 2015-2019 for model training, 2020 for validation and analysis.

XGBoost hyperparameter tuning, selected features for XGBoost models

Grid search to tune XGBoost hyperparameters that influence its learning process (number and length of decision trees, samples required for single node, etc).

Table 1

Initial and reduced hyperparameter sets for grid search

Hyperparameter	Initial set	Final set
η	{0.01, 0.05, 0.10}	{0.01, 0.05}
τ_d	{2, 4, 5, 6, 8, 10}	{5, 6, 8}
τ	{1, 3, 5, 7}	{5, 7}
ρ_s	$\{0.5, 0.6, 0.7, 0.8, 1\}$	{0.5, 0.6}
Pr	{0.8, 1}	{1}

Final selection of features included in XGBoost models, including air temperature on day, mean air temperature of previous 3 days, total precipitation on day and sum of previous 3 days, etc. Note, day of week not included to allow later mobility reduction analysis.

Table 2

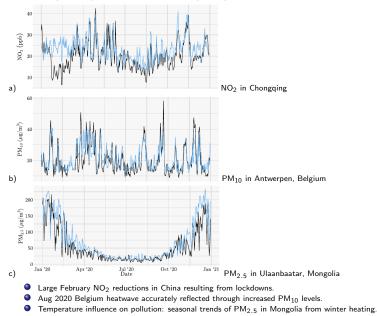
Selected features for XGBoost models.

Variable	Description			
Т	Air temperature at 2 m altitude, day t			
Ť	Air temperature at 2 m altitude, mean of days t-3, t-2, t-1			
S	Net solar radiation at the surface, day 1			
Ŝ	Net solar radiation at the surface, mean of days t-3, t-2, t-1			
Р	Total precipitation, day t			
\bar{P}	Total precipitation, sum of days t-3, t-2, t-1			
v	Wind speed, day t			
φ	Wind direction, day t			
L	Leaf area index of vegetation, day t			
Y	Year of observation			

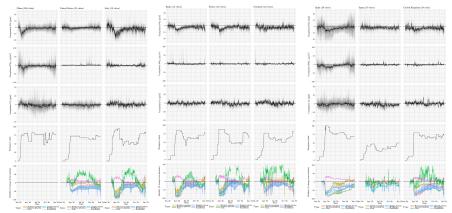
Calibrated models for individual cities and pollutants that incorporate weather patterns, pollution seasonal trends, and long term pollution trends. Can predict 2020 pollution levels (in absence of pandemic).

2020 forecast pollution vs actual

Actual (black) and forecasted (blue) pollution levels



Unexplained NO₂, $PM_{2.5}$, and O_3 across cities, stringency of COVID-19 restrictions, and mobility patterns from Google mobility data.



Large reductions in NO₂ in most places across the first few months of 2020, largely returning to normal levels afterwards. $PM_{2,5}$ reductions in many places across 2020. O₃ increases in the first half of 2020 (due to NO₂ reductions) but below normal levels mid-year.

Correlations between mobility and unexplained NO₂, computed per country from mid-February to mid-April

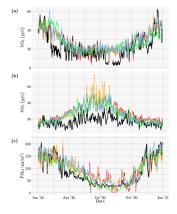
Country	Maximum	n	Transit	Workplaces	Retail and	Grocery and	Parks	Residential
	stringency		stations		recreation	pharmacy		
Croatia	96.3	46	0.98	0.97	0.98	0.94	0.91	-0.97
Colombia	88.0	61	0.97	0.97	0.97	0.94	0.97	-0.97
Serbia	100.0	61	0.96	0.96	0.95	0.94	0.92	-0.96
Denmark	72.2	61	0.92	0.91	0.92	0.84	-0.60	-0.92
Bosnia and Herzegovina	92.6	61	0.90	0.89	0.88	0.84	0.83	-0.90
Israel	94.4	177	0.86	0.82	0.82	0.80	0.75	-0.84
Finland	67.6	122	0.80	0.78	0.76	0.80	-0.48	-0.81
Bolivia	84.3	36	0.78	0.78	0.79	0.78	0.77	-0.78
Indonesia	71.8	61	0.72	0.79	0.78	0.74	0.72	-0.81
Spain	85.2	693	0.76	0.77	0.75	0.73	0.74	-0.80
Romania	87.0	183	0.77	0.76	0.76	0.74	0.75	-0.77
Hungary	76.9	61	0.73	0.75	0.74	0.84	0.77	-0.75
Belgium	81.5	60	0.76	0.73	0.76	0.74	0.57	-0.75
Austria	81.5	61	0.73	0.72	0.72	0.69	0.73	-0.73
Portugal	88.0	122	0.68	0.71	0.68	0.74	0.67	-0.70
France	88.0	1213	0.70	0.72	0.69	0.68	0.69	-0.72
New Zealand	96.3	122	0.69	0.69	0.72	0.74	0.66	-0.66
Switzerland	73.2	181	0.73	0.64	0.71	0.66	0.21	-0.68
Italy	93.5	1085	0.66	0.70	0.67	0.69	0.66	-0.71
Czech Republic	82.4	94	0.59	0.60	0.55	0.64	0.25	-0.58
China	81.9	427	0.45	0.59	0.51	0.70	0.29	-0.69
Brazil	74.5	329	0.45	0.62	0.57	0.51	0.63	-0.62
Germany	76.9	1303	0.54	0.57	0.58	0.65	-0.06	-0.62
Ireland	90.7	28	0.54	0.58	0.59	0.59	0.57	-0.57
Estonia	90.7 77.8	28 61	0.56	0.58	0.59	0.59	0.57	-0.57
Estonia South Africa	77.8	271	0.61	0.52	0.59	0.57	0.49	-0.59
South Africa Vietnam		2/1 108		0.58		0.51	0.49	
	96.3	1387	0.66	0.46	0.57	0.67		-0.42
United Kingdom	79.6		0.57		0.55		0.37	-0.59
Norway	79.6	61	0.56	0.57	0.57	0.48	-0.34	-0.55
Poland	83.3	488	0.50	0.56	0.49	0.54	0.49	-0.52
Bulgaria	73.2	105	0.46	0.41	0.41	0.28	0.31	-0.40
Mongolia	65.7	61	0.42	0.23	0.46	0.32	0.20	-0.35
United States	72.7	3961	0.34	0.36	0.37	0.20	0.02	-0.37
India	100.0	1594	0.30	0.32	0.30	0.32	0.29	-0.33
Argentina	100.0	94	0.32	0.28	0.30	0.35	0.30	-0.30
Chile	73.2	183	0.34	0.34	0.27	0.17	0.15	-0.37
North Macedonia	-	61	0.25	0.30	0.25	0.31	0.11	-0.24
Japan	45.4	1038	0.41	0.29	0.34	-0.06	-0.06	-0.35
Canada	74.5	755	0.29	0.25	0.27	0.19	0.22	-0.27
Netherlands	79.6	305	0.22	0.24	0.30	0.19	0.14	-0.26
Mexico	82.4	781	0.16	0.16	0.18	0.27	0.21	-0.14
Thailand	76.9	549	0.16	0.16	0.17	0.15	0.17	-0.17
Turkey	77.8	774	0.22	0.12	0.10	0.07	0.15	-0.10
Slovakia	87.0	61	0.09	0.11	0.11	0.15	0.30	-0.10
Sweden	64.8	122	0.08	0.05	0.02	0.03	0.04	-0.06
South Korea	82.4	1464	-0.05	0.21	-0.03	-0.42	-0.42	-0.07

Many countries show high correlations between journeys to workplaces and NO_2 reductions.

Robustness of results, comparison to other modelling approaches

Actual (black), XGBoost (blue), linear regression (red), Gamma GLM (orange), random forest (light blue) and time series (green) forecasts across 2020.

(a) NO2 in Urumqi, China; (b) NO2 in Santiago, Chile; and (c) PM10 in Pune, India.



MAE of forecasts during the first two weeks of January 2020, for different modelling approaches.

	Time series	Linear model	Gamma GLM	Random forest	XGBoost
NO2 (ppb)	5.45	5.01	5.19	4.40	4.18
$PM_{10} (\mu g/m^3)$	28.02	21.76	21.78	21.78	21.09
PM2.5 (µg/m3)	20.01	16.69	17.96	16.58	16.68
O ₃ (ppb)	6.68	7.52	8.20	6.05	6.28

RMSE of forecasts during the first two weeks of January 2020, for different modelling approaches,

	Time series	Linear model	Gamma GLM	Random forest	XGBoost
NO2 (ppb)	6.54	5.95	6.47	5.37	5.13
PM10 (µg/m3)	34.07	26.81	27.89	26.50	26.18
PM _{2.5} (µg/m ³)	24.44	21.20	24.09	20.65	21.02
O ₃ (ppb)	8.08	8.93	9.72	7.37	7.60

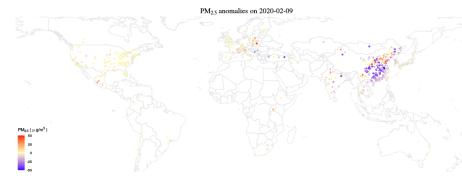
All methods captured seasonal pollution patterns of cities.

XGBoost generally obtained best out-of-sample performance compared to other modelling approaches.

Comparison of results to other studies that quantified air pollution changes in 2020

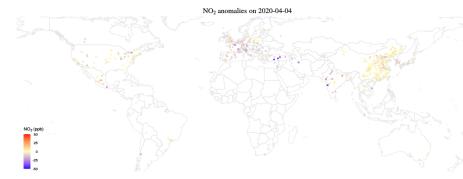
Adams (2020)	Ontario, Canada	22-Mar-25-Apr	NO ₂	-2 ppb	-1.9 ppb
Adams (2020)	Ontario, Canada	22-Mar–25-Apr	PM _{2.5}	0 μg/m ³	-0.6 µg/m ³
Adams (2020)	Ontario, Canada	22-Mar-25-Apr	0,	-1 ppb	1.1 ppb
Archer et al. (2020)	United States	1-Apr-30-Apr	NO ₂	-2.02, -1.3 ppb ^a	-2.5 ppb
Archer et al. (2020)	United States	1-Apr-30-Apr	PM _{2.5}	0.05, 0.28 µg/m ^{3a}	-0.1 µg/m3
Berman and Ebisu (2020)	United States	8-Jan-12-Mar	NO ₂	-1.17 ppb	-0.6 ppb
Berman and Ebisu (2020)	United States	13-Mar–21-Apr	NO ₂	-4.76 ppb	-2.9 ppb
Berman and Ebisu (2020)	United States	8-Jan-12-Mar	PM _{2.5}	-0.29 µg/m ³	-0.6 µg/m3
Berman and Ebisu (2020)	United States	13-Mar–21-Apr	PM _{2.5}	-0.28 µg/m ³	-0.1 µg/m3
Connerton et al. (2020)	Los Angeles, USA	1-Mar-31-Mar	PM _{2.5}	-2.99 µg/m ³	-1.9 µg/m ³
Connerton et al. (2020)	New York, USA	1-Mar-31-Mar	PM ₂₅	-2.03 µg/m ³	-4.5 µg/m ³
Connerton et al. (2020)	Paris, France	1-Mar-31-Mar	PM _{2.5}	-2.56 µg/m ³	-2.4 µg/m3
Connerton et al. (2020)	São Paulo, Brazil	1-Mar-31-Mar	PM2.5	-0.54 µg/m ³	-0.3 µg/m3
Jia et al. (2020)	Memphis, USA	25-Mar-4-May	PM _{2.5}	0.3 µg/m ³	0.1 µg/m3
Jia et al. (2020)	Memphis, USA	25-Mar-4-May	O1	-1.9 ppb	-1.6 ppb
Ordóñez et al. (2020)	Europe	15-Mar-30-Apr	NO ₂	-9.2, -13.1 µg/m ^{3b}	-10.7 µg/m3
Ordóñez et al. (2020)	Europe	15-Mar-30-Apr	O ₃	6.2, 0.1 μg/m ^{3b}	4.5 μg/m ³
Petetin et al. (2020)	Spain	14-Mar-29-Mar	NO ₂	-3.4, -5.6 ppb ^c	-5.9 ppb
Petetin et al. (2020)	Spain	30-Mar-9-Apr	NO ₂	-5.2, -7.4 ppbc	-6.8 ppb
Petetin et al. (2020)	Spain	10-Apr-23-Apr	NO ₂	-4.3, -6.8 ppb ^c	-6.1 ppb
Ropkins and Tate (2021)	United Kingdom	10-Mar-10-Apr	NO ₂	-4.16, -7.58 μg/m ^{3d}	-8.1 µg/m3
Ropkins and Tate (2021)	United Kingdom	10-Mar-10-Apr	PM _{2.5}	4.79, 5 μg/m ^{3d}	-1.7 µg/m ³
Ropkins and Tate (2021)	United Kingdom	10-Mar-10-Apr	O ₃	6.96, 7.39 μg/m ^{3d}	5.8 µg/m ³
Tanzer-Gruener et al. (2020)	Pittsburgh, USA	14-Mar-30-Apr	PM _{2.5}	-2.8 µg/m ³	-1.7 µg/m ³
Venter et al. (2020)	China	24-Jan-15-May	PM2.5	-16 µg/m ³	-9.2 µg/m3
Venter et al. (2020)	India	29-Feb-15-May	PM2.5	-15 µg/m ³	-15.6 µg/m ³
Zheng et al. (2020)	Wuhan, China	23-Jan-22-Feb	PM2.5	-24.8 µg/m ³	-28.9 µg/m3

Global anomalies: PM_{2.5} on 9 February 2020



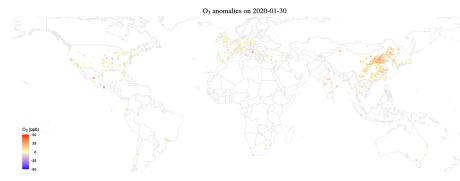
Reductions of $PM_{2.5}$ in China

Global anomalies: NO₂ on 4 April 2020



Reductions of NO₂ in Europe

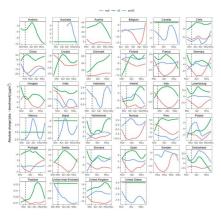
Global anomalies: O₃ on 30 January 2020



Increases of O_3 in China.

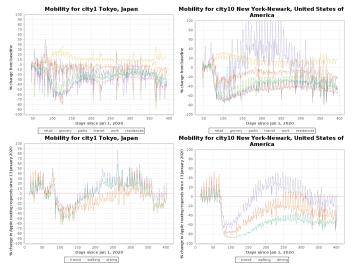
Unexamined questions





Pollution anomalies varied globally under different stringencies and differing transport systems.

Unexamined questions



How do pollution levels vary in different cities with different mobility profiles? (Top) Google mobility showing locations, (bottom) Apple mobility showing transport mode map requests.

Lancet clusters vs NO2 anomalies, Jan-Jun 2020

Lancet clusters vs O3 anomalies, Jan-Jun 2020

Lancet clusters vs PM10 anomalies, Jan-Jun 2020

Lancet clusters vs PM2.5 anomalies, Jan-Jun 2020

Paper proposal

What urban design characteristics did each city have to work with?

What limitations and affordances did these features offer them?

Which cities demonstrated the optimal combination of outcomes across Mobility (e.g., economic activity), mode choice (e.g., pollution and risk exposure), and infectious disease outcomes at time t?

Build on 2-dimensional understanding of trade-off between mobility / liberties and outcomes from Oliu-Barton, M., et al. (2021). "SARS-CoV-2 elimination, not mitigation, creates best outcomes for health, the economy, and civil liberties." <u>The Lancet</u> **397**(10291): 2234-2236.

