Urban greening for improved human thermal comfort

Kerry Nice

CRC for Water Sensitive Cities School of Earth, Atmosphere and Environment Monash University

Research questions

- How effective are storm water harvesting technologies, tree cover, green infrastructure and WSUD in improving urban climates **at a range of scales**?
- What are the key configurations required to reduce temperatures to save lives under heat wave conditions and to enhance human thermal comfort and liveability?

Observations

Modelling

Remote sensing

Urban greening for improved human thermal comfort

2 Key Goals:

- Reduced neighbourhood (local-scale) air temperature
- Improve street (micro-scale)
 human thermal comfort

Coutts et al 2013

© CRC for Water Sensitive Cities 2012

Coutts, Tapper, Beringer, Loughnan, Demuzere (2013)

Heat-health relationships

Tapper, Coutts, Loughnan & Pankhinia (2014)

Heat-Health Background

- Melbourne Heat Threshold • for Excess Deaths in >64 year olds
- Heat-Health outcomes depend on: (
 - Heat Exposure •
 - Vulnerability •

Exposure

Regional climate

Climate change,

Heatwave intensity,

duration, frequency

and seasonality

Adaptive Capacity •

Urban form

UHI, water

space, urban

density, housing

stock.

Ethnicity

Social isolation

Suggested that even a slight temperature reduction (1-2° C) in extreme heat events (i.e. heat mitigation) would be sufficient to save many lives

health and safety

guidelines.

CRC for

Water Sensitive Cities

Tapper, Coutts, Loughnan & Pankhinia (2014)

Threshold Temperatures (Best Predictors of Mortality/Morbidity) for Australia's Capital Cities

Table 6: Threshold temperature derived from analyses of daily all-cause mortality, daily emergency hospital admissions, daily ambulance call-outs or emergency department presentations in Australian capital cities (number of days exceeding the temperature threshold over the record period are in parenthesis)

City	Number	Tmax		Tmin		meanT		AT	
	of days of data		% increase in median		% increase in median		% increase in median		% increase in median
Brisbane Morbidity Mortality	2956 4007	36 (55) 36(58)	2.5–12% 12%	26 (7) 25(11)	2.5% 5%	34 (2) 31(6)	9% 15%	40(25) 40(9)	4–11% 8%
Canberra Morbidity Mortality	2320 4007	37 (33) 33(179)	5–10% 5%	20 (30) 20(43)	5% 2%	28 (28) 28(16)	5-8% 2%	38(11) 41(4)	8-10% 5%
Darwin Morbidity Mortality	1826 4007	36 (4) 37(11)	5% 5%	28 (17) 29(19)	5% 8%	31 (19) 31(94)	7% 3%	35(5) 47(5)	5% 10–20%
Hobart Morbidity Mortality	2953 4007	NA 35(13)	11%	18 (28) 20(5)	5–20% 2%	27 (3) 28(5)	5% 6%	36(5) 37(6)	4–10% 5–20%
Melbourne Morbidity	3287	44 (5)	3%	26 (6)	3% 5%	34 (6)	3%	42(10)	2–3%
Perth Morbidity Mortality	2007 4007	43 (3) 44(3)	14% 30%	26 (4) NA	4%	NA 32(20)	3–10%	43(8) 45(3)	2–5% 10%
Adelaide Morbidity Mortality	3045 4007	NA 42(21)	2–8%	31(4) NA	5%	39(1) 34(2)	24% 8%	NA 43(16)	2–10%
Sydney Morbidity Mortality	4162 4007	41(3) 38(3)	5–38% 2–18%	25(5) 25(3)	4% 5%	31(5) 30(12)	2% 5%	41(3) 37(27)	5% 2–24%

Final report Loughnan, Tapper et al., 2013 SPATIAL VULNERABILITY TO EXTREME HEAT EVENTS IN AUSTRALIAN CAPITAL CITIES. National Climate Change Adaptation Research Facility, Gold Coast, pp146

Human thermal comfort

- Considers multiple microclimate variables
- Determined by a thermal comfort index
- Provides an assessment of heat stress
- Mean radiant temperature important during the day

Loughnan et al

CRC for Water Sensitive Cities

© CRC for Water Sensitive Cities 2012

Trees must be part of the solution

- They provide shade, reducing *mean radiant temperature*
- They access water from deep layers of the soil
- Diversity of species allowing more tailored greening options
- They deliver multiple benefits
- People just 'get' trees

Norton, Coutts	et al (2015)
----------------	--------------

UGI	Green open spaces	Trees	Green roofs	Vertical greening
Shades canyon surfaces?	Yes, if grass rather than concrete	Yes	Shades roof, not internal canyon surfaces	Yes
Shades people?	Yes, if treed	Yes	No, only very intensive green roofs	No
Increases solar reflectivity?	Yes, when grassed	Yes	Yes, if plants healthy	Yes
Evapo-transpirative cooling?	Yes, with water	Yes	Yes, with water when hot	Yes, with water when hot
	No, without water	(unless severe drought)	No, without water	No, without water
Priority locations	 Wide streets with low buildings – both sides Wide streets with tall buildings – sunny side 	 Wide streets, low buildings – both sides Wide streets, tall buildings – sunny side In green open spaces 	 Sun exposed roofs Poor insulated buildings Low, large buildings Dense areas with little available ground space 	 Canyon walls with direct sunlight Narrow or wide canyons where trees are unviable

Summertime WSUD Cooling

Various B3.1/3.2 publications

Street tree cooling

30.2

Coutts, et al (2015)

- Average daytime • air temperature
- 4-12 March 2013
- 29.2 9 consecutive days exceeding 32 °C
 - Differences of up ٠ to 3.1 °C among the seven stations in TRD

ater Sensitive Cities

CRC for

20

5 10

Isolated tree cooling

- Micro-scale cooling from shading
- Transpiration will add to local scale cooling
- Up to 1.2 °C difference at 1.4 metres
- Large improvements in human thermal comfort

- Slightly warmer below canopy at night of up to 0.4 °C
- Radiation trapping and emission below canopy
- Longwave cooling at canopy surface

Coutts et al (2016)

Reduce micro-scale air temperature

Coutts, Livesley, Beringer, Tapper (2015)

- Reductions in air temperature during the day
- Downwind cooling limited: Greening must be distributed widely
- Cooling variable in complex urban environment:
 - Type of greening
 - Urban geometry
 - Meteorology
 - Etc

Motazedian (2015)

10/03:00pm SSW 20

Reduce micro-scale radiant temperature

Mean radiant temperature (model)

Thom, Coutts, Broadbent, Tapper (2016)

CRC for Water Sensitive Cities

Coutts et al (2016)

Land surface temperature (remote sensing)

- Large reductions in daytime Land SURFACE temperature from greening and irrigation
- Large reductions in daytime Mean RADIANT temperature due to shade

Improve human thermal comfort - Streetscape

• Large improvements in daytime human thermal comfort from trees. Critical that trees are present where possible in greening scenarios

Coutts, Livesley, Beringer, Tapper (2015)

Reducing heat-health costs with trees

- Economic benefit of street trees
 City of Monash
- Street trees only (private veg left unchanged)
- Also valued carbon uptake and storage, air quality and stormwater

Figure 4.12: Illustrates the change in temperature ($T_{14:00}$) attributed to three tree cover scenarios: (i) the current tree population, (ii) a 50 % reduction in public trees, and (iii) a 100 % increase in public trees (left axis). $T_{14:00}$ measured at Moorabbin Airport on the four most extreme days of the 2009 heatwave is displayed on the right axis.

Figure 4.13: Illustration of the reduction in predicted mortality (Δ M) during an extreme heat event (left axis). Here canopy cover scenarios are: (i) present tree population, (ii) increased tree population, and (iii) reduced tree population. The associated economic value (\$) is indicated in bars for each scenario (right axis) based on the recommended VSL for Australian policy analysis (\$ 4.2 million) (Australian Government, 2014).

Thom (2015); Thom, Coutts and Tapper (2016)

Green open space cooling

Motazedian, Coutts, Tapper (2016)

© CRC for Water Sensitive Cities 2012

Trees reduce *mean radiant temperature*

Thom, Coutts et al (2016)

Trees improve human thermal comfort

CoMGippScenarios5-4xTrees - CoMGippScenarios3-Trees differences - UTCI 2012-02-24-1500 = added tree, A = added canopy = previous tree, A = previous canopy

Nice, 2016

© CRC for Water Sensitive Cities 2012

Irrigation study at Adelaide Airport

(Ingleton 2017)

Irrigation cooling

Landscape irrigation - Mawson Lakes, Adelaide

Temporal Patterns

Table 1: A description of irrigation scenarios used in this study.

Scenario	Hourly irrigation	Daily irrigation	Water-use (domain)*	Water-use (residential)
	$(L m^{-2} hr^{-1})$	$(L m^{-2} d^{-1})$	$(ML d^{-1})$	$(ML d^{-1})$
24Irr5L	0.21	5	17.6	3.8
24Irr10L	0.42	10	35.1	7.6
24Irr15L	0.63	15	52.7	11.5
24Irr20L	0.83	20	70.2	15.3
24Irr30L	1.25	30	105.3	22.9
Day_6Irr1.25L Night_6Irr1.25L	0.21	1.25	4.4	1.0
Day_6Irr2.5L Night_6Irr2.5L	0.42	2.50	8.8	1.9
Day_6Irr3.75L Night_6Irr3.75L	0.63	3.75	13.2	2.9
Day_6Irr5L Night_6Irr5L	0.83	5.00	17.6	3.8
Day_6Irr7.5L Night_6Irr7.5L	1.25	7.50	26.3	5.7
Day_6Irr10L Night_6Irr10L	1.67	10.0	35.1	7.6
Day_6Irr12.5L Night_6Irr12.5L	2.08	12.5	43.9	9.6
Day_6Irr25L Night_6Irr25L	4.17	25.0	87.8	19.2

day scenarios = 11 am-5 pm

night scenarios = 11 pm-5 am

ML = mega-litres

*note that these simulations are hypothetical and in reality irrigation would be conducted selectively. We irrigated the whole domain to assess the effect of irrigation across the entire suburban environment.

Figure 7: Heatwave average diurnal cooling (with standard deviations) for (a) continuous, (b) day, and (c) night irrigat

- Continuous irrigation average cooling of up to 2.3°C (30L/m2/day)
- Non-linear (20L/m2/day may be optimal)
- Bigger impact on hotter days
- Night irrigation marginally less effective than day irrigation

Figure 8: The mean diurnal cooling on each day of the heatwave for (a) 24Irr20L and (b) Day/Night_6Irr12.5L scenarios.

Landscape irrigation for cooler cities and suburbs – Example from Mawson Lakes, Adelaide

Broadbent, Coutts, Demuzere and Tapper (2017)

- Used an observation-validated SURFEX model to assess impact of irrigation during 2009 heatwave
- A range of irrigation scenarios simulated

Landscape irrigation - Mawson Lakes, Adelaide

case (no irrigation) simulation. The x and y axis are labelled by cell number

24Irr20L

atial representation of the heatwave average (a) 3 pm and (b) 3 am T_a (2 m) across the Mawson Lakes domain for

60

24Irr20L

-0.8

-1.6 -2.4 -3.2

-4.0

-4.8

Modelled Heatwave Temp

24h20L

Cooling

3pm/3am

Spatial Patterns

Significant spatial variation within the domain due to pervious fraction and vegetation type (see left and below)

 For continuous irrigation, more cooling during day than night – LHF especially large

Figure 10: Spatial representation of cooling from Day/Night.6Irr12.5L scenario at (a/c) 3 pm and (b/d) 3 am on Julian day 37. The x and y axis are labelled by cell number.

Broadbent, Courts, Demuzere and Mapper \$2015)tive Cities

SURFEX modelling irrigation schemes

р

⁽Broadbent 2017)

City of Melbourne, 2012

Water and trees

Trees can be extremely beneficial for urban climate BUT:

- They must have full canopies to provide shade
- Be actively transpiring to provide evaporative cooling

A lack of water compromises this (Whitlow and Bassuk, 1988):

- Low soil water availability:
 - High stormwater runoff
 - Drought
 - Water restrictions
 - Reduced infiltration:
 - Hydrophobic soils
 - Compacted soils

City branches out to replace drought-hit trees

Dewi Cooke May 11, 2010

Comments 17

Extreme weather and the ravages of time have left many of Melbourne's trees in need of replacement. *Photo: Justin McManus*

MELBOURNE will look to such countries as Spain, Chile and the US for replacements of thousands of drought-ravaged trees

Passive irrigation of street trees

-O- VPD

Control

0.28

0.24

6

VPD (kPa)

- Evidence of stomatal control on water loss
- Water transport at night
- No clear evidence of benefit of passive irrigation – issues with treatments
- 2015/16 summer???

1-3 Jan 2015

Lintel 0.20 Tree water use (L/m2/hr) 5 Pits 0.16 0.12 3 0.08 2 0.04 0.00 0 -0.04 -1 0 500 1000 1500 2000 100 600 1100 1600 2100 200 700 1200 1700 2200

Coutts, Thom, Szota, Livesley, (2015)

Water use of an isolated tree

Key interventions

- Existing street trees should be protected & maintained
 - Passive and active irrigation in built up areas
 - Maintain healthy canopies for shading
- More trees should be planted
 - Prioritise canopy cover in areas of high solar exposure
 - Highly localised benefit so trees must be distributed
 - Tree species should be diverse
 - Water should be supplied
- 'Right tree, right place'
 - Consider light, water availability, climate, etc

Norton, B. A., Coutts, et al 2015.

Prioritising tree placement

- Wide open streets should be targeted as they are exposed to larger amounts of solar radiation during the day (Norton et al., 2015).
- **East-west oriented streets** were targeted as they are exposed to more solar radiation during the day (Ali-Toudert and Mayer, 2006).
- North facing walls (in the Southern Hemisphere) in east-west streets, and west facing walls to provide shading from the afternoon sun when Ta peaks.
- Trees should be **clustered together** more effective at reducing Tmrt than isolated trees (Streiling and Matzarakis, 2003) and can help protect them from intense radiative loads (Oke, 1988).
- Employ a 'Savanah' type landscape arrangement (as suggested by Spronken-Smith [1994] in relation to urban parks) of clustered trees interspersed with open areas to provide daytime shading while allowing nocturnal cooling and ventilation (Spronken-Smith and Oke, 1998)

Thom, Coutts et al 2016

Current

- 1-base case
- 2- grass
- 3- grass with tree borders
- 4- savanna
- 5- forest

6-garden1
7-garden2
8- optimum1
9- optimum2
10- current veg

	42.4 - 43.6	48 - 49.8	56.7 - 57.8
Tmrt (°C)	43.7 - 44.7	49.9 - 52.2	57.9 - 59.1
37.8 - 40.1	44.8 - 45.7	52.3 - 53.8	59.2 - 60.3
40.2 - 41.2	45.8 - 46.8	53.9 - 55.1	60.4 - 61.6
41.3 - 42.3	46.9 - 47.9	55.2 - 56.6	61.7 - 62.3

Motazedian, 2016

Scenarios

12/17

Motazedian, 2016

Limiting heat health impacts

Convective Boundary

- Economic benefit of street trees – City of Monash
- Mortality benefits (\$)

Surface Energy Balance

- Street trees only (private veg left unchanged)
- Also valued carbon uptake and storage, air quality and stormwater

Figure 3.6: Street trees selected by stratified random sampling process (1 284) for field measurement in the City of Monash, Melbourne. Associated land cover around sample trees is illustrated.

Thom (2015)

Limiting heat health impacts

Thom (2015)

Scenarios

- No street trees (base case) (17%)
- Current street trees (24%)
- Less street trees (20%)
- More street trees (32%)

Mortality benefits over 4 day period:

- Current tree cover delivers ~0.5°C benefits = \$9.78 million
- Doubling of cover provides a further ~0.5°C benefits (~1.0°C total over base case) =\$16.01 million

Total value of current urban forest

• \$12.85 million

