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Urban heat, climate trends, water supply

Heat wave duration index
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Urban heat island effects; predicted increasing extremes for

Australia; Melbourne's water supply
(Coutts et al., 2010; Alexander and Arblaster, 2009; Melbourne Water, 2014)
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Increasingly vulnerable Australian demographics

o Population growth - In 2007, 21.0 million people
30.9 to 42.5 by 2056
33.7 and 62.2 by 2101.
@ Ageing population - Median age, 36.8 years in 2007
38.7 to 40.7 years in 2026
41.9 to 45.2 years in 2056.
In 2007, 13% of population 65 years and over
23% to 25% in 2056
@ Increased urbanisation - In 2007, 64% lived in a capital city.
By 2056, increase to 67%.

(http://www.abs.gov.au/Ausstats/abs@.nsf/mf/3222.0)
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Melbourne heat index thresholds and spatial vulnerability of

high risk populations during hot weather

Melbourne: Daily min. temp. 24 °C threshold
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(Nicholls et al., 2008; Loughnan et al., 2010)
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Conventional

Water Sensitive
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Project B3.1 - Cities as Water
Supply Catchments - Green Cities
and Microclimate

The aim of this project is to identify
the climatic advantages of
stormwater harvesting/reuse and
water sensitive urban design at
building to neighbourhood scales.

To determine the micro-climate
processes and impacts of
decentralised stormwater harvesting
solutions and technologies at both
household and neighbourhood
scales.

To assess the impacts of these
solutions on human thermal comfort
and heat related stress and mortality.

To provide stormwater harvesting
strategies to improve the urban
climate and benefit the carbon
balance of cities.

To project the likely impact of
climate change on local urban
climate, with and without
stormwater resuse as a mitigation
strategy.

(CRC for Water Sensitive Cities,
2015)



Water Sensitive Urban Design (WSUD) as

mitigation /adaptation

Are there positive climatic impacts on human thermal comfort?

Design of a tree-pit (FAW, 2008)

Tree pits and other WSUD features in urban areas.
(FAWB, 2008)
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Modelling WSUD

Observations can only examine what already exists. Modelling is
needed to examine a wider range of scenarios, technologies, and
climatic benefits at a variety of scales.

Micro scale models
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(Adapted from Murakami et al. 1999)
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Required inputs to model HTC

Thermal semsation indicator

b

Air temperature
31— Hot
Radiant temperature 22 Warm
Air velocity 1_5 Slightly warm
PMV 3
Relative humidity PMYV calculation »_1, Neutral
— ]
Activity level -13 Slightly cool
-z—f Cool
Clothing insulation =
=3 Cold

NS

PMV and thermal sensation (Hamdi et al., 1999)
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Modelling

@ Modelling is just a simplified view of a complex system

@ Besides climate models, other models include road maps,
financial spreadsheets

@ In reducing complexity, detail will be lost.

@ Usefulness of results depend on trade-off of computational
intensity, detail of results, technique used.
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© Fundamentals of urban climates
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Urban surface radiation budget

Short-wave | Long-wave
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Surface Radiation Budget : Q" = K} - Kt + L} - Lt

(Qx* net radiation, K shortwave up/down, L longwave up/down)
(Oke, 1988)
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Urban surface energy budget

Surface Energy Budget :
Q"+ Qg = Q, + Qg + AQg + AQ,

(Qx net radiation, Qf anthropogenic heat, Qh sensible heat, Qe latent energy, Qs storage heat, Qa
advected heat) (Oke, 1988)
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Urban surface water budget

Surface Water Budget :
p+F+1=E+ Ar+ AS + AA

(p precipitation, F released from combustion, I urban water supply, E evaporation, r runoff, S storage,
A advection) (Oke, 1988)
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Soil-plant-atmosphere-continuum

Schematic depiction of fluxes involved in (a) the energy and (b) the water balances of a soil-plant-air
volume (Oke 1988)
(Qp biochemical energy storage)
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Soil-plant-atmosphere-continuum
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Schematic depiction of fluxes involved in (a) the radiation budget and (b) the energy balance of an
isolated leaf (Oke, 1988)
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Soil-plant-atmosphere-continuum
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The water balance and internal flows of water in a soil-plant-atmosphere system. At the right is the
electrical analogue of the flow of water from the soil moisture to the atmospheric sink via the plant
system. (Oke, 1987)
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© Modelling scales and strategies
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General Circulation Models (GCM)

@ Atmospheric general circulation models (GCM) - modelling
radiation, heat, water vapour and momentum fluxes across the
land-surface atmosphere interface.

e GCM models similar to numerical weather prediction (NWP)
models both in design and modelling code,

@ GCM models are longer running (months to years) and
incorporate a large number of interactions (atmosphere,
oceans, ice, and land), some of which might have been
parametrized in NWP runs.
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Global scale
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Monash Simple Climate Model (Dommenget and Fldter, 2011)
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Numerical weather prediction (NWP)

@ NWP - Numerical weather prediction (NWP) models solve a
series of differential equations using current weather conditions
to predict future weather conditions.

@ Designed for short term projection runs of days to weeks using
very accurate input data of current weather conditions.

@ Resolution of NWP at global or regional scale not sufficient to
resolve urban areas.

@ With tile or mosaic surface exchange schemes
parametrizations, model a percentage of a gridbox containing
the urban surfaces.

@ Results can only be seen at next level up, not at the urban
level. Resolving greater complexity within urban areas (i.e.
flows around buildings) is generally not possible with NWP
schemes.
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Regional /Meso scale
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Parametrizations, Land surface schemes (LSS)

@ Model parametrization - Processes that cannot be directly
modelled - smaller than the grid resolution of the model, or for
model efficiency, estimates of values are made, based on
observations (or other means of estimating reasonable values)
instead of being calculated.

@ Land surface schemes (LSS) are designed to calculate the
temporal evolution of energy and fluxes between land and
atmosphere. Implementations can vary greatly in complexity.
The simplest will treat the land as flat bare soil. Complexity
can be added accounting for soil and vegetation interactions.
The most complex will incorporate processes of photosynthesis
and respiration.
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Change in mean nighttime (02 : 00) screen level temperature change from the current urban
development, to that proposed by the Melbourne 2030 planning strategy. Areas within the contours are
statistically significant at the 95% confidence level. (Coutts et al., 2008)
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Micro-scale

Micro-scale modelling

(brickplayer.com)
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Computatial fluid dynamics (CFD) methods

Navier-Stokes Equations  rese
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Navier-Stokes Equations, relating the velocity, pressure, temperature, and density of a moving fluid

(Nasa 2013)
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CFD methods

CFD study of Air Flow over Complex Terrain

(Fabre et al. 2012)
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CFD methods

@ At micro-scales, computational fluid dynamics (CFD) can be
used to model flows around an urban landscape, including
features such as buildings and trees.

@ Ground-up approach (as opposed to GCM), starting with the
smallest interactions at a detailed level and building those up
to a larger picture.

@ Based on the Navier-Stokes equations, which describe the
motion of fluids in 3 dimensions.
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CFD methods

Solved in 3 different ways:

@ Direct Numerical Simulation (DNS) - DNS attempts to solve
all the spatial scales within the flows, very computationally
intense, suitable for only the smallest simulations.

e Large Eddy Simulation (LES) reduces the computational
intensity through low-pass filtering, that is, filtering out the
smaller scale pieces of the solution and concentrating on the
larger scaled pieces.

@ Reynolds Averaged Navier-Stokes (RANS) uses mathematical
techniques to simplify solutions by separating fluctuating and
averaging pieces.
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Urban Energy Balance Modelling

Energy balance models partition known quantities of shortwave
and longwave radiation into energy balance budget
components.

(1—a)(Ksf + Kdf ) +eL| L1t —-G—H—-LE=0
A less intensive approach (compared to CFD), often used by
local and micro-scaled models.

K?KLX;/T T

G
Schematic of the energy balance for a surface. The direction of the arrows indicate the direction of

positive flux densities.
(Harman, 2003)
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haracteristics used to classify en balance models
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(Grimmond et al., 2010)
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@ Local scaled models
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Local scaled models

e Town Energy Balance (TEB), (Masson, 2000)
Single canyon, energy balances of three surfaces
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(CNRM-GAME 2010)
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Local scaled models
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Local-scale Urban Meteorological Parameterization Scheme
(LUMPS)/Surface Urban Energy and Water Balance Scheme
(SUEWS), (Jarvi et al., 2011)
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Local scaled models

e WREF (Chen et al., 2004; Kusaka et al., 2001) - meso scaled
model coupled with Noah land surface model (LSM)

@ Urban canyons are parameterized into a simplified 2-D
symmetrical infinite lengthed geometry, much like TEB.

@ Water - simple 'very thin bucket scheme’, that is surfaces are
treated as impervious and well drained.

@ A single layer vegetation model is used to calculate latent
energy fluxes.

@ Urban areas grid cells - setting percentages of surfaces and
features.
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Local scaled models

e Community Climate System Model (CCSM) (Vertenstein
et al., 2004)

@ Global scaled but can run in single point mode.

@ Urban canyon modelling similar to TEB.

Community Land Model - Urban (CLMU)

——ee i 00
P o
-

e

g, .

o’
Et |
e |
i .. . !
T T < T Hi T.4,08, Hiynu
|
|

W

CLM urban canyon modelling (ucar, 2011)
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Local scaled models

@ JULES (Joint UK Land Environment Simulator) is based on
MOSES (Met Office Surface Exchange System)

@ Highly simplified urban canopy module using a canopy of
concrete to model radiation exchanges with the underlying soil.

@ It uses the Penman-Monteith equation to calculate latent
energy fluxes.

@ Tiled scheme of heterogeneous surfaces in order to resolve
urban area land uses.
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Surface energy balance of MOSES urban canopy model (Best et al., 2006)
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Local scaled models

@ CSIRO Community Atmosphere Biosphere Land Exchange
(CABLE) (Kowalczyk et al., 2006)

@ Scaled down GCM model coupled with land surface scheme
(LSS) module.

@ Recent addition of TEB based urban module.
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© Micro scaled models
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Micro scaled models - CFD based

e MIMO (Kunz et al., 2000) - Originally designed to model
microscale wind flow to look at pollution dispersion in urban
areas. Based on solving Reynolds-averaged Navier-Stokes
(RANS) equations.

e MITRAS (Mikroskaliges Chemie, Transport und
Strémungsmodell) (Schlunzen et al., 2003). Also based on
Reynolds-averaged Navier-Stokes (RANS) equations.

e CFD frameworks such as OpenFOAM (OpenFOAM 2011) or
STAR-CD (CD-adapco 2011). C++ libraries to solve a wide
variety of CFD related problems such as incompressible /
compressible flows, particle tracking flows, and heat transfers
as well as methods to create customized solvers. Meshes of
various types are provided to be configured into any shape
with any number of faces.
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Micro scaled models - CFD based

@ ENVI-met (Bruse, 1999) - three-dimensional non-hydrostatic
model based on CFD solving of Navier-Stokes equations using
finite difference numeric methods.

e Freeware, friendly GUI to generate modelling domains and
graph results.

@ ENVI-met provides variables describing energy fluxes
(longwave, shortwave, sensible and latent), weather conditions
(temperature, wind, humidity) at different levels of the domain
(2D surface points as well as 3D atmospheric points)

o Variety of features (buildings of different materials, different
types of vegetation, pervious and impervious surfaces of
different types, and configurable layers of soil moistures).

@ Mean Radiant Temperature and Predicted Mean Vote (PMV)
support HTC modelling.

e Computationally intensive, runs in nearly real time (24 hours
of simulation will require 24 hours of computation).
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Micro scaled models

e SOLWEIG (Lindberg et al., 2008) - simulates spatial variations
of mean radiant temperature and 3D fluxes of longwave and
shortwave radiation.

@ Vegetation only casts shadows, water is not supported.

e Can capture much of the influence of increased vegetation (i.e.
shading) but not all (evaportranspiration) as it only models
longwave and shortwave radiation fluxes.

DayimeT,

T, BEpoint cfinterest
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Micro scaled models

e TUF-3D (Krayenhoff and Voogt, 2007) - 3D raster model,
simulates energy balances, modelling radiation, conduction,
and convection in order to predict fluxes of sensible heat,
conduction, and radiation fluxes.

@ VTUF-3D model including vegetation and latent energy will be
described in more detail soon.
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Temperatures of Urban Facets in 3D (TUF-3D) model
structure
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(Krayenhoff and Voogt, 2007, p. 437)
Basic cubic cell and surface patch structure of TUF-3D
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TUF-3D domains

(Krayenhoff and Voogt, 2007, p. 437)
An example TUF-3D domain with a bounding wall and the
sub-domain S, (chosen to coincide with the central urban unit) in
lighter shades
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MAESPA tree model

MAESPA can model a single tree along with its associated soil,
canopy, soil water storage, and transpiration or be scaled up to
model a forest stand.

o0

(Duursma and Medlyn, 2012)
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MAESPA tree model

MAESPA is a soil-plant-atmosphere model and provides forest
canopy radiation absorption and photosynthesis functionality,
in addition to water balances at fine temporal and spatial

Radiation Weather
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wavebands
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(Duursma and Medlyn, 2012)
MAESPA process and water balance flowcharts
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VTUF-3D/MAESPA vegetation/radiation interactions

VTUF-3D/MAESPA vegetation/radiation interactions
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Design - VTUF-3D modified shading
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VTUF-3D modified shading, timestep ray tracing
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Design - VTUF-3D modified shading, reverse ray tracing
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VTUF-3D modified shading, reverse ray tracing
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VTUE-3D energy balance modelling with MAESPA tiles
Interactions

TUF-3D tile

|
TUF-3D Tground D cile
Qs

VTUF-3D energy balance modelling with MAESPA tiles
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MAESPA brushbox tree (Lophostemon Confertus)

parameterization

@ Tree dimensions for 5x5m grid (rescale for taller/shorter):

crown radius = 2.5m, crown height = 3.75m
trunk height = 1.25m, leaf area index =2.0
crown shape = round, zht=4.0, zpd=1.6, z0ht=3.0

Leaf reflectance 3 wavelengths 0.04, 0.35, 0.05 (Fung-yan 1999)
Minimum stomatal conductance g0 = 0.01 (Determined from Melbourne Cemetery Tree)
Slope parameter gl = 3.33 (Determined from Melbourne Cemetery Tree)
# of sides of the leaf with Stomata = 1 (Beardsell and Consodine)
Width of leaf (metres) = 0.05

CO2 compensation point = 53.06 (CO2 curves)

Max rate electron transport=105.76 (CO2 curves)

Max rate rubisco activity = 81.6 (CO2 curves)

Curvature of the light response curve =0.61 (PAR curves)

Activation energy of Jmax = 35350 (Bernacchi et al 2001)

Deactivation energy of Jmax = 200000 (Medlyn et al 2005)

XX Entropy term = 644.4338

Quantam yield of electron transport = 0.06 (PAR curves)

Dark respiration= 1.29 (PAR curves)

Specific leaf area=25.3 (25.3=Wright and Westoby 2000)
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Model testing and validation using Preston dataset

@ Preston - homogeneous, medium density.

o Data set contains complete flux observations recorded
2003-2004, allowing validation of surface energy balances

@ Modelled area (500x500m) chosen is representative of overall
area observed by flux tower

(Google 2015)
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Model testing and validation using Preston dataset

Mix of vegetation types: grass (18.5%), olive and brushbox trees (7.25%).
Medium density area (46.75% buildings). 27.5% impervious surfaces.

Vegetation heights (0, 5, 10m)

i
n_

Digitization of Preston suburban street. Types (grass, brushbox, olive) Tree numbers
(1=building heights, 1=vegetation heights)
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odel results using P

Hourly results for Tsfc and UTCI for 14 Februrary 2004

PrestonTest9NewDomain30Days - Tsfc 2004-02-14-1100 PrestonTest9NewDomain30Days - UTCI at 2004-02-14-150
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(UTCl is a human thermal comfort index combining air temperature, surface temperature, wind,
humidity, radiation load, etc. into a 'feels like’' equivalent temperature.)
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Model testing and validation using Preston dataset

30 day hourly average flux comparisons to Preston flux observations

VTUF-3D fluxes (hourly ave) days 2004-02-10 to 2004-03-10
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Model results using Preston dataset

Canyon temperatures for 25 Feburary 2004, predicted canyon air
temperature along with various canyon surface temperatures
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Preston Scenarios-tree configurations

@ 4 scenarios of zero trees, half trees, existing Preston tree
canopy cover, and double trees
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Preston Scenarios-UTCI at Om

e UTCI (street level, Om, average) variations of 0.9°C between
zero tree scenario and double trees

@ Double trees scenario gives 0.3°C UTCI reduction over existing
Preston tree canopy
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rences between scenarios

Modelled UTCI of 4 scenarios over 13-14 February 2004 /
UTCI differences between 100% trees and other scenarios

Preston scenarios, modelled average street UTCI temperatures - 13-14 February 2004
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@ UTCI (street level, Om, average) variations of 0.9°C between
no tree scenario and double trees

@ Double trees scenario gives 0.3°C UTCI reduction over existing
Preston tree canopy
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Preston Scenarios-Canopy temperatures

VTUF-3D canopy temperatures for Preston scenarios

SN

_ / No-
o p

g /)

Bq 7/

Lose /
2 320578 F4
< / e /
6=8 N,
8m0-g=g=0=8=9=0=g_ -0~ *~e. /
s 0=t=g_ Py /°
2 P=g=8=g=g_o_¢
cach P scenarios

g8

g
£

E

H

H

02140000 [ 230000 [E— 280000 261200

Time

Modelled Tcan of 4 scenarios over 13-14 February 2004 /
Tcan differences between normal trees and other scenarios

Kerry Nice Microclimate Models and Application in the Urban Enviro



Model validations and scenarios using City of Melbourne,

George and Gipps St datasets

Shallow urban canyons (ave building heights 7 and 8m, H:W 0.32
and 0.27) with varying canopy cover (45% and 12%)

Validation against 4 and 3 observation stations located on street
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City of Melbourne Gipps St Scenarios-tree configurations

@ 5 scenarios of zero trees, half trees, existing Gipps St tree
canopy cover, double trees, and 4x trees.
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City of Melbourne Gipps St Scenarios-UTCI at 0 meters
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e UTCI (averaged at Om height) maximum variations of 1.0°C
between Gipps St. zero tree scenario and double trees.
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City of Melbourne Gipps St Scenarios-UTCI differences

between scenarios

City of Melbourne Gipps St scenarios, modelled average street UTCI temperatures - 23-24 February 2014
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e UTCI (averaged at Om height) maximum variations of 1.0°C
between Gipps St. zero tree scenario and double trees.
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City of Melbourne Gipps St Scenarios-Canopy temperatures

Modelled Tcan of 4 scenarios over 23-24 February 2014 /
Tcan differences between normal trees and other scenarios
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Canopy temperature differences range from 0.2°C to 0.4°C .
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© Case study using ENVI-met
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500
1-"Garden"-Grassy area, moderate tree
cover

2-"Sign"-in car park, some tree cover,
asphalt surfaces

400

3-"Dorm"-Grassy area nested in corner of
building

300 4-"Field"-Grassy hill, no tree cover
"E‘ 5-"Reserve"-Under tree cover by pond, dirt
— understory area
>

200 6-"Fence"-In sloped grassy area on edge of

reserve area under moderate tree cover
100
0 - L= -
0 100 200 300 400 500
* ()
(Nice, 2011)
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Observation data - K (shortwave) down, temperature,

humidity, wind speed for study site 7-14 April 2011
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Observation data - K (shortwave) down, 7-8 April 2011

a ion 6 (Reserve fence)
Station 5 (Reserve)
Station 4 (Field) i
Station 3 (Dorm)
Station 2 (Sign)
Station 1 (Garden)
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K down (W/m?)

Highest at "Field", 1/2 those levels at "Garden", 1/3 at "Reserve
Fence", 1/4 at "Sign" and "Dorm", 1/6 at "Reserve"

Kerry Nice Microclimate Models and Application in the Urban Enviro



Observation data - humidity, April 2011
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"Reserve" and "Reserve Fence" consistently higher than other sites
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Observation data - wind speed, 7-8 April 2011
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Varied 0-2 m/s except "Field" peaking at 6 m/s, 1st evening
calming, pre-dawn wind, 2nd day "Field" increase
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Observation data - temperature, 7-8 April 2011
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Daytime 4.9°C difference between "Dorm" and "Reserve Fence",
other sites vary by 2-3°C, Night time 3.2°C difference between
"Sign" and "Reserve Fence"/"Reserve", "Reserve
Fence"/"Reserve" cooled most rapidly at night
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ENVI-met urban micro-climate model setup

Setting ‘ Value ‘
Grid size 100x100x20
Grid resolution 5 metres
Nesting grids 9
Latitude and longitude | 144.58 and -37.49
Initial wind direction north (0°)
Initial wind speed 2m/s
Initial temperature 288K
Soil moisture 30/30/50%
Simulation run dates 5-10 April 2011
Save state 60 minutes
ENVI-met v3 set-up values
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Comparison of K down (incoming shortwave radiation) of

observation sites vs. ENVI-met model results, 7-8 April 2011
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Shortwave radiation overstated, lacks variation seen in observations
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Accumulated shortwave radiation (in MJ/m?/day) received

over 7-8 April 2011, observations vs. ENVI-met

’ Sites \ ENVI-met \ Observed ‘
Garden 30.7 7.7
Sign 30.6 112
Dorm 8.9 12.6
Field 38.6 18.1
Reserve 7.6 3.0
Reserve fence 7.6 9.3

Shortwave radiation overstated, in some cases 2-3x
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Comparison of humidity (g/kg) of observation sites vs.
ENVI-met model results, 7-8 April 2011

Humidity predictions lacks variation seen in observations
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Comparison of wind speed of observation sites vs. ENVI-met

model results, 7-8 April 2011

Wind spesd (mis)

Wind spasd (mis)

Wind spesd (mis)

Static wind speeds, model misses calming winds in evening, rising
winds through night, temperature variation greatest during calm
winds
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Comparison of temperature of observation sites vs.
ENVI-met model results, 7-8 April 2011

Under-prediction of daytime temperatures, slow to heat up,
over-predicts night-time temperatures, slow to cool down
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Differences in temperature between observation sites and

ENVI-met model results, 7-8 April 2011
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Divergences of +6°C to -4°C, in some cases, and +2°C to -2°C in
all cases.
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Temperature (in °C) results for ENVI-met model run with

observational site data points, 8 April 2011 6:00 am.

e fence) 13.32C |

15.1°C to 15.8°C, compared to the observed range of 13.3°C to
15.4°C but with some reasonable predictions of broad features
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Temperature (in °C) results for ENVI-met model run with
observational site data points, 8 April 2011 2:00 pm.

Station 1 (G

22°C to 25°C. compared to the observed range 24.7°C to 27.8°C
but with some reasonable predictions of broad features
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Observations conclusions

e Daytime variations of up to 4.9°C between "urban" and
"parkland" areas

e General daytime variations of 2-3°C

@ Night time 3.2°C variations between "urban" and "parkland"
areas

@ "Parkland" areas cooled most rapidly at night
@ Humidity consistently higher in "parkland" areas

@ Higher wind speeds moderated temperatures in highly solar
exposed "Field" site

@ Sheltered "Dorm" site allowed daytime temperatures to build

@ Rising and falling winds created temperature variations over
day and nights

@ The variations found could be useful in addressing UHI effects
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Model conclusions

Simplistic modelling of canopy leads to inaccurate shortwave
predictions

ENVI-met hampered by static and inaccurate meteorological
predictions missing variations due to mechanical mixing, i.e.
cooling of highly solar and wind exposed "Field" site

Observed sharp drops in temperature after dusk and slight
rises before dawn not predicted by model

Warming and cooling lags behind observed values
Maximum and minimum values under-predicted
Edge cases ("Dorm", "Reserve") not predicted accurately

ENVI-met predicts large scale features, but given the
resolution of observed data (6 observation sites), it isn't
possible to determine if they are accurate

Work to be done on future ENVI-met versions (and other
urban micro-climate models)
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Suggested reading

@ Grimmond et al. (2010) The International Urban Energy
Balance Models Comparison Project: First results from Phase
1 Journal of Applied Meteorology & Climatology, 49, 1268-92,
doi: 10.1175/2010JAMC2354.1

e Grimmond et al. (2011) Initial Results from Phase 2 of the
International Urban Energy Balance Comparison Project,
International Journal of Climatology 31:244-272 DOI:
10.1002/joc.2227
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