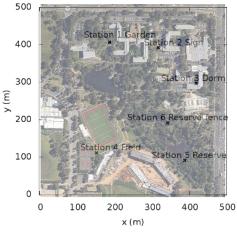
The micro-climate of a mixed urban parkland environment

Kerry Nice

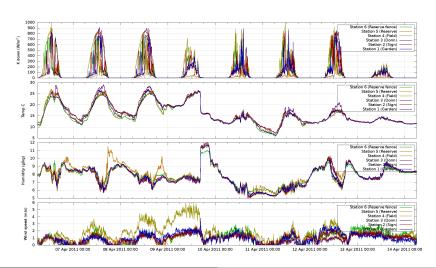
Centre For Water Sensitive Cities, Cities as Water Supply Catchments School of Geography and Environmental Science, Monash University

22 February 2012

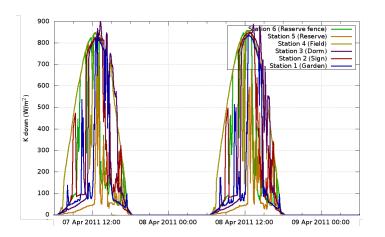

Why look at urban-parkland environments?

- Global warming
- Increased urbanization
- Adaptation/mitigation strategies
- Mixed urban/park morphologies as mitigation
- Methods for researching urban/park morphologies

Research questions

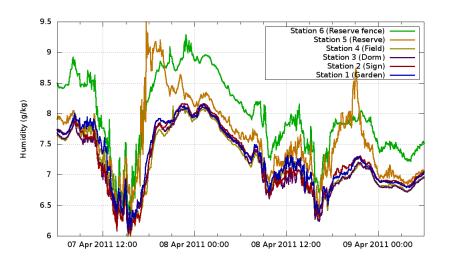

- What is the temperature variation across a mixed urban-parkland environment and is this significant enough to warrant adoption of morphologies suited to mitigate the UHI effects?
- Can an urban micro-climate model (ENVI-met) reproduce the observed temperature variation across a mixed urban-parkland environment?

Monash Campus observation site locations

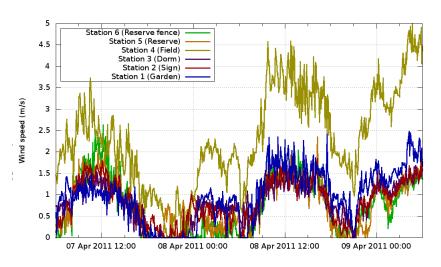


- 1-"Garden"-Grassy area, moderate tree cover
- 2-"Sign"-in car park, some tree cover, asphalt surfaces
- 3-"Dorm"-Grassy area nested in corner of building
- 4-" Field"-Grassy hill, no tree cover
- 5-" Reserve"-Under tree cover by pond, dirt understory area
- 6-"Fence"-In sloped grassy area on edge of reserve area under moderate tree cover

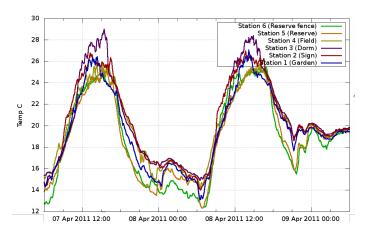
Observation data (Temperature, K (shortwave) down, humidity, wind speed) for study site 7-14 April 2011



Observation data (K (shortwave) down), 7-8 April 2011


Highest at "Field", 1/2 those levels at "Garden", 1/3 at "Reserve Fence", 1/4 at "Sign" and "Dorm", 1/6 at "Reserve"

Observation data (humidity), 7-8 April 2011

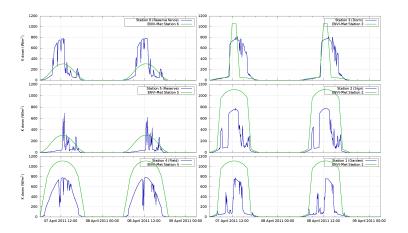

"Reserve" and "Reserve Fence" consistently higher than other sites

Observation data (wind speed), 7-8 April 2011


Varied 0-2 m/s except "Field" peaking at 6 m/s, 1st evening calming, pre-dawn wind, 2nd day "Field" increase

Observation data (Temperature), 7-8 April 2011

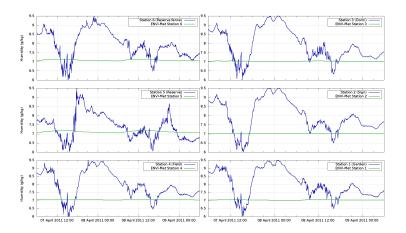
Daytime 4.9°C difference between "Dorm" and "Reserve Fence", other sites vary by $2\text{-}3^{\circ}\text{C}$, Night time 3.2°C difference between "Sign" and "Reserve Fence"/"Reserve", "Reserve Fence"/"Reserve" cooled most rapidly at night


ENVI-met urban micro-climate model setup

Setting	Value	
Grid size	100×100×20	
Grid resolution	5 metres	
Nesting grids	9	
Latitude and longitude	144.58 and -37.49	
Initial wind direction	north (0°)	
Initial wind speed	2 m/s	
Initial temperature	288K	
Soil moisture	30/30/50%	
Simulation run dates	5-10 April 2011	
Save state	60 minutes	

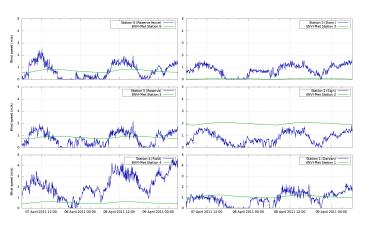
ENVI-met v3 set-up values

Comparison of K down (incoming shortwave radiation) of observation sites vs. ENVI-met model results, 7-8 April 2011

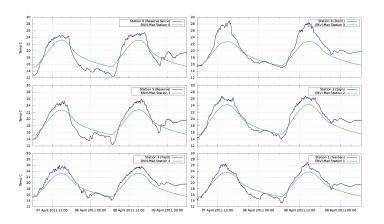

Shortwave radiation overstated, lacks variation seen in observations

Accumulated shortwave radiation (in MJ/m²/day) received over 7-8 April 2011, observations vs. ENVI-met

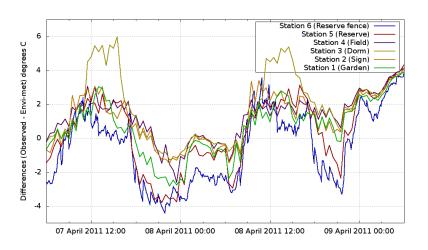
Sites	ENVI-met	Observed
Garden	30.7	7.7
Sign	30.6	11.2
Dorm	8.9	12.6
Field	38.6	18.1
Reserve	7.6	3.0
Reserve fence	7.6	9.3


Shortwave radiation overstated, in some cases 2-3X

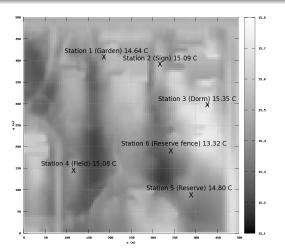
Comparison of humidity (g/kg) of observation sites vs. ENVI-met model results, 7-8 April 2011


Humidity predictions lacks variation seen in observations

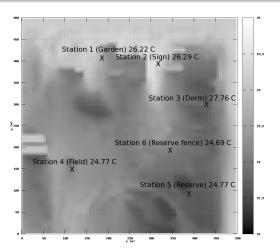
Comparison of wind speed of observation sites vs. ENVI-met model results, 7-8 April 2011


Static wind speeds, model misses calming winds in evening, rising winds through night, temperature variation greatest during calm winds

Comparison of temperature of observation sites vs. ENVI-me model results, 7-8 April 2011


Under-prediction of daytime temperatures, slow to heat up, over-predicts night-time temperatures, slow to cool down

Differences in temperature between observation sites and ENVI-met model results, 7-8 April 2011


Divergences of $+6^{\circ}\text{C}$ to -4°C , in some cases, and $+2^{\circ}\text{C}$ to -2°C in all cases.

Temperature (in °C) results for ENVI-met model run with observational site data points, 8 April 2011 6:00 am.

 15.1° C to 15.8° C, compared to the observed range of 13.3° C to 15.4° C but with some reasonable predictions of broad features

Temperature (in °C) results for ENVI-met model run with observational site data points, 8 April 2011 2:00 pm.

 22°C to 25°C . compared to the observed range 24.7°C to 27.8°C but with some reasonable predictions of broad features

Observations conclusions

- Daytime variations of up to 4.9°C between "urban" and "parkland" areas
- General daytime variations of 2-3°C
- Night time 3.2°C variations between "urban" and "parkland" areas
- "Parkland" areas cooled most rapidly at night
- Humidity consistently higher in "parkland" areas
- Higher wind speeds moderated temperatures in highly solar exposed "Field" site
- Sheltered "Dorm" site allowed daytime temperatures to build
- Rising and falling winds created temperature variations over day and nights
- The variations found could be useful in addressing UHI effects

Model conclusions

- Simplistic modelling of canopy leads to inaccurate shortwave predictions
- ENVI-met hampered by static and inaccurate meteorological predictions missing variations due to mechanical mixing, i.e. cooling of highly solar and wind exposed "Field" site
- Observed sharp drops in temperature after dusk and slight rises before dawn not predicted by model
- Warming and cooling lags behind observed values
- Maximum and minimum values under-predicted
- Edge cases ("Dorm", "Reserve") not predicted accurately
- ENVI-met predicts large scale features, but given the resolution of observed data (6 observation sites), it isn't possible to determine if they are accurate
- Work to be done on future ENVI-met versions (and other micro-climate models)