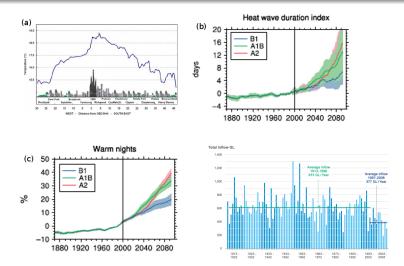
# A consideration of Water Sensitive Urban Design (WSUD) modelling strategies

#### Kerry Nice

(Nigel Tapper, Jason Beringer, Andrew Coutts, Scott Krayenhoff)
School of Geography and Environmental Science, Monash University
CRC For Water Sensitive Cities: Cities as Water Supply Catchments Project

8th International Conference on Urban Climate, 6-10 August 2012, Dublin





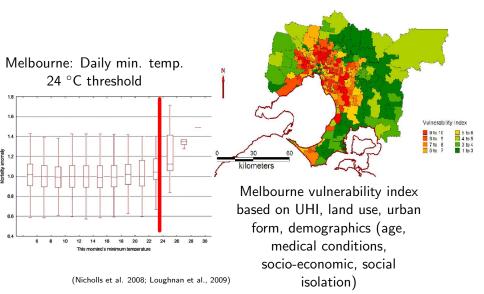

# Increasingly vulnerable Australian demographics


- Population growth In 2007, 21.0 million people 30.9 to 42.5 by 2056 33.7 and 62.2 by 2101.
- Ageing population Median age, 36.8 years in 2007 38.7 to 40.7 years in 2026 41.9 to 45.2 years in 2056.
  In 2007, 13% of population 65 years and over 23% to 25% in 2056
- **Increased urbanisation** In 2007, 64% lived in a capital city. By 2056, increase to 67%.

(http://www.abs.gov.au/Ausstats/abs@.nsf/mf/3222.0)

# Urban heat, climate trends, water supply

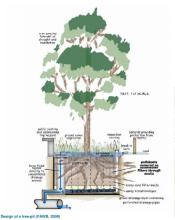



Urban heat island effects; predicted increasing extremes for Australia; Melbourne's water supply








# Melbourne heat index thresholds and spatial vulnerability of high risk populations during hot weather

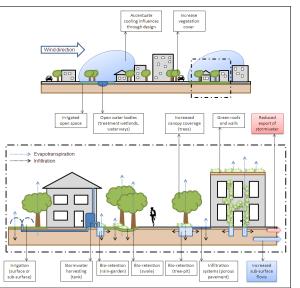




# Water Sensitive Urban Design (WSUD) as mitigation/adaptation

Tree pits and other WSUD features in urban areas.






Are there positive climatic impacts on human thermal comfort?

(FAWB 2009; FAWB 2008)



#### CRC for Water Sensitive Cities research overview



#### Cities as Water Supply Catchments, Project 3: Green Cities and micro-climate

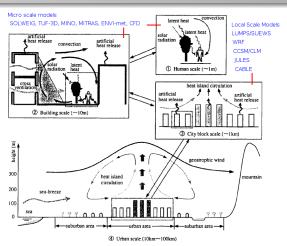
- Meet challenges of drought & water restrictions, poor vegetation health, strained water supplies, degraded stream health
- Integrating Water Sensitive Urban Design features throughout the urban landscape as a natural cooling mechanism and UHI mitigation strategy
- Increasing vegetation in the landscape AND providing water for vegetation health
- Enhanced infiltration and evapotranspiration

### Monitoring of WSUD features - Observational research












- How effective are SW harvesting technologies, green infrastructure and WSUD in improving urban climates at a range of scales?
- How much water and vegetation is required to limit temperatures and enhance human thermal comfort and liveability?



## Modelling WSUD



Observations can only examine what already exists. Modelling is needed to examine a wider range of scenarios, technologies, and climatic benefits at a variety of scales.

(Adapted from Murakami et al. 1999)



# Local to regional scaled modelling for WSUD

- Modelling at this scale to examine broad impacts of WSUD to moderate air temperature extremes as well as examine daily temperature cycles and UHI effects.
- At this scale, LUMPS/SUEWS, which has the most complete water cycle features, appears to be a good avenue to model these features at this resolution for the Cities as Water Catchments program.
- Other modelling assessments are also being done by the program at this scale using WRF and CESM/CLM

### Micro scaled modelling for WSUD

- For a complete picture of climatic benefits of WSUD techniques at this scale, models need to handle vegetation effects (shading/evaporation) as well as include a complete water cycle and take particular care to get latent energy fluxes correct
- Mean radiant temperature predictions are essential as this is the scale where WSUD's impact on HTC will be best seen.
- A simplified modelling approach, as opposed to full 3-D computational fluid dynamics (CFD) techniques, is desirable as industry partners will lack the expertise and time necessary to use a more complex model as part of a planning toolkit.
- TUF-3D is chosen as the basis for the modelling to be done at this scale for WSUD assessments due to these criteria.

## Project title and objectives

An assessment of water sensitive urban design (WSUD) feature influences on urban micro-climates in support of human thermal comfort (HTC) in urban areas: Urban micro-climate modelling and improvements to the Temperatures of Urban Facets in 3-D (TUF-3D) urban micro-climate model

#### Project objectives:

- Assess current model state of art and TUF-3D selection
- TUF-3D modifications and assessment of improvement:
   Additions of green roof/walls, tree pits, biofiltration pits
- Assessement of WSUD scenarios and urban morphologies

#### TUF-3D model structure

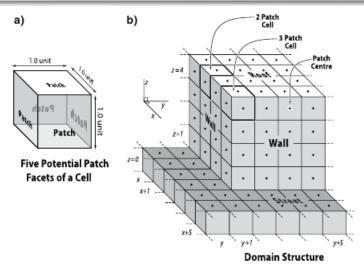
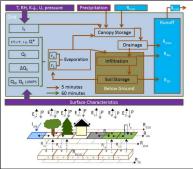



Fig. 1 Basic cubic cell and surface patch structure of TUF-3D

(Krayenhoff & Voogt 2007)


#### TUF-3D domains

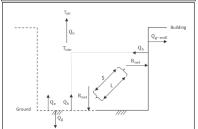



Fig. 2 An example TUF-3D domain with a bounding wall and the sub-domain  $S_d$  (chosen to coincide with the central urban unit) in lighter shades

(Krayenhoff & Voogt 2007)

#### Future work - Additions to TUF-3D





- Water cycle (as modelled in the SUEWS model)
- Latent energy flux additions (schematic of energy balance components in TUF-3D)
- Vegetation and vegetation processes

#### WSUD assessments and best practice











Use of new tool to model WSUD features (green roof/walls, biofiltration pits, tree pits) and different WSUD scenarios

