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Research questions

• Can you perform inter- and intra-city comparisons?

• Or are cities unique?

• How do you characterise different types of neighbourhoods?

• How do you determine the impact of urban form on health?

• How do you assess cities that perform well?

• Can you transfer lessons from one city to another?

• Can you predict health outcomes based on urban form?
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Block typologies - Self organizing map (SOM)

A visualisation of
the 2-dimensional
100x100 SOM
trained with 1.7
million map
images from 1667
cities. Each x,y
point shows a
representative
map section
associated with
each node while
nodes without
associated maps
are shown in
black.
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Previous work in city analysis - Network analysis

Work to characterize cities based on road networks, using closeness,
betweenness, centrality.

(a) (b) (c)

Figure 3. The primal approach. Closeness centrality (CC ) spatial flow in Ahmedabad: scores are
calculated on the nodes of the primal weighted graph, where weights are the metric lengths of
edges. (a) Global closeness: CC is calculated on the whole network; (b) local closeness: CC is
calculated on the subnetwork of nodes at distance d < 400 meters from each node; (c) local
closeness: CCis calculated on the subnetwork of nodes at distance d < 200 meters from each
node. Here color nodes are attributed to the centrality of nodes, though in other cases it may be
preferable to code the centrality of edges, as in figure 4(a).

Fig. 3. The dual graphs of the six cities, shown in the same order of Fig. 2.

S. Porta et al. / Physica A 369 (2006) 853–866

Porta et al. (2006a,b)
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Previous work in city analysis - Land cell shapes

Work to characterize cities based on distribution of land cell shapes.

Figure 3 | (a) The size distribution of cell areas at t5 2007 can be fitted with a power-law p(A), A2t, with an exponent t^1:9. The inset shows the value

of t at different times. (b) Distribution of cell shapes at different times, as quantified by the shape factor W. The shape factor of different polygons is

reported at the bottom axis for comparison. (c) and (d)Maps showing the cell shapes (white lines) for the network as it is before 1955 (left panel) and as it

is after 1955 (right panel). We see on the left panel that we have predominantly triangles and rectangles, while on the right panel we can observe a

predominance of rectangles with sides of almost the same length.
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Figure 5. The four groups. (Left) Average distribution of the shape factor F for each group found by the clustering algorithm (each area bin is represented by a different

colour from small areas in dashed green, medium size in orange, and large cells in blue). (Right) Typical street patterns for each group (plotted at the same scale in order

to observe differences both in shape and areas). Group 1: Buenos Aires; Group 2: Athens; Group 3: New Orleans; Group 4: Mogadishu. (Online version in colour.)

Strano et al. (2012); Louf and Barthelemy (2014)
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Previous work with self organizing maps

A neural network in the analysis of city systems: J. Kropp 

Table 1 The 21 variables in the dataset 

1 Non-German residents 

2 Total city area 

3 Built-up area 

4 Number of motorcycles 

5 Total power consumption 

6 Total gas consumption 

7 Total water consumption 

8 Gas consumption by households 

9 Gas consumption by authorities 

10 Water consumption by households 

11 Number of flats 

12 Single-room flats 

13 Double-room flats 

14 Triple-room flats 

15 Hats with 4 rooms 

16 Flats with 5 rooms 

17 Flats with 6 rooms 

18 Flats with > 6 rooms 

19 Net tax yield 

20 Trade tax yield 

21 Social expenditure 

of the German city system, a subset of 134 measurements (including all items with a 

complete component vector) is used for the training process. 

Some of the variables involve physical data (e.g. city area; area occupied by buildings); 

others reflect lifestyles (e.g. total number of motor vehicles; size of apartments); a few 

variables represent social characteristics (e.g. number of non-German residents; social 

expenditure); and the remainder pertain to the economy of cities (e.g. net tax yield; trade 

tax yield). All variables are normalized with respect to city population sizes. 

Data preprocessing. When the data are encoded at different scales it is useful to trans- 

form them into comparable sets. However, data standardization presents problems 

(Kohonen, 1995). During the learning process the map orientates itself in the direction 

of the components with the largest variance. It is easy to see that this can depend on 

the normalization method. Here, the clear-cut separation of feature domains should be 

the major goal, and because the similarity measure loses identity of component differ- 

ences via summation, the components must contribute as much as possible to the simi- 

larity measure. Consequently the data were scaled to the unit interval by using the 

minimum/maximum values of each component of the measurement vector. 

Network simulations. The source code of the network simulator, including the algorithm 

for the calculation of the topographical product, was developed in the programming 

language C. The programs used for the analysis of the trained networks and the graphical 

presentations were generated in PV-WAVE. Numerical calculations were carried out on 

an IBM RS60001410 workstation. Because the learning is a Markovian process, five 

runs each were performed for the different network geometries and chosen embedding 

space dimensions. 

Results and discussion 

The results of simulating the German city system by this technique are discussed under 

three headings: reduction of information; classification of cities; and sensitivities to 

change. 

Dimensionality reduction 

In order to quantify the quality of the mapping, the topographical product was averaged 

for each geometry and for numbers of network nodes (Table 2). The simulations show 

Sorting vectors of city
characteristics to find
cluster of cities.

Self organizing maps (SOM) transform
multi-dimensional data into lower dimensions.
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Previous work in our research hub to cluster cities

Spoiler alert for Jason’s upcoming presentation

Clusters of
1667 cities
using neural
networks and
city maps and
social network
graphs.

Thompson et al. (2018)
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Previous work in our research hub to cluster cities

Clustering using neural network confusion recognizing maps of similar cities.

Do you recognise these 6 cities?

What about these cities?

We wanted to ask the same thing 

of cities

?
What makes this Melbourne and 

that Tokyo?

Relationship to road transport 

injury

Thompson et al. (2018)
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Block typologies - Maps

Four sample Google Maps used as the basis for block typologies (from
Paris, France)

Google Maps (2017).
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Block typologies - Sampling map imagery

Sampling locations for map imagery (from Hong Kong). 1000 locations for
each of the 1667 cities.
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Block typologies - Calculating block size and regularity

Results of flood filled city blocks showing flood fills of each individual
region to determine region size (count of pixels in grey). Differences
between region size and pixel counts within bounding boxes (outlined in
red) are used as a measure of regularity.
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Block typologies - Generating vectors for each map

Samples of map regions (top) and resulting histograms (bottom). Region
size, regularity, and colour counts are joined into a combined histogram
vector, with size frequencies in the first 15 bins, regularity in the second 15
bins and colour pixel counts in the remaining 5 bins.
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Block typologies-Detail of sorted vectors in SOM
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Block typologies - Self organizing map (SOM)

A visualisation of
the 2-dimensional
100x100 SOM
trained with 1.7
million map
images from 1667
cities. Each x,y
point shows a
representative
map section
associated with
each node while
nodes without
associated maps
are shown in
black.
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Block typologies - City mixes of neighbourhood types

New York

Braśılia

Barcelona

Paris

Nairobi

MelbourneJakarta

Sydney

Beijing

Tokyo

Sampled world cities with inserts showing detail of New York, Paris,
Barcelona, Braśılia, Nairobi, Jakarta, Melbourne, Tokyo, Beijing, and
Sydney. City detail maps use the same SOM (x,y) location colour scheme
as the colour map insert image (lower left).
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Block typologies

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

Sample representative maps from top SOM (x,y) locations for cities a)
Jakarta, b) Tokyo, c) New York, d) Paris, e) Nairobi, f) Beijing, g)
Barcelona, h) Melbourne, i) Sydney, and j) Braśılia.
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Block typologies - City ‘fingerprints’

Kernel density maps of SOM x,y locations for cities a) Jakarta, b) Tokyo,
c) New York, d) Paris, e) Nairobi, f) Beijing, g) Barcelona, h) Melbourne,
i) Sydney, and j) Braśılia. And SOM contents for Sydney, Australia.

a) b) c) d)

e) f) g) h)

i) j)
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AOD and NO2 data to illustrate utility of methodology
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Urban form data derived from Google Street View to
illustrate utility of methodology

Fractions of urban form calculated at 65 million locations.

Fig. 6. Sample image segmentation results illustrating segmentations with an accuracy > 95% (a-h) and an accuracy < 95% (i-p).

Landscape and Urban Planning 183 (2019) 122–132

127
Middel et al. (2019)
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Correlations with pollution and urban form

Parameter Correlation value

Movable objects fraction 0.97

Impervious surfaces fraction 0.86

Sky fraction 0.75

Building fraction 0.56

AOD 0.58

NO2 0.57

Correlations between mean average values by city and by city mix of (x,y)
location within the SOM.
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Block typologies - Alternative methods with T-SNE

Clustering of map segments from 1667 cities using T-SNE showing
representative maps and colour plots using lat/lon.
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Block typologies - T-SNE - City fingerprints

a) b) c) d)

e) f) g) h)

(x,y) T-SNE locations for a) Tokyo, b) Jakarta, c) Braśılia, d) Barcelona,
e) Paris, f) Nairobi. g) Beijing, h) New York.
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Block typologies - City clustering experiements

Aba, Nigeria

Abakaliki, Nigeria

Abomey-Calavi, Benin

Abuja, Nigeria

Acapulco de Ju rez, Mexico

Addis Ababa, Ethiopia

Aden, Yemen

Ado-Ekiti, Nigeria

Agadir, Morocco

Agartala, India

Agra, India

Aguadilla-Isabela-San Sebastian, Puerto Rico

Ahmadabad, India

Ahmadnagar, India

Ahvaz, Iran 

Aizawl, India

Ajmer, India

Akesu, China

Akola, India

Aktyubinsk, Kazakhstan

Akure, Nigeria

Al Obeid , Sudan

Al-Ain, United Arab Emirates

Al-Fayyum, Egypt

Al-Hasakah, Syrian Arab Republic

Al-Kamishli, Syrian Arab Republic

Al-Mahallah al-Kubra, Egypt

Al-Mukalla, Yemen

Al-Raqqa, Syrian Arab Republic

Aleppo, Syrian Arab Republic

Alexandria, Egypt

Algiers, Algeria

Aligarh, India

Allahabad, India

Amara, Iraq

Ambon, Indonesia

Amravati, India

Anand, India

Anantapur, India

Andizhan, Uzbekistan

Ankang, China

Anqiu, China

Anshan, China

Anshun, China

Antananarivo, Madagascar

Antofagasta, Chile

Anyang, China

Ar-Rayyan, Qatar

Arak, Iran 

Armenia, Colombia

As-Suways, Egypt

Asansol, India

Ashgabat, Turkmenistan

Asmara, Eritrea

Astana, Kazakhstan

Asunci¢n, Paraguay

Aswan, Egypt

Asyut, Egypt

Athens, Greece

Aurangabad, India

Baaqoobah, Iraq

Bafoussam, Cameroon

Bago, Myanmar

Baharampur, India

Bahawalpur, Pakistan

Baicheng, China

Baishan, China

Baiyin, China

Bamako, Mali

Bamenda, Cameroon

Bandar Abbas, Iran 

Bandar Lampung, Indonesia

Bangui, Central African Republic

Banjul, Gambia

Baoding, China

Baoji, China

Barcelona-Puerto La Cruz, Venezuela 

Barddhaman, India

Bareilly, India

Barinas, Venezuela 

Barisal, Bangladesh

Barletta, Italy

Barquisimeto, Venezuela 

Barranquilla, Colombia

Basilan City , Philippines

Batam, Indonesia

Batman, Turkey

Batna, Algeria

Bauchi, Nigeria

Bazhong, China

Beer Sheva, Israel

Begusarai, India

Beira, Mozambique

Belgaum, India

Bellary, India

Belo Horizonte, Brazil
Bel‚m, Brazil

Bengbu, China

Benxi, China

Berbera, Somalia

Bergamo, Italy

Bhagalpur, India

Bhavnagar, India

Bhilwara, India

Bhiwandi, India

Bhubaneswar, India

Bien Hoa, Viet Nam

Bihar Sharif, India

Bijapur, India

Bijie, China

Binzhou, China

Bissau, Guinea-Bissau

Blantyre-Limbe, Malawi

Blida, Algeria

Blumenau, Brazil

Boa Vista, Brazil

Bobo-Dioulasso, Burkina Faso

Bogot , Colombia

Bogra, Bangladesh

Bokaro Steel City, India

Bologna, Italy

Botou, China

Bouake, C“te dIvoire

Bozhou, China

Brahmapur, India

Bras¡lia, Brazil

Bryansk, Russian Federation

Bucaramanga, Colombia

Buenaventura, Colombia

Bujumbura, Burundi

Bukavu, Democratic Republic of the Congo

Bulawayo, Zimbabwe

Bunia, Democratic Republic of the Congo

Bursa, Turkey

Butuan, Philippines

Cagayan de Oro City, Philippines

Cairo, Egypt

Calabar, Nigeria

Calcutta, India

Cali, Colombia

Campinas, Brazil

Campos dos Goytacazes, Brazil

Can Tho, Viet Nam

Cangzhou, China

Caserta, Italy

Cebu City, Philippines

Cenxi, China

Chandrapur, India

Changde, China

Changge, China

Changji, China

Changning, China

Changsha, China

Changyi, China

Changzhi, China

Chaohu, China

Chaoyang, China

Chaozhou, China

Chengde, China

Chenzhou, China

Cherepovets, Russian Federation

Cherthala, India

Chiclayo, Peru

Chifeng, China

Chimbote, Peru

Chittagong, Bangladesh

Chitungwiza, Zimbabwe

Chizhou, China

Choloma, Honduras

Chongjin, Dem. Peoples Republic of Korea

Chongqing, China

Chuxiong, China

Ciudad Guayana, Venezuela 

Coimbatore, India

Comilla, Bangladesh

Como, Italy

Concepci¢n, Chile

Cotabato, Philippines

Cuautla Morelos, Mexico

Cuernavaca, MexicoCusco, Peru

C¢rdoba, Mexico

C£cuta, Colombia

Dafeng, China

Dali, China

Damascus, Syrian Arab Republic

Dandong, China

Danyang, China

Daqing, China

Dar es Salaam, United Republic of Tanzania

Darbhanga, India

Dashiqiao, China

Datong, China

Davangere, India

Daye, China

Dazhou, China

Deir El-Zor, Syrian Arab Republic

Delhi, India

Dengfeng, China

Dengzhou, China

Denton-Lewisville, United States of America

Dera Ghazikhan, Pakistan

Dewas, India

Deyang, China

Dezhou, China

Dhaka, Bangladesh

Dhanbad, India

Dhule, India

Diwaniyah, Iraq

Diyarbakir, Turkey

Djibouti, Djibouti

Donggang, China

Dongtai, China

Dongying, China

Douala, Cameroon

Dujiangyan, China

Durg-Bhilainagar, India

Durgapur, India
Effon Alaiye, Nigeria

El Djelfa, Algeria

El Tigre-San Jos‚ de Guanipa, Venezuela 

Elazig, Turkey

Eldoret, Kenya
English Bazar, India

Enshi, China

Enugu, Nigeria

Erduosi , China

Eslamshahr, Iran 

Ezhou, China

Faisalabad, Pakistan

Faloojah, Iraq

Fangchenggang, China

Farrukhabad, India

Fayetteville-Springdale, United States of America

Feicheng, China

Feira De Santana, Brazil

Fengcheng, China

Firozabad, India

Florian¢polis, Brazil

Freetown, Sierra Leone

Fss, Morocco

Fuan, China

Fuqing, China

Fushun, Liaoning, China

Fuxin, China

Fuyang_2, China

Fuzhou, Fujian, China

Fuzhou, Jiangxi, China

Ganzhou, China

Gaoan, China

Gaocheng, China

Gaomi, China

Gaozhou, China

Gaya, India

Gaziantep, Turkey

Gboko, Nigeria

Gnc, Azerbaijan

Gombe, Nigeria

Gongyi, China

Gongzhuling, China

Gorgan, Iran 

Grande Vit¢ria, Brazil

Guangan, China

Guangyuan, China

Guarenas-Guatire, Venezuela 

Guatemala City, Guatemala

Guayaquil, Ecuador

Guigang, China

Guilin, China

Guiping, China

Guiyang, China

Gujranwala, Pakistan

Gujrat, Pakistan

Gwalior, India

Habra, India

Haerbin, China

Haicheng, China

Haimen, China

Hamadan, Iran 

Hamah, Syrian Arab Republic
Hamhung, Dem. Peoples Republic of Korea

Hami, China

Hanchuan, China

Handan, China

Hanzhong, China

Harare, Zimbabwe

Hargeysa, Somalia

Hebi, China

Hegang, China

Hejian, China

Hengshui, China

Hengyang, China

Herat, Afghanistan

Heshan, China

Heyuan, China

Heze, China

Hezhou, China

Hillah, Iraq

Hisar, India

Homs, Syrian Arab Republic

Hong Kong, China, Hong Kong SAR

Honolulu, United States of America

Hosur, India

Huaian, China

Huaibei, China

Huaihua, China

Huainan, China

Huambo, Angola

Huangshan, China

Huangshi, China

Hubli-Dharwad, India

Huizhou, China

Huludao, China

Hyderabad, Pakistan

Ibagu‚, Colombia
Ibb, Yemen

Ichalakaranji, India

Ife, Nigeria

Igbidu, Nigeria

Ilorin, Nigeria

Imphal, India

Indio-Cathedral City-Palm Springs, United States of America

Indore, India

Iquique, Chile

Iquitos, Peru

Islamabad, Pakistan

Izhevsk, Russian Federation

Jabalpur, India

Jaipur, India

Jalgaon, India

Jalna, India

Jambi, Indonesia

Jamnagar, India

Jamshedpur, India

Jhang, Pakistan

Jhansi, India

Jiamusi, China

Jian, Jiangxi, China

Jiangmen, China

Jianyang, China

Jiaozhou, China

Jiaozuo, China

Jiddah, Saudi Arabia

Jieyang, China

Jilin, China

Jinan, Shandong, China

Jincheng, China

Jingdezhen, China

Jingmen, China

Jingzhou, Hubei, China

Jining, Shandong, China

Jinjiang, China

Jinzhong, China

Jinzhou, China

Jiujiang, China

Jixi, Heilongjiang, China

Joaeo Pessoa, Brazil

Jodhpur, India

Johannesburg, South Africa

Joinville, Brazil

Jos, Nigeria

Juazeiro Do Norte, Brazil

Jubayl, Saudi Arabia

Junagadh, India

Jurong, China

Kabul, Afghanistan

Kadapa, India

Kaifeng, China

Kaili, China

Kaiping, China

Kakinada, India

Kananga, Democratic Republic of the Congo

Kandahar, Afghanistan

Kannur, India

Kano, Nigeria

Kanpur, India

Karachi, Pakistan

Karaj, Iran

Karbala, Iraq

Karimnagar, India

Kassala, Sudan

Kasur, Pakistan

Katsina, Nigeria

Kayamkulam, India

Kelamayi, China

Kermanshah, Iran 

Khartoum, Sudan

Khorramabad, Iran 

Khulna, Bangladesh

Kigali, Rwanda

Kikwit, Democratic Republic of the Congo

Kinshasa, Democratic Republic of the Congo
Kirkuk, Iraq

Kisangani, Democratic Republic of the Congo

Kismaayo, Somalia

Kissimmee, United States of America

Kitwe, Zambia

Knitra, Morocco

Kolhapur, India

Kolwezi, Democratic Republic of the Congo

Korba, India

Kota Kinabalu, Malaysia

Kota, India

Kottayam, India

Krivoi Rog, Ukraine

Kuantan, Malaysia

Kuerle, China

Kunming, China

Kurgan, Russian Federation

Kurnool, India

Kut, Iraq

La Paz, Bolivia

La Serena-Coquimbo, Chile

Lagunillas, Venezuela 

Lahore, Pakistan

Laibin, China

Laiwu, China

Laixi, China

Laiyang, China

Laizhou, China

Lancaster-Palmdale, United States of America

Langfang, China

Lanzhou, China

Larkana, Pakistan

Las Vegas, United States of America

Latina, Italy

Lattakia, Syrian Arab Republic

Latur, India

Leiyang, China

Leping, China

Leshan, China

Lianyungang, China

Liaocheng, China

Liaoyang, China

Liaoyuan, China

Likasi, Democratic Republic of the Congo

Liling, China

Lilongwe, Malawi

Lima, Peru

Linan, China

Linfen, China

Linqing, China

Linyi, Shandong, China

Linzhou, China

Lipa City, Philippines

Lishui, Zhejiang, China

Liupanshui, China

Liuyang, China

Liuzhou, China

Liyang, China

Lokoja, Nigeria

Lom‚, Togo

Longhai, China

Longkou, China

Longyan, China

Loudi, China

Loum, Cameroon

Luoding, China

Luohe, China

Luoyang, China

Lusaka, Zambia

Luzhou, China

Lvliang, China

Macap , Brazil

Macheng, China

Madurai, India

Magnitogorsk, Russian Federation

Maiduguri, Nigeria

Makhachkala, Russian Federation Makurdi, Nigeria

Malappuram, India

Malard, Iran 

Malatya, Turkey

Malegaon, India

Mandalay, Myanmar

Mangalore, India

Manizales, Colombia

Maoming, China

Maracay, Venezuela 

Mardan, Pakistan

Mariupol, Ukraine

Mashhad, Iran

Masqat , Oman

Matadi, Democratic Republic of the Congo

Matamoros, Mexico

Mathura, India

Matola, Mozambique

Maturin, Venezuela 

Maunath Bhanjan, India

Mawlamyine, Myanmar

Mbeya, United Republic of Tanzania

Mbouda, Cameroon

Mbuji-Mayi, Democratic Republic of the Congo

Mecca, Saudi Arabia

Medell¡n, Colombia

Meerut, India

Meishan, China

Mekele, Ethiopia

Meknss, Morocco

Memphis, United States of America

Merca, Somalia

Merida, Venezuela 

Miluo, China

Minna, Nigeria

Misratah, Libya

Mogadishu, Somalia

Mombasa, Kenya

Monrovia, Liberia

Monteria, Colombia

Monywa, Myanmar

Moradabad, India

Mosul, Iraq

Mudanjiang, China

Multan, Pakistan

Mumbai , India

Muzaffarnagar, India

Muzaffarpur, India

Mwanza, United Republic of Tanzania

Mymensingh, Bangladesh

NDjam‚na, Chad

Naberezhnye Tchelny, Russian Federation

Nagasaki, Japan

Najaf, Iraq

Najran, Saudi Arabia

Nakuru, Kenya

Namangan, Uzbekistan

Nampula, Mozambique

Nanchong, China

Nanded Waghala, India

Nankang, China

Nanning, China

Nanyang, Henan, China

Nashik, India

Nasiriyah, Iraq

Natal, Brazil

Navsari, India

Nawabshah, Pakistan

Nay Pyi Taw, Myanmar

Ndola, Zambia

Neijiang, China

Neiva, Colombia

Niamey, Niger

Nizamabad, India

Nizhny Tagil, Russian Federation

Nnewi, Nigeria

Nola, Italy

Nouakchott, Mauritania

Novokuznetsk, Russian Federation

Nyala, Sudan

Nzrkor, Guinea

Ogbomosho, Nigeria

Ogden-Layton, United States of America

Okara, Pakistan

Okene, Nigeria

Okpogho, Nigeria

Omsk, Russian Federation

Ondo, Nigeria

Onitsha, Nigeria

Orenburg, Russian Federation

Orumiyeh, Iran 

Oshogbo, Nigeria

Ouagadougou, Burkina Faso

Owerri, Nigeria

Oxnard, United States of America

Pachuca de Soto, Mexico

Palembang, Indonesia

Panjin, China

Panzhihua, China

Parbhani, India

Pasto, Colombia

Patna, India

Pavlodar, Kazakhstan
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Block typologies summary

• Block typologies enables inter- and intra-city comparisons.

• Method uses size and regularity of city blocks and amounts of public
transport and green and blue space (through pixel counts).

• City ‘fingerprints’ reveal that most cities have similar mixes of
neighbourhood types but with slight variations (but some cities are
completely different). Same basic ingredients but different sauces.

• Can evaluate how the mix and spatial distribution of neighbourhoods
impacts performance indicators of each city.

• Method is extendible. Sorted vectors can include any additional
spatial parameters (traffic counts, urban form elements,
demographics, etc.).

• Future work: to use block typologies to examine urban form impacts
on public health, transportation safety, active transport, etc.
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