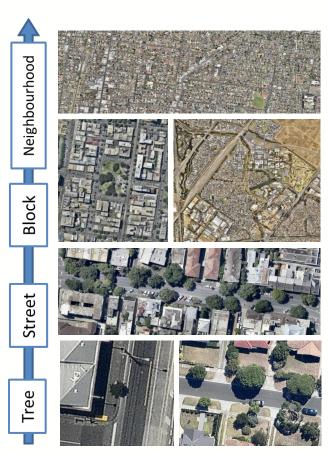
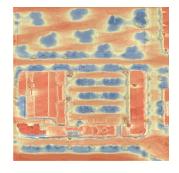

Urban greening for improved human thermal comfort

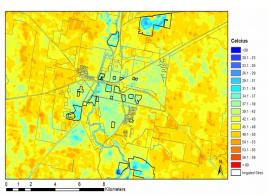
Kerry Nice

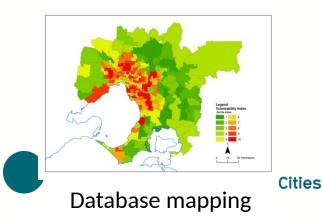
CRC for Water Sensitive Cities School of Earth, Atmosphere and Environment Monash University



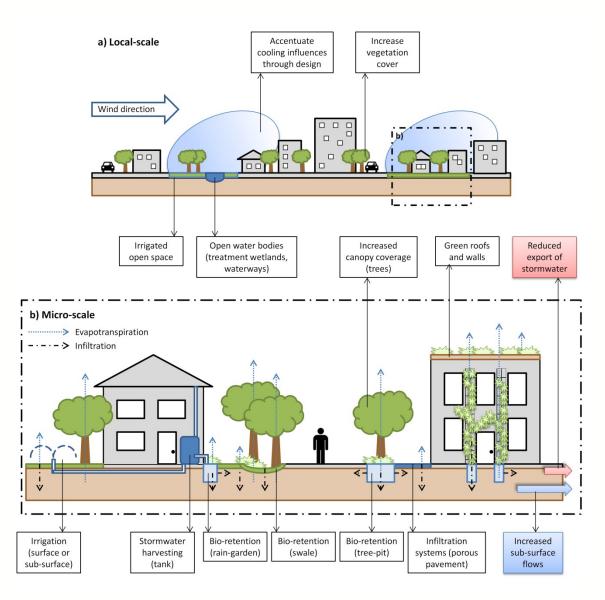

Research questions

- How effective are storm water harvesting technologies, tree cover, green infrastructure and WSUD in improving urban climates **at a range of scales**?
- What are the key configurations required to reduce temperatures to save lives under heat wave conditions and to enhance human thermal comfort and liveability?



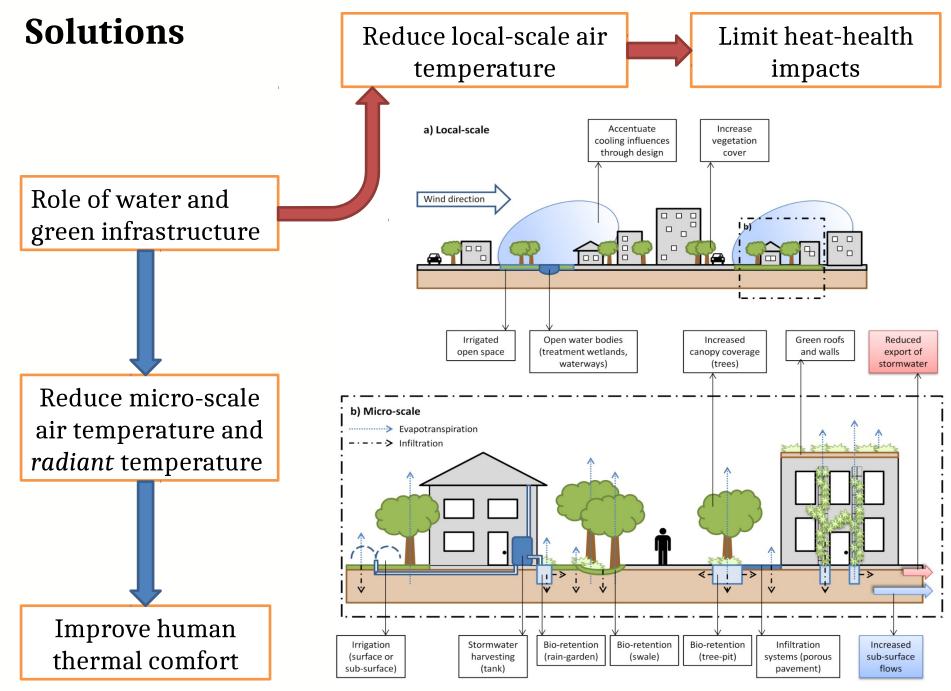

Observations

Modelling

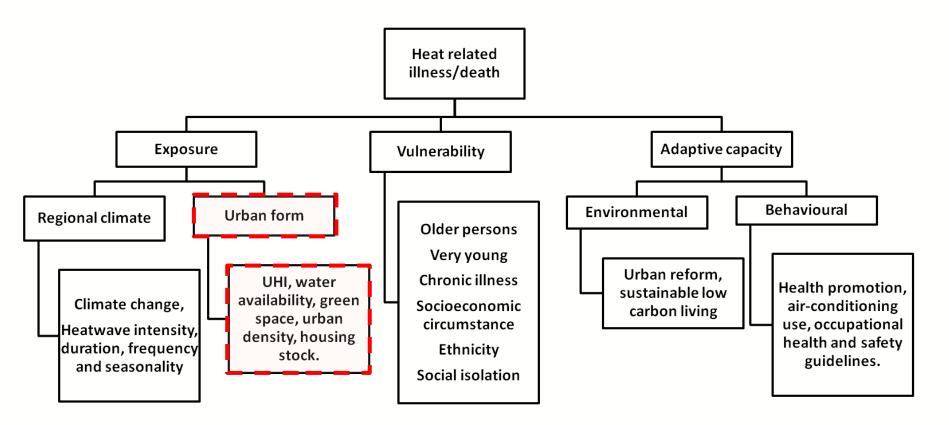

Remote sensing

Urban greening for improved human thermal comfort

2 Key Goals:


- Reduced neighbourhood (local-scale) air temperature
- Improve street (micro-scale)
 human thermal comfort

Coutts et al 2013


© CRC for Water Sensitive Cities 2012

Coutts, Tapper, Beringer, Loughnan, Demuzere (2013)

Heat-health relationships

Tapper, Coutts, Loughnan & Pankhania (2014)

Heat-Health Background

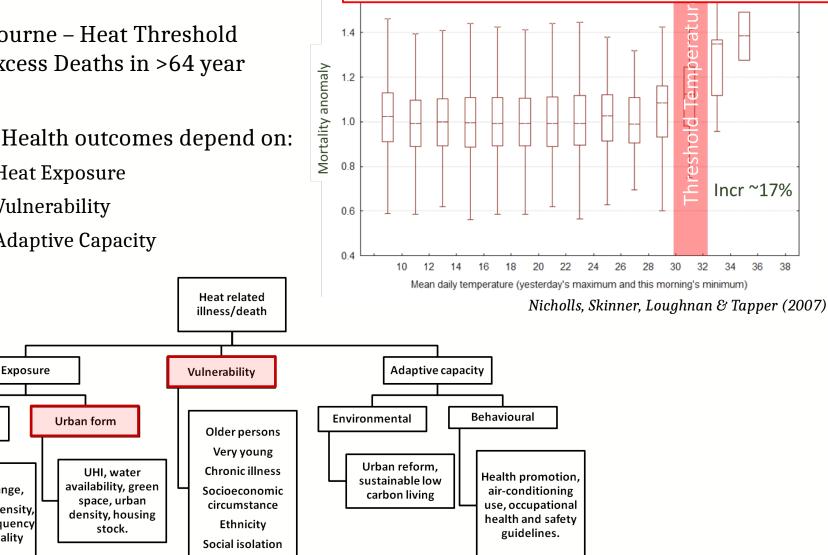
- Melbourne Heat Threshold • for Excess Deaths in >64 year olds
- Heat-Health outcomes depend on:
 - Heat Exposure •
 - Vulnerability •

Regional climate

Climate change,

Heatwave intensity,

duration, frequency


and seasonality

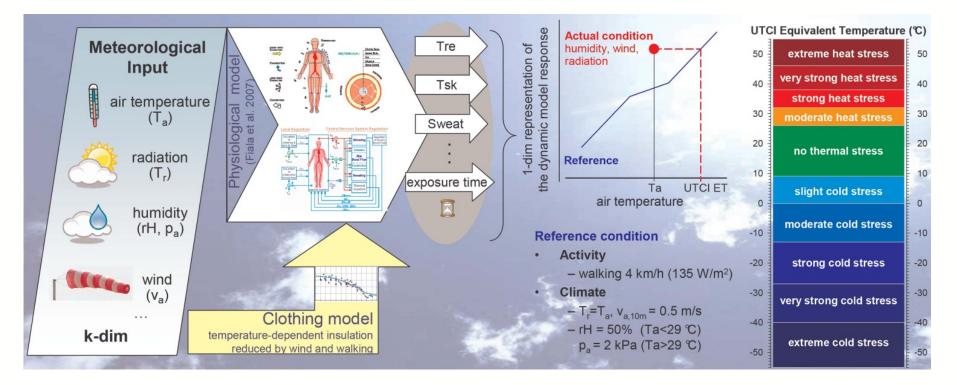
Adaptive Capacity

Suggested that even a slight temperature reduction (1-2° C) in extreme heat events (i.e. heat mitigation) would be sufficient to save many lives

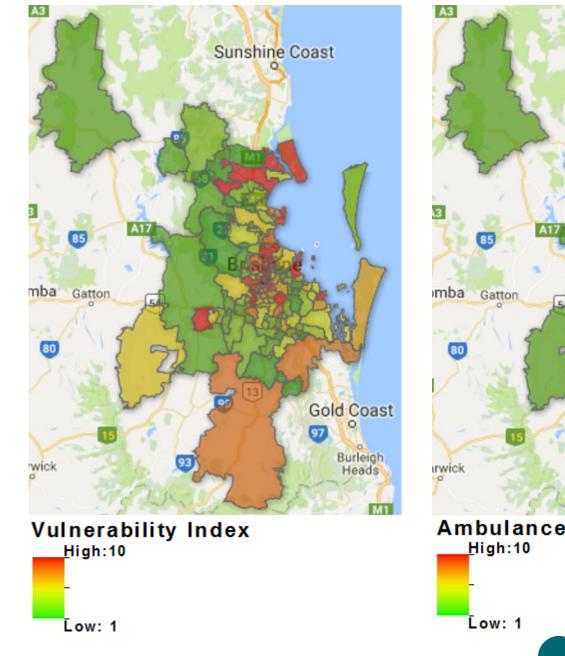
CRC for

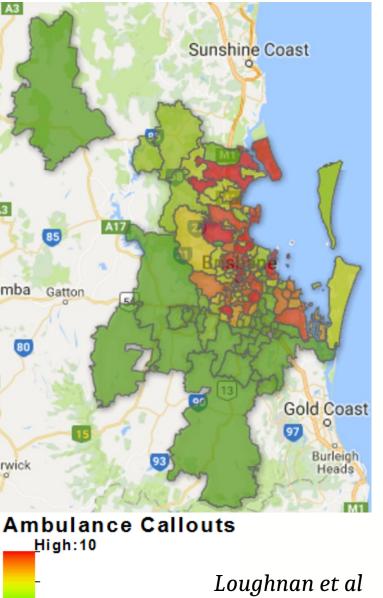
Water Sensitive Cities

Threshold Temperatures (Best Predictors of Mortality/Morbidity) for Australia's Capital Cities


Table 6: Threshold temperature derived from analyses of daily all-cause mortality, daily emergency hospital admissions, daily ambulance call-outs or emergency department presentations in Australian capital cities (number of days exceeding the temperature threshold over the record period are in parenthesis)

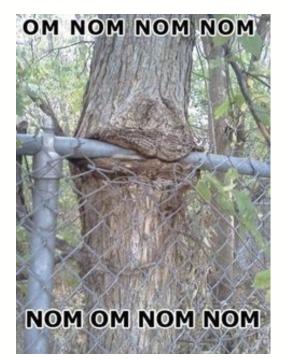
City	Number of days of	Tmax		Tmin		meanT		AT	
	data		% increase in median		% increase in median		% increase in median		% increase in median
Brisbane Morbidity Mortality	2956 4007	36 (55) 36(58)	2.5–12% 12%	26 (7) 25(11)	2.5% 5%	34 (2) 31(6)	9% 15%	40(25) 40(9)	4–11% 8%
Canberra Morbidity Mortality	2320 4007	37 (33) 33(179)	5–10% 5%	20 (30) 20(43)	5% 2%	28 (28) 28(16)	5-8% 2%	38(11) 41(4)	8-10% 5%
Darwin Morbidity Mortality	1826 4007	36 (4) 37(11)	5% 5%	28 (17) 29(19)	5% 8%	31 (19) 31(94)	7% 3%	35(5) 47(5)	5% 10–20%
Hobart Morbidity Mortality	2953 4007	NA 35(13)	11%	18 (28) 20(5)	5–20% 2%	27 (3) 28(5)	5% 6%	36(5) 37(6)	4–10% 5–20%
Melbourne Morbidity Mortelity	3287	44 (5)	3%	26 (6)	3%	34 (6)	3%	42(10)	2–3%
Perth Morbidity Mortality	2007 4007	43 (3) 44(3)	14% 30%	26 (4) NA	4%	NA 32(20)	3–10%	43(8) 45(3)	2–5% 10%
Adelaide Morbidity Mortality	3045 4007	NA 42(21)	2–8%	31(4) NA	5%	39(1) 34(2)	24% 8%	NA 43(16)	2–10%
Sydney Morbidity Mortality	4162 4007	41(3) 38(3)	5–38% 2–18%	25(5) 25(3)	4% 5%	31(5) 30(12)	2% 5%	41(3) 37(27)	5% 2–24%


Final report Loughnan, Tapper et al., 2013 SPATIAL VULNERABILITY TO EXTREME HEAT EVENTS IN AUSTRALIAN CAPITAL CITIES. National Climate Change Adaptation Research Facility, Gold Coast, pp146

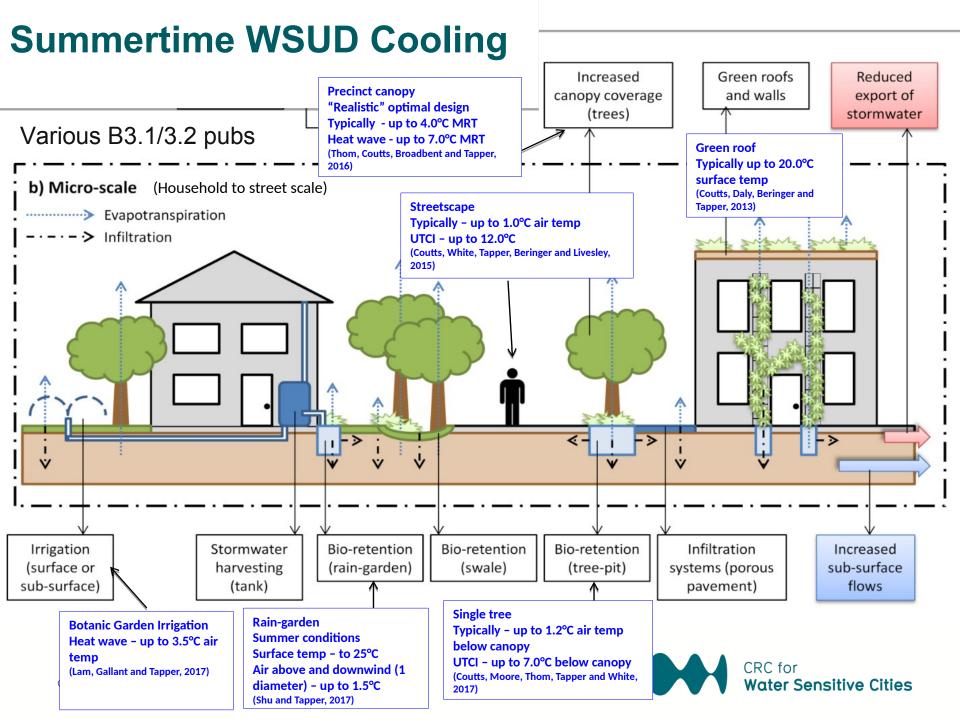

Human thermal comfort

- Considers multiple microclimate variables
- Determined by a thermal comfort index
- Provides an assessment of heat stress
- Mean radiant temperature important during the day

CRC for Water Sensitive Cities

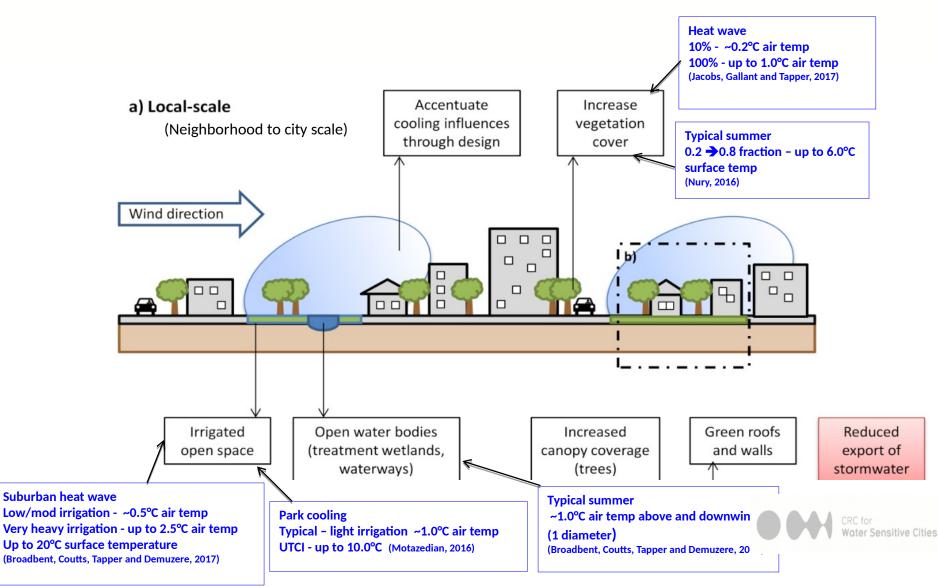


CRC for Water Sensitive Cities


© CRC for Water Sensitive Cities 2012

Trees must be part of the solution

- They provide shade, reducing *mean radiant temperature*
- They access water from deep layers of the soil
- Diversity of species allowing more tailored greening options
- They deliver multiple benefits
- People just 'get' trees



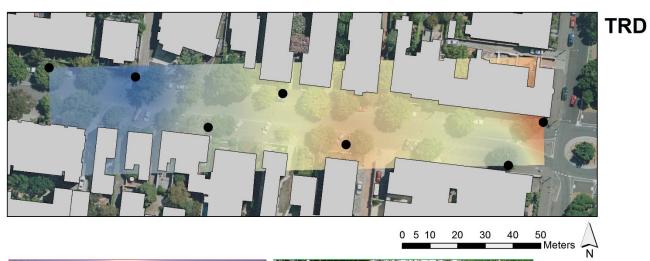
		· · · · · · · · · · · · · · · · · · ·	<i>(110 01 01 (2010)</i>		
UGI	Green open spaces	Trees	Green roofs	Vertical greening	
Shades canyon surfaces?	Yes, if grass rather than concrete	Yes	Shades roof, not internal canyon surfaces	Yes	
Shades people?	Yes, if treed	Yes	No, only very intensive green roofs	No	
Increases solar reflectivity?	Yes, when grassed	Yes	Yes, if plants healthy	Yes	
Evapo-transpirative cooling?	Yes, with water	Yes	Yes, with water when hot	Yes, with water when hot	
	No, without water	(unless severe drought)	No, without water	No, without water	
Priority locations	 Wide streets with low buildings – both sides Wide streets with tall buildings – sunny side 	 Wide streets, low buildings – both sides Wide streets, tall buildings – sunny side In green open spaces 	 Sun exposed roofs Poor insulated buildings Low, large buildings Dense areas with little available ground space 	 Canyon walls with direct sunlight Narrow or wide canyons where trees are unviable 	

Summertime WSUD Cooling

Various B3.1/3.2 publications

Street tree cooling

OPEN street vs. a • TREED street

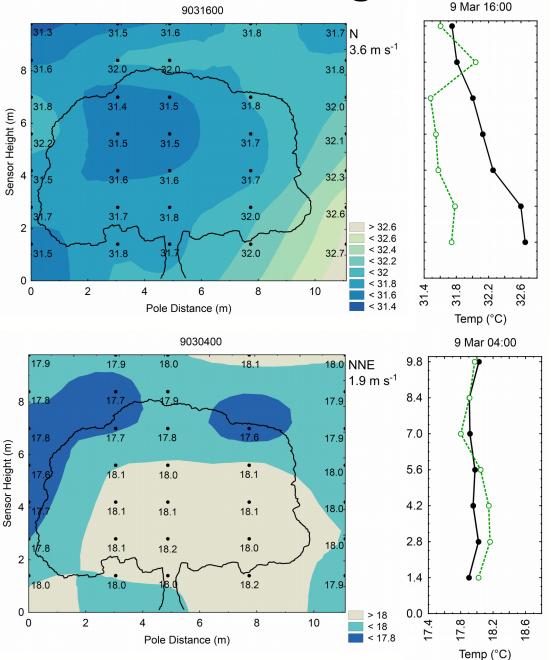

30.2

Coutts, et al (2015)

CRC for

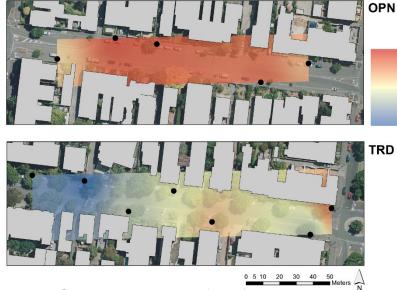
- Average daytime • air temperature
- 4-12 March 2013
- 29.2 9 consecutive days exceeding 32 °C
 - Differences of up ٠ to 3.1 °C among the seven stations in TRD

ater Sensitive Cities



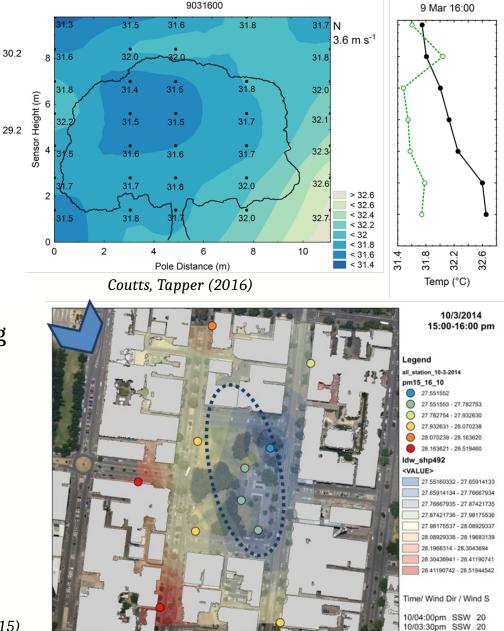
5 10

Isolated tree cooling

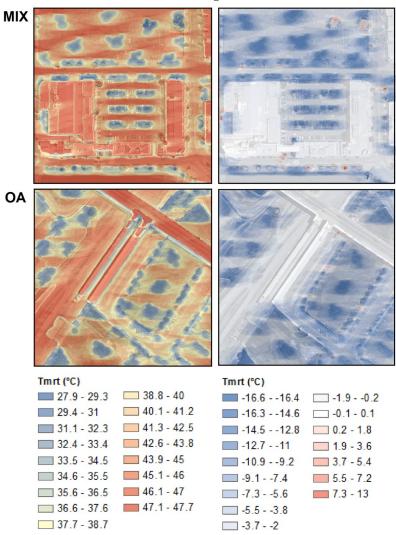

- Micro-scale cooling from shading
- Transpiration will add to local scale cooling
- Up to 1.2 °C difference at 1.4 metres
- Large improvements in human thermal comfort

- Slightly warmer below canopy at night of up to 0.4 °C
- Radiation trapping and emission below canopy
- Longwave cooling at canopy surface

Coutts et al (2016)


Reduce micro-scale air temperature

Coutts, Livesley, Beringer, Tapper (2015)


- Reductions in air temperature during the day
- Downwind cooling limited: Greening must be distributed widely
- Cooling variable in complex urban environment:
 - Type of greening
 - Urban geometry
 - Meteorology
 - Etc

Motazedian (2015)

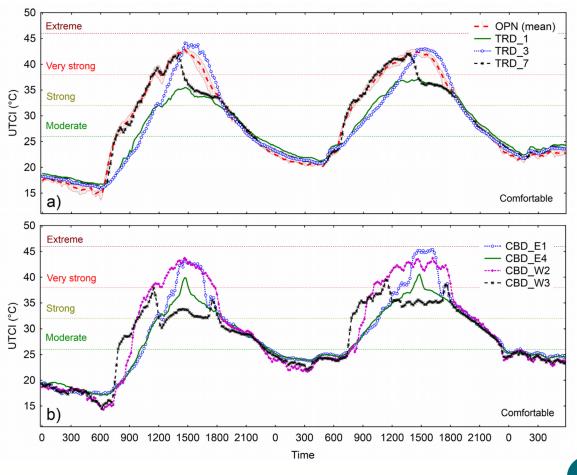
10/03:00pm SSW 20

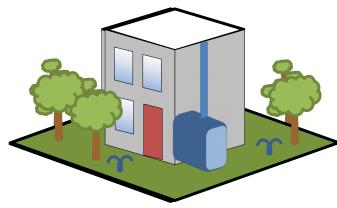
Reduce micro-scale radiant temperature

Mean radiant temperature (model)

Thom, Coutts, Broadbent, Tapper (2016)

CRC for Water Sensitive Cities

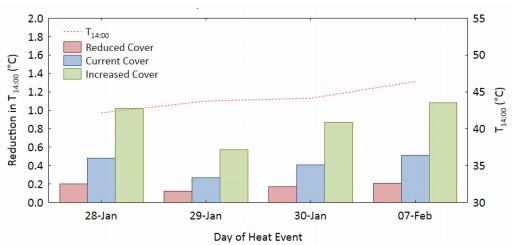

Coutts et al (2016)


Land surface temperature (remote sensing)

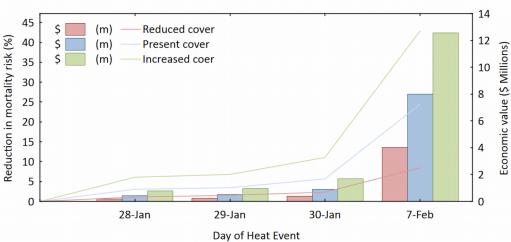
- Large reductions in daytime Land SURFACE temperature from greening and irrigation
- Large reductions in daytime Mean RADIANT temperature due to shade

Improve human thermal comfort - Streetscape

• Large improvements in daytime human thermal comfort from trees. Critical that trees are present where possible in greening scenarios



Coutts, Livesley, Beringer, Tapper (2015)



Reducing heat-health costs with trees

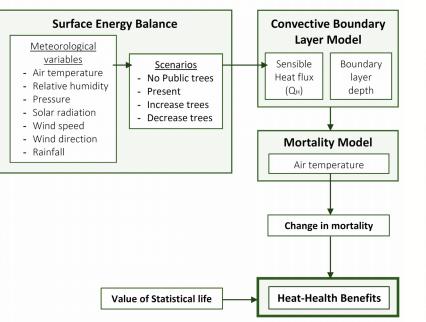

- Economic benefit of street trees
 City of Monash
- Street trees only (private veg left unchanged)
- Also valued carbon uptake and storage, air quality and stormwater

Figure 4.12: Illustrates the change in temperature ($T_{14:00}$) attributed to three tree cover scenarios: (i) the current tree population, (ii) a 50 % reduction in public trees, and (iii) a 100 % increase in public trees (left axis). $T_{14:00}$ measured at Moorabbin Airport on the four most extreme days of the 2009 heatwave is displayed on the right axis.

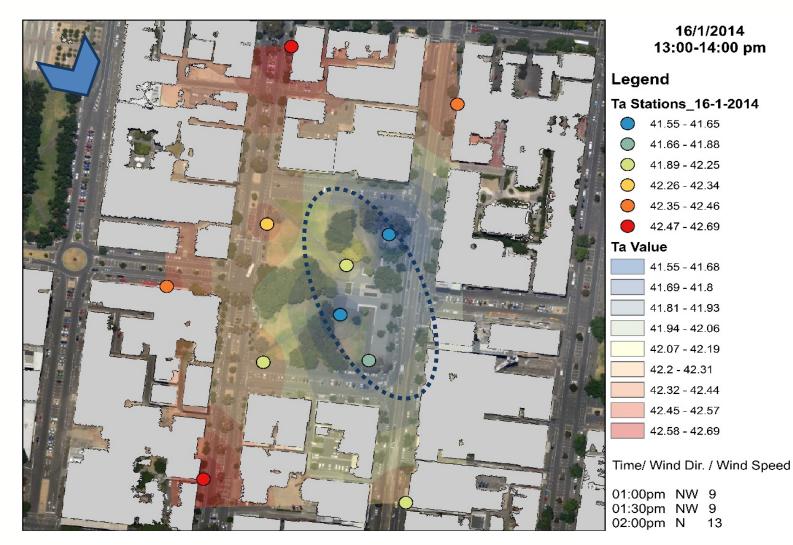
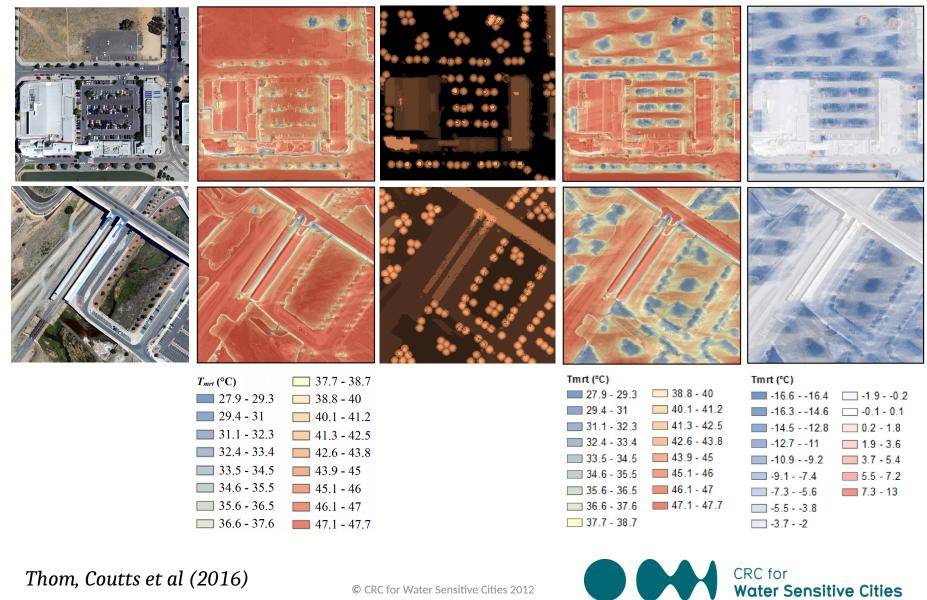


Figure 4.13: Illustration of the reduction in predicted mortality (Δ M) during an extreme heat event (left axis). Here canopy cover scenarios are: (i) present tree population, (ii) increased tree population, and (iii) reduced tree population. The associated economic value (\$) is indicated in bars for each scenario (right axis) based on the recommended VSL for Australian policy analysis (\$ 4.2 million) (Australian Government, 2014).

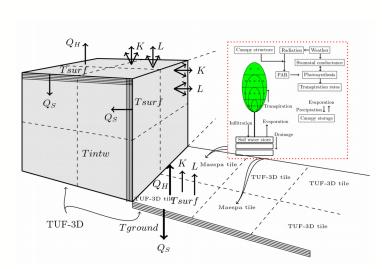
Thom (2015); Thom, Coutts and Tapper (2016)

Green open space cooling

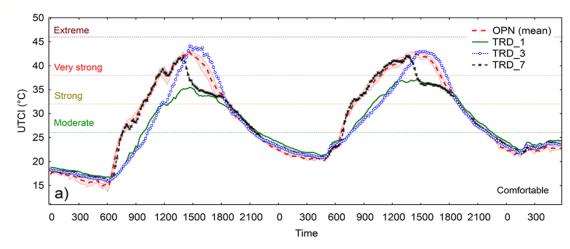


Motazedian, Coutts, Tapper (2016)

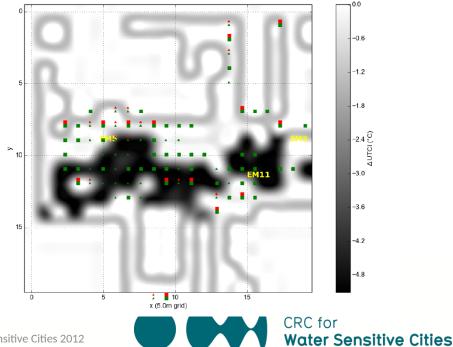
© CRC for Water Sensitive Cities 2012

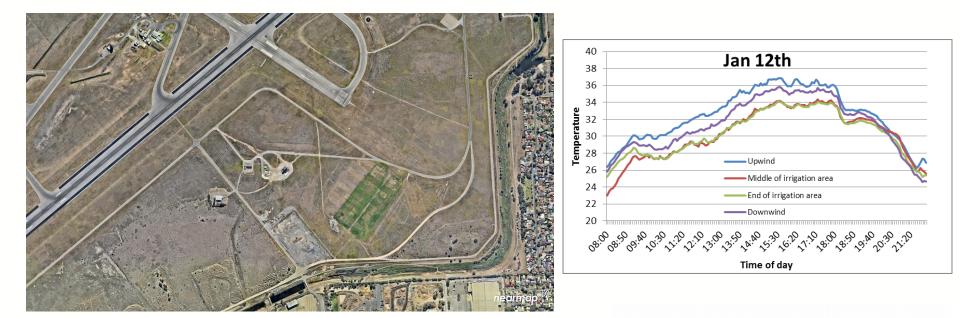


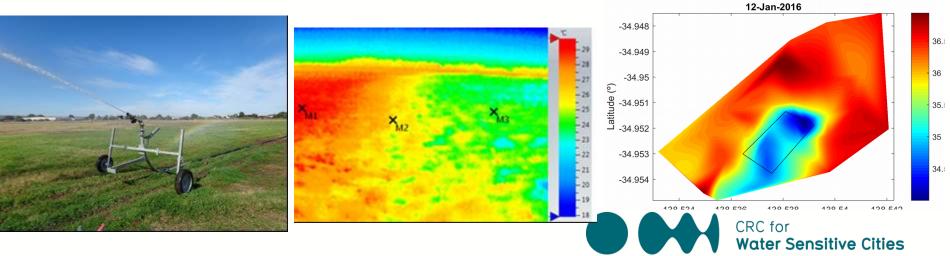
Trees reduce *mean radiant temperature*



Thom, Coutts et al (2016)

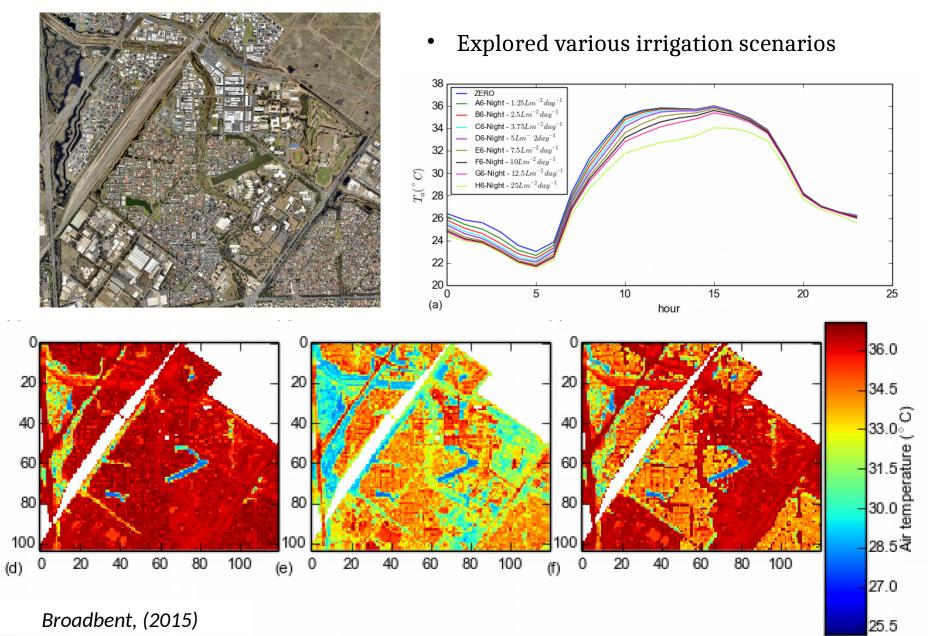

Trees improve human thermal comfort


CoMGippScenarios5-4xTrees - CoMGippScenarios3-Trees differences - UTCI 2012-02-24-1500 = added tree, A = added canopy = previous tree, A = previous canopy



Nice, 2016

© CRC for Water Sensitive Cities 2012


Irrigation study at Adelaide Airport

(Ingleton

Irrigation cooling

Landscape irrigation - Mawson Lakes, Adelaide

Temporal Patterns

Table 1: A description of irrigation scenarios used in this study.

Scenario	Hourly irrigation	Daily irrigation	Water-use (domain)*	Water-use (residential)
	(L m ⁻² hr ⁻¹)	$(L m^{-2} d^{-1})$	$(ML d^{-1})$	(ML d ⁻¹)
24Irr5L	0.21	5	17.6	3.8
24Irr10L	0.42	10	35.1	7.6
24Irr15L	0.63	15	52.7	11.5
24Irr20L	0.83	20	70.2	15.3
24Irr30L	1.25	30	105.3	22.9
Day_6Irr1.25L Night_6Irr1.25L	0.21	1.25	4.4	1.0
Day_6Irr2.5L Night_6Irr2.5L	0.42	2.50	8.8	1.9
Day_6Irr3.75L Night_6Irr3.75L	0.63	3.75	13.2	2.9
Day_6Irr5L Night_6Irr5L	0.83	5.00	17.6	3.8
Day_6Irr7.5L Night_6Irr7.5L	1.25	7.50	26.3	5.7
Day_6Irr10L Night_6Irr10L	1.67	10.0	35.1	7.6
Day_6Irr12.5L Night_6Irr12.5L	2.08	12.5	43.9	9.6
Day_6Irr25L Night_6Irr25L	4.17	25.0	87.8	19.2

day scenarios = 11 am-5 pm

night scenarios = 11 pm-5 am

ML = mega-litres

*note that these simulations are hypothetical and in reality irrigation would be conducted selectively. We irrigated the whole domain to assess the effect of irrigation across the entire suburban environment.

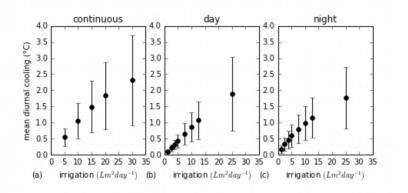
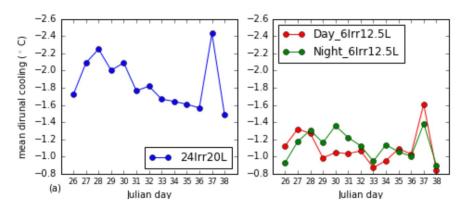
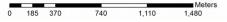
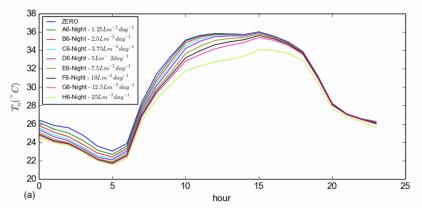


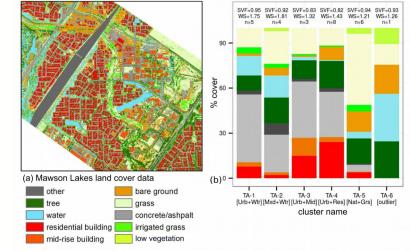
Figure 7: Heatwave average diurnal cooling (with standard deviations) for (a) continuous, (b) day, and (c) night irrigat

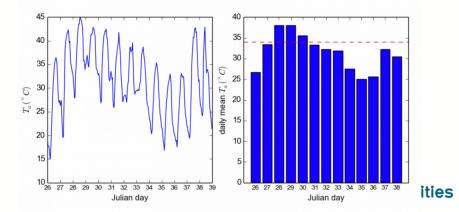
- Continuous irrigation average cooling of up to 2.3°C (30L/m2/day)
- Non-linear (20L/m2/day may be optimal)
- Bigger impact on hotter days
- Night irrigation marginally less effective than day irrigation

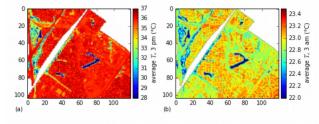




Figure 8: The mean diurnal cooling on each day of the heatwave for (a) 24Irr20L and (b) Day/Night_6Irr12.5L scenarios.

Landscape irrigation for cooler cities and suburbs – Example from Mawson Lakes, Adelaide






Broadbent, Coutts, Demuzere and Tapper (2017)

- Used an observation-validated SURFEX model to assess impact of irrigation during 2009 heatwave
- A range of irrigation scenarios simulated

Landscape irrigation - Mawson Lakes, Adelaide

case (no irrigation) simulation. The x and y axis are labelled by cell number

-1.6 ູ ິ

24Irr20L

spatial representation of the heatwave average (a) 3 pm and (b) 3 am T_a (2 m) across the Mawson Lakes domain fo

24Irr20L

Modelled Heatwave Temp

24h20L

3pm/3am

-1.6

-3.2

-4.0

Spatial Patterns

- Significant spatial variation within the domain due to pervious fraction and vegetation type (see left and below)
- For continuous irrigation, more cooling during day than night – LHF especially large

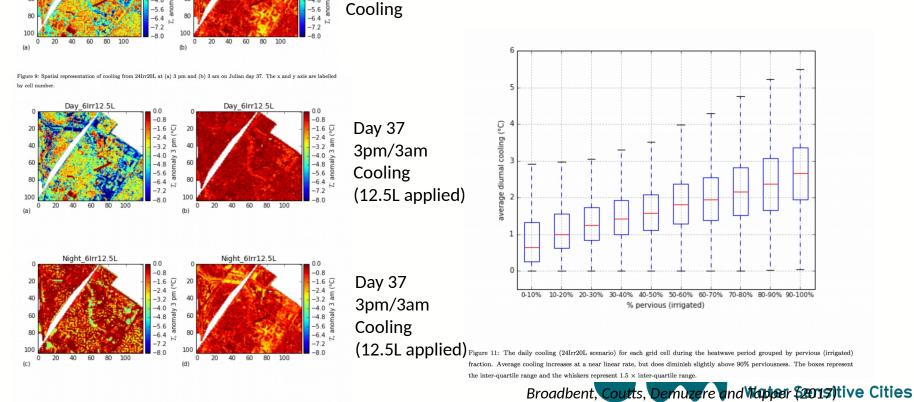
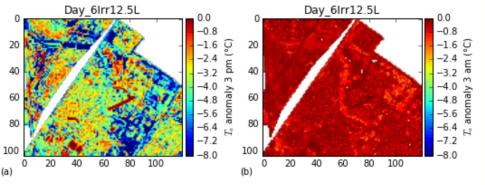
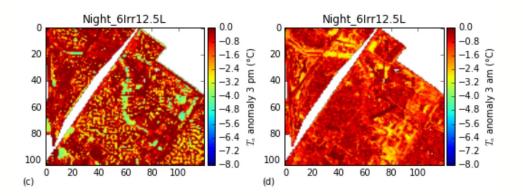




Figure 10: Spatial representation of cooling from Day/Night.61rr12.5L scenario at (a/c) 3 pm and (b/d) 3 am on Julian day 37. The x and y axis are labelled by cell number.

SURFEX modelling irrigation schemes

р

⁽Broadbent 2017)

City of Melbourne, 2012

Water and trees

Trees can be extremely beneficial for urban climate BUT:

- They must have full canopies to provide shade
- Be actively transpiring to provide evaporative cooling

A lack of water compromises this (Whitlow and Bassuk, 1988):

- Low soil water availability:
 - High stormwater runoff
 - Drought
 - Water restrictions
 - Reduced infiltration:
 - Hydrophobic soils
 - Compacted soils

City branches out to replace drought-hit trees

Dewi Cooke May 11, 2010

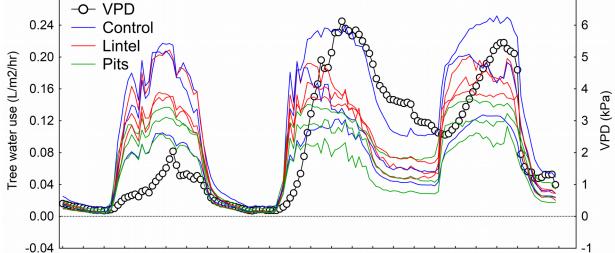
Comments 17,

Extreme weather and the ravages of time have left many of Melbourne's trees in need of replacement. *Photo: Justin McManus*

MELBOURNE will look to such countries as Spain, Chile and the US for replacements of thousands of drought-ravaged trees

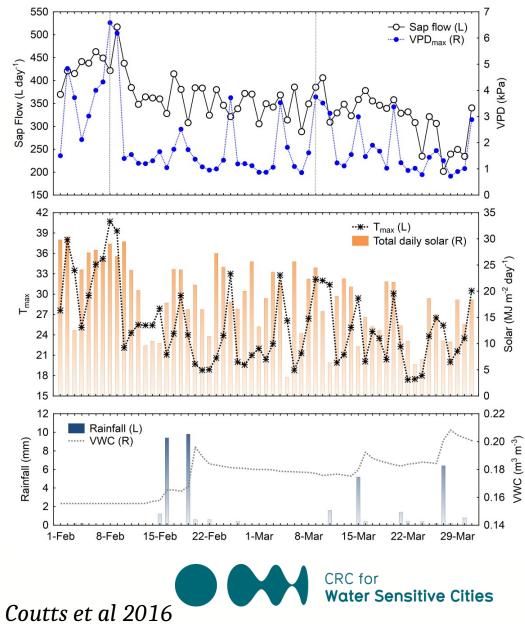
Passive irrigation of street trees

0.28



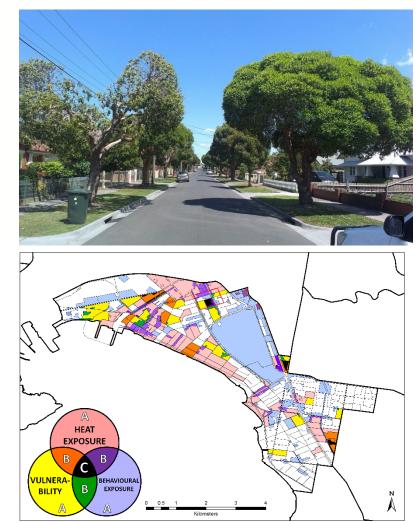
- Evidence of stomatal control on water loss
- Water transport at night
- No clear evidence of benefit of passive irrigation – issues with treatments
- 2015/16 summer???

1-3 Jan 2015


0 500 1000 1500 2000 100 600 1100 1600 2100 200 700 1200 1700 2200

Coutts, Thom, Szota, Livesley, (2015)

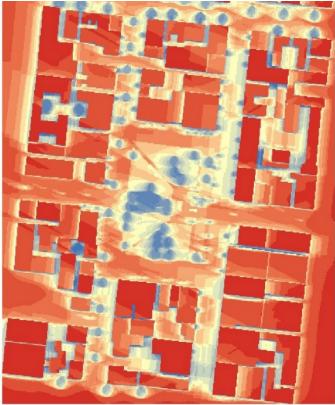
Water use of an isolated tree



Key interventions

- Existing street trees should be protected & maintained
 - Passive and active irrigation in built up areas
 - Maintain healthy canopies for shading
- More trees should be planted
 - Prioritise canopy cover in areas of high solar exposure
 - Highly localised benefit so trees must be distributed
 - Tree species should be diverse
 - Water should be supplied
- 'Right tree, right place'
 - Consider light, water availability, climate, etc

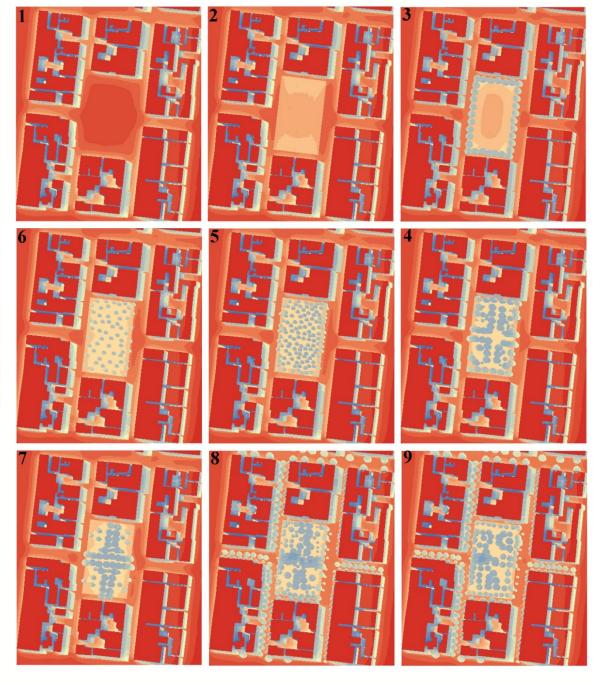
Norton, B. A., Coutts, et al 2015.


Prioritising tree placement

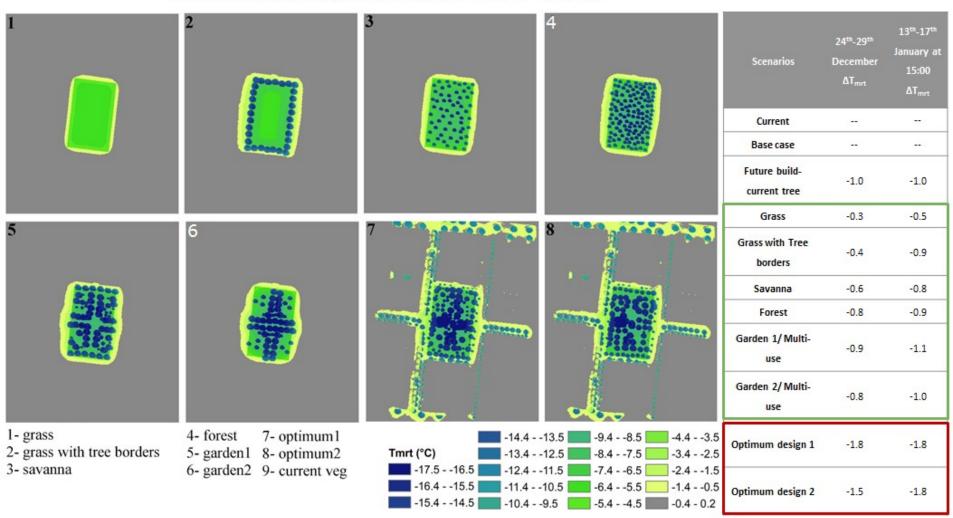
- Wide open streets should be targeted as they are exposed to larger amounts of solar radiation during the day (Norton et al., 2015).
- **East-west oriented streets** were targeted as they are exposed to more solar radiation during the day (Ali-Toudert and Mayer, 2006).
- North facing walls (in the Southern Hemisphere) in east-west streets, and west facing walls to provide shading from the afternoon sun when Ta peaks.
- Trees should be **clustered together** more effective at reducing Tmrt than isolated trees (Streiling and Matzarakis, 2003) and can help protect them from intense radiative loads (Oke, 1988).
- Employ a 'Savanah' type landscape arrangement (as suggested by Spronken-Smith [1994] in relation to urban parks) of clustered trees interspersed with open areas to provide daytime shading while allowing nocturnal cooling and ventilation (Spronken-Smith and Oke, 1998)

Thom, Coutts et al 2016

Current


- 1-base case
- 2- grass
- 3- grass with tree borders
- 4- savanna
- 5- forest

6-garden1
7- garden2
8- optimum1
9- optimum2
10- current veg

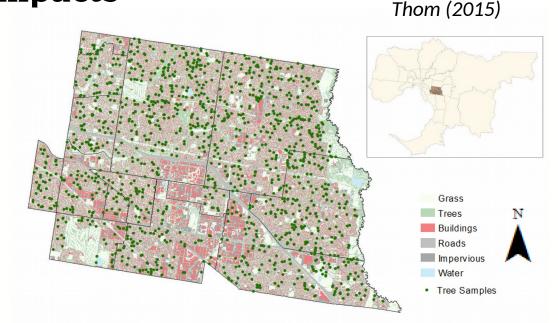

	42.4 - 43.6 48 - 49.8	56.7 - 57.8
Tmrt (°C)	43.7 - 44.7 49.9 - 52.2	2 57.9 - 59.1
37.8 - 40.1	44.8 - 45.7 52.3 - 53.8	3 59.2 - 60.3
40.2 - 41.2	45.8 - 46.8 53.9 - 55.1	1 60.4 - 61.6
41.3 - 42.3	46.9 - 47.9 55.2 - 56.6	61.7 - 62.3

Motazedian, 2016

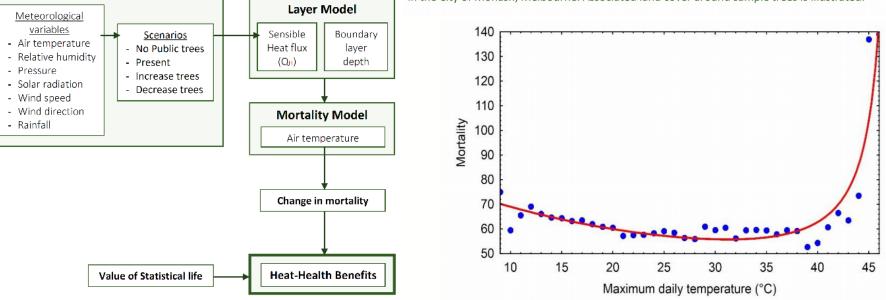
Scenarios

12/17

Motazedian, 2016


Limiting heat health impacts

Convective Boundary


- Economic benefit of street trees – City of Monash
- Mortality benefits (\$)

Surface Energy Balance

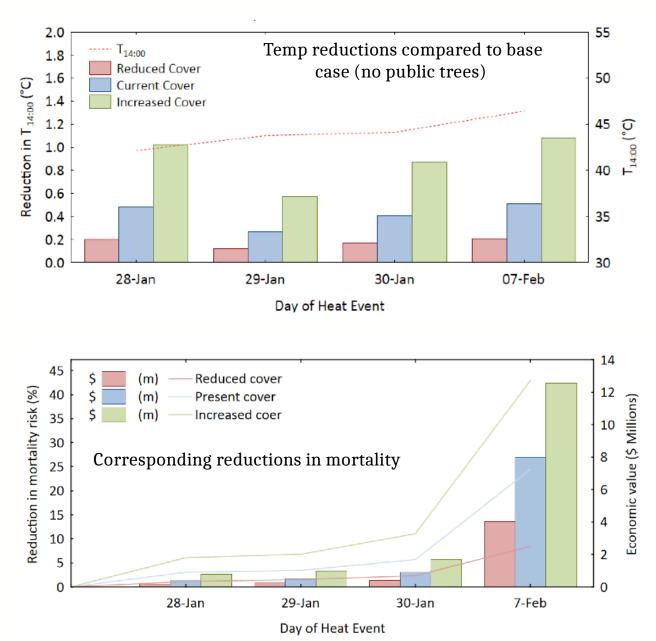
- Street trees only (private veg left unchanged)
- Also valued carbon uptake and storage, air quality and stormwater

Figure 3.6: Street trees selected by stratified random sampling process (1 284) for field measurement in the City of Monash, Melbourne. Associated land cover around sample trees is illustrated.

Limiting heat health impacts

Thom (2015)

Scenarios


- No street trees (base case) (17%)
- Current street trees (24%)
- Less street trees (20%)
- More street trees (32%)

Mortality benefits over 4 day period:

- Current tree cover delivers
 ~0.5°C benefits = \$9.78
 million
- Doubling of cover provides a further ~0.5°C benefits (~1.0°C total over base case) =\$16.01 million

Total value of current urban forest

• \$12.85 million

Principle	Why?	Example of each principle	
EXISTING TREES Aim to maximise the cooling potential of existing trees and vegetation cover first. Trees that are healthy, with a full canopy and actively transpiring will provide the greatest benefit. Existing vegetation must be supported with sufficient water (preferably from water sensitive urban design or alternative water sources)	 Water stressed trees limit their water loss during hot dry conditions and can lose their canopy. This can compromise both evaporative cooling and shading. Existing trees already provide a substantial cooling benefit. Lead times for tree replacement limits cooling. 		Example of an unhealthy tree versus a healthy tree. Greater shading and transpiration from the healthy tree canopy. Cooling from a single tree can reach over 1.0°C during the day beneath the tree canopy with a much greater reduction in 'felt' temperature Large trees with unrestricted water supplies can transpire hundreds of litres of water per day

LACK OF VEGETATION

Focus on dense urban environments with little or no vegetation. Wellwatered vegetation is most effective at cooling under warm/hot and dry conditions and this coincides with areas of highest heat exposure that can place vulnerable populations at risk.

- The warmer and drier atmosphere means trees will transpire more (if well-watered).
- Greater opportunity for trees to shade urban surfaces (roads, pavements, walls) in denser urban environments, reducing surface heating.
 Focusing on dense
- urban environments will deliver a greater cooling benefit per tree.

Example of very high amounts of impervious surfaces where trees are drastically needed.

Wide streets are exposed to large amounts of solar radiation and require shade.

This example is likely to be a hotspot with high heat stress in an area with parking, restaurants, public transport and health services.

USE TREES Harness the cooling and HTC benefits of trees that achieve cooling via both evapo-transpiration and shading. Trees also deliver	 Trees prevent solar radiation reaching pedestrians, reducing T_{mrt}. Green roofs and walls do not shade pedestrians. Trees provide more °C of 	Example of trees providing shade for roads, buildings, sidewalks and pedestrians, especially in wide-open streets. Trees can drastically reduce heat stress.
more cooling and improvement in HTC for the amount of water applied, compared to other urban green approaches.	 cooling per litre of water than grass and other green infrastructure, such as green roofs. Shading from the tree canopy makes trees the most effective and efficient vegetation approach for cooling. 	Further greening could occur via wall and rooftop greening to improve building energy efficiency, to reduce heat storage in the ground and urban materials, and to reduce air (and in the case of walls) T _{mrt} temperature.

Principle	Why?	Example of each principle	
DISTRIBUTE TREES Trees and vegetation need to be distributed at regular intervals throughout the urban environment. Distributing trees throughout the landscape should provide a larger areal extent of cooling than large, but isolated green areas	 The cooling effects of trees are highly localised (especially from shade). Cooling effects extend downwind to a distance equivalent to tree/park width. People are distributed throughout the landscape, so trees (and their cooling effects) should be too. 		An example showing green areas that are well vegetated and irrigated, providing downwind cooling effects extending to around one park width. This example also shows only few trees in surrounding streets and hence limited sidewalk shading for pedestrians beyond the park boundary. Green corridors should connect separated urban parks wherever possible.

SMART PLANNING Work with the built environment to accentuate cooling influences through strategic design. Urban spaces should be sensitive to local and regional climatic influences (such as sea breezes and prevailing winds) and maintain natural cooling	 Tree cooling effects can be enhanced or negated by the built environment (e.g. buildings shading trees, or large buildings blocking downwind cooling effects). Strategic design can deliver larger cooling benefits for \$\$\$ invested. 	An example of how buildings already provide some shade. Carefully consider the placement of trees to maximise their cooling benefit and achieve the largest benefit for their cost (i.e. don't replicate shade. Follow the 'Guidelines for targeted street-scale tree arrangements' that consider street orientation, street widths
and maintain		that consider street

Guideline	Why?	Example of where to target
STREET WIDTH Target wide, open streets with a low "Building Height to Street Width ratio" (H:W) to provide shade	 Wide open streets are exposed to greater amounts of solar radiation leading to higher daytime heat stress. Tree canopies absorb and reflect solar radiation, reducing the amount of radiation that reaches pedestrians and urban surfaces below. 	
STREET ORIENTATION Target east-west oriented streets	• East-west oriented streets are exposed to more solar radiation during the day compared to north-south oriented streets where some building shading occurs in the morning and afternoon.	
STREET SIDES Target the southern side of east-west streets (in the Southern Hemisphere) Target the eastern side of north-south oriented streets	 The north facing walls are exposed to greater solar radiation throughout the day, leading to heat stress. The west facing walls are exposed to greater solar radiation at the peak daytime heating period (maximum air temperature). 	W.
TREE GROUPING Trees should be clustered together in groups where possible, with overlapping canopies to maximise shading.	 Isolated trees can be exposed to high heat and radiation loads in urban areas, increasing tree water stress. Clustering trees delivers greater reductions in air temperature and T_{mrt} below the canopy than isolated trees. 	Dsolated Clusters
TREE SPACING Groups of clustered trees should be interspersed with open spaces	 Groups of trees provide shading during the day, while the open spaces between allows for surface cooling and ventilation (wind) at night. 	

CRC for Water Sensitive Cities

Summary of Urban Tree Planting Priorities

Canyon width	Street tree prioritisation								Orientation	
Very wide	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	E-W
40m	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	N-S
Wide	0.13	0.27	0.40	0.53	0.67	0.80	0.93	1.07	1.20	E-W
30 m	0.13	0.27	0.40	0.53	0.67	0.80	0.93	1.07	1.20	N-S
Medium	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	E-W
20 m	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	N-S
Narrow	0.40	0.80	1.20	1.60	2.00	2.40	2.80	3.20	3.60	E-W
10 m	0.40	0.80	1.20	1.60	2.00	2.40	2.80	3.20	3.60	N-S
Convon boight	4 m	8 m	12 M	16 m	20 M	24 M	28 m	32 m	36 m	
Canyon height	Low			Medium	1		High			

Table 1: Table of Height to Width ratio (H:W) for streets in Melbourne and their priority rating for protection and implementation of trees to improve daytime human thermal comfort (Norton et al., (2015)). Those zones marked as red are of a high priority for street tree planting as they are exposed to high amounts of solar radiation and so tree shading is most needed. Those zones marked green and blue are less of a priority as buildings along the street provide shade.

Bibliography

Broadbent, A.M., Coutts, A.M., Tapper, N.J. and Demuzere, M. (2017a), The cooling effect of irrigation on urban microclimate during heatwave. Urban Climate.

Broadbent, A.M., Coutts, A.M., Tapper, N.J., Demuzere, M. and Beringer, J. (2017b), The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment. Theor. Appl. Climatol.:pp. 1–23.

Bröde, P. (2009), Program for calculating UTCI Temperature (UTCI) released for public use after termination of COST Action 730, UTCI, Version a 0.002, October 2009. http://www.utci.org/public/UTCI%20Program%20Code/ReadMe UTCI a002.txt.

Coutts, A.M., Daly, E., Beringer, J. and Tapper, N.J. (2013a), Assessing practical measures to reduce urban heat: Green and cool roofs. Building and Environment, 70:pp. 266–276.

Coutts, A.M., White, E.C., Tapper, N.J., Beringer, J. and Livesley, S.J. (2015), Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoretical and Applied Climatology, 124(1):pp. 55–68.

Coutts, A. and Tapper, N. (2017), Trees for a Cool City: Guidelines for optimised tree placement. Technical report, Cooperative Research Centre for Water Sensitive Cities, Melbourne Australia.

Coutts, A.M., Daly, E., Beringer, J. and Tapper, N.J. (2013b), Assessing practical measures to reduce urban heat: Green and cool roofs. Building and Environment, 70:pp. 266–276.

Coutts, A., Moore, C., Tapper, N.J. and White, E.C. (2016), Microclimate of isolated trees in the urban environment. In: 2nd Urban Tree Diversity Conference, Melbourne, Australia, 22-24 February 2016.

Ingleton, G. (2015), Adelaide Airport Stormwater Irrigation Trial - determining the multiple benefits of irrigated vegetation.

Jacobs, S.J., Gallant, A.J. and Tapper, N.J. (2017), The sensitivity of urban meteorology to soil moisture boundary conditions: A case study in Melbourne, Australia. Journal of Applied Meteorology and Climatology, 56(8):pp. 2155–2172.

Lam, C.K.C., Gallant, A.J. and Tapper, N.J. (2016), Perceptions of thermal comfort in heatwave and non-heatwave conditions in Melbourne, Australia. Urban Climate.

Loughnan, M., Nicholls, N. and Tapper, N. (2012), Hot Spots Project: A spatial vulnerability analysis of urban populations to extreme heat events. http://www.health.vic.gov.au/environment/heatwave/agencies/research pubs.htm, (accessed 16 October 2012).

Motazedian, A. (2017), The microclimatic interaction of a small urban park with its surrounding urban environment: case study of projected impacts of urban densification focusing on heat events in Melbourne. Phd, Monash University.

Nice, K.A. (2016), Development, validation, and demonstration of the VTUF-3D v1.0 urban micro-climate model to support assessments of urban vegetation influences on human thermal comfort. Phd thesis, Monash University.

Nice, K.A., Coutts, A.M. and Tapper, N.J. (2018), Development of the VTUF-3D v1.0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort. Urban Climate:pp. 1–25.

Norton, B.A., Coutts, A.M., Livesley, S.J., Harris, R.J., Hunter, A.M. and Williams, N.S.G. (2015), Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 134:pp. 127–138.

Nury, S.N. (2015), Informed implementation of greening as a heat mitigation measure in Melbourne, Australia: a remote sensing study. Ph.D. thesis, Monash University.

Tapper, N., Coutts, A., Loughnan, M. and Pankhania, D. (2015), Urban populations' vulnerability to climate extremes: mitigating urban heat through technology and water-sensitive urban design. In: Low Carbon Cities: Transforming Urban Systems (ed. S. Lehmann), chapter 20, Routledge, pp. 361–374.

Thom, J. (2015), An Environmental and Economic Analysis of Ecosystem Service Provision By Street Trees in the City of Monash. Bsc (hons), Monash University.

Thom, J., Coutts, A., Broadbent, A. and Tapper, N.J. (2016), The influence of increasing tree cover on mean radiant temperature across a mixed development suburb in Adelaide, Australia. Urban Forestry & Urban Greening.

An Australian Government Initiative