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Abstract 

Due to the scarcity of air temperature (Ta) observations, urban heat studies often rely on satellite-

derived Land Surface Temperature (LST) to characterise the near-surface thermal environment. 

However, there remains a lack of a quantitative understanding on how LST differs from Ta within 

urban areas and what are the controlling factors of their interaction. We use crowdsourced air 

temperature measurements in Sydney, Australia, combined with urban landscape data, Local Climate 

Zones (LCZ), high-resolution satellite imagery, and machine learning to explore the interplay of urban 

form and fabric on the interaction between Ta and LST. Results show that LST and Ta have distinct 

spatiotemporal characteristics, and their relationship differs by season, ecological infrastructure, and 

building morphology. We found greater seasonal variability in LST compared to Ta, along with more 

pronounced intra-urban spatial variability in LST, particularly in warmer seasons. We also observed a 

greater temperature difference between LST and Ta in the built environment compared to the natural 

LCZs, especially during warm days. Natural LCZs (areas with mostly dense and scattered trees) 

showed stronger LST-Ta relationships compared to built areas. In particular, we observe that built 

areas with higher building density (where the heat vulnerability is likely more pronounced) show 

insignificant or negative relationships between LST- Ta in summer. Our results also indicate that 

surface cover, distance from the ocean, and seasonality significantly influence the distribution of hot 

and cold spots for LST and Ta. The spatial distribution for Ta hot spots does not always overlap with 

LST. We find that relying solely on LST as a direct proxy for the urban thermal environment is 

inappropriate, particularly in densely built-up areas and during warm seasons. These findings provide 

new perspectives on the relationship between surface and canopy temperatures and how these relate to 

urban form and fabric. 

Keywords: air temperature, land surface temperature, crowdsourcing, remote sensing, land use data, 

local climate zone, urban heat 
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1. Introduction 

Urban heat is a significant contemporary challenge that is caused by the combined effect of urban 

development and global climate change. It poses a multifaceted threat, impacting not only human 

health, well-being, and performance but also the energy efficiency and economy of cities (Nazarian et 

al., 2022). Heat exposure leads to adverse heat-related illnesses and subsequent morbidity challenges, 

such  as cardiorespiratory diseases and infection (Aflaki et al., 2017; Méndez-Lázaro et al., 2018; Tan 

et al., 2010), with direct consequences to mortality (Gosling et al., 2009). Elevated urban temperatures 

can also increase demands for cooling and air conditioning and consequently increase energy 

consumption, greenhouse gas emissions, and anthropogenic heat in cities (O’Malley et al., 2015; 

Radhi et al., 2015).  

There has been substantial research investigating urban heat and assessing the effectiveness of heat 

mitigation strategies for different cities. Much of this research uses satellite-based Land Surface 

Temperature (LST) to assess urban heat through bird's-eye view surface temperatures. However, 

canopy urban heat, measured by air temperature (Ta), is more directly relevant for public health and 

citizen thermal comfort (Martilli et al., 2020). The use of LST data for heat mitigation analysis is 

motivated by the consistent, global observation of the land surface provided by satellites (Zhou et al., 

2019), whereas Ta is recorded only at locations where meteorological stations are available. Since air 

temperature varies significantly (both temporally and spatially) in urban areas, adequate data is 

needed to examine extreme urban air temperature (Kloog et al., 2014). The limited number of sensors 

used for monitoring air temperature presents a shortcoming in providing sufficient spatial details for 

mitigating the adverse effects of urban heat (Baranka et al., 2016; Wang et al., 2017).   

To address this limitation, many studies have estimated Ta using weather stations and satellite-based 

LST data in different cities (Benali et al., 2012; Ho et al., 2014; Yang et al., 2017). However, the sites 

where Ta is measured are often from pseudo-urban locations such as airport fields or large parks, 

where Ta is not representative of the neighbourhoods where people live. This is because traditional 

observing networks of national meteorological organisations are installed to observe synoptic or 

large-scale features and intentionally avoid urban effects (Schlünzen et al., 2023). World 

Meteorological Organization (WMO) guidelines state observing stations should be "well away from 

trees, buildings, walls or other obstructions" (WMO, 2021). This leaves few locations within urban 

areas that conform with WMO standards; hence these observation networks are typically sparse and 

do not capture the spatial variability of air temperature in heterogeneous cities. Thus, Ta investigated 

by many studies may not be an appropriate reference for assessing urban heat in a more complex 

urban area with varying surface cover and structure. 
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Surface cover affects the temperature by modifying the moisture content, albedo, and cooling/heating 

capacity of the land surface, whereas surface structure and morphology influence airflow, the transfer 

of heat, and the radiation balance (Stewart and Oke, 2012). To characterise this variability in cities 

and capture this intra-urban temperature variation, Stewart and Oke (2012) introduced the concept of 

a Local Climate Zone (LCZ). This classification method is used to distinguish microclimate 

variability based on urban neighborhoods and natural land cover.  

A consensus on the interaction between LST and Ta has not yet been reached. Some studies stated that 

Ta and LST show similar patterns at night (Dousset, 1989). However, the relationship between LST 

and Ta during the daytime and across different urban landscapes remains elusive. Previous research 

presents conflicting results: studies in Shanghai and Hangzhou, China (Cai et al., 2018) and Sendai, 

Japan (Zhou et al., 2020) compared the distribution of LST and Ta  across LCZs. The former found 

similar air and surface temperature patterns across all LCZs, whereas the latter observed a stronger 

relationship with LCZs for LST compared to Ta. A study in Shenzhen, China, assessed the intra-city 

spatial pattern of Ta and LST (derived from MODIS imagery) and observed that there was a positive 

relationship between these two temperatures, but they differed in the spatial patterns of hot and cold 

spots (Cao et al., 2021). Further, there have been studies comparing weather station Ta with satellite-

based LST at regional and global scales (Jin and Dickinson, 2010; Zhang et al., 2014), stating that 

they are positively correlated, and their relationship depends on land cover type and other factors. 

However, numerous studies have suggested that canopy and surface urban heat islands may have 

different diurnal and seasonal patterns (Chakraborty et al., 2017; Ho et al., 2016; Krelaus et al., 2023; 

Venter et al., 2020; Venter et al., 2021; Wang et al., 2017).  

This inconsistency among existing findings regarding the interaction between LST and Ta might be 

attributed to a limited number of weather stations with inadequate spatial coverage, which makes it 

difficult to capture intra-urban temperature variability in heterogeneous cities and may result in 

measurement biases. Thus, the question of how LST interacts with Ta in heterogeneous urban areas 

remains largely unaddressed due to a lack of in situ observations of Ta within many cities (Stewart et 

al., 2021). Such discrepancies also imply uncertainty regarding the application of remotely sensed 

LST to urban warming adaptation and mitigation. When inferring Ta from LST, any discrepancies 

between the two could potentially influence how adaptation/mitigation efforts that are intended to 

modify Ta are assessed using remote sensing. In addition, uncertainties exist concerning the surfaces 

being monitored through remote sensing (mostly roofs and top of the canopy). The particular viewing 

geometry of satellites could potentially limit the accuracy with which mitigation efforts are assessed, 

as they may not capture all relevant surfaces within an urban landscape. 

In recent years, the ―Internet of Things‖ (IoT) sensing has enabled urban data to be gathered from and 

by the public using citizen-science solutions that cover a wide range of temporal and spatial 
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temperature distributions in cities (Middel et al., 2022; Potgieter et al., 2021). The data collected 

through citizen weather stations have been used to assess urban thermal climate in multiple cities 

(Chapman et al., 2017; Du et al., 2023; Fenner et al., 2017; Varentsov et al., 2020) but with a limited 

focus in coastal cities. This high-density crowdsourced temperature data, in combination with high-

resolution satellite imagery and clear metadata on urban characteristics in cities, can provide the 

opportunity to understand how applicable satellite-based LST is in comparison with Ta. In other 

words, how does LST interact with Ta within the city, and what are the contributing factors to the 

variability of their relationship? 

Here, we address these questions by focusing on Sydney, Australia, which has a complex nature due 

to its substantial geographical differences between inland and coastal areas. Studies have shown the 

occurrence of urban heat in Sydney (Hirsch et al., 2021; Livada et al., 2019; Ma et al., 2017; Sidiqui 

et al., 2016) is mostly exacerbated by urban development and local climate patterns. To reduce the 

adverse effects of urban heat and support the sustainability and resilience of urban districts that 

experience accelerated warming in this city, it is essential to characterise intra-urban heat and identify 

the key factors associated with urban warming from a micro to a city scale. However, exploring the 

thermal environment in this metropolitan area is challenging as it is a temperate coastal city affected 

by sea and Foehn-like breezes, and exposed to the effect of the Australian arid biome, one of the 

biggest desert areas worldwide (Yun et al., 2020). Western Sydney, which is closer to the Australian 

arid biome, experiences a more continental climate with a larger diurnal temperature range, while 

Eastern Sydney shows a more moderate, coastal climate with a lower diurnal temperature range. This 

geographical and climatic distinction between coastal and inland regions adds layers of complexity to 

the city's thermal environment. Hence, a comprehensive study is required to characterise urban heat in 

Sydney, which serves as a prime example of a region with a complex system that can be analysed to 

explore the dynamics of LST/ Ta interactions. 

In the current study, we leverage data from crowdsourced monitoring stations combined with LST 

derived from Landsat imagery and urban datasets (such as LCZs and building-level urban data) to 

quantify the spatial pattern of LST and Ta and their seasonal variability in Sydney. We aim to 

understand how LST and Ta interrelate during different seasons and further assess the potential of 

satellite-based LST for investigating heat mitigation strategies aimed at improving citizens’ thermal 

comfort.  
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2. Data and Methods 

2.1. Study area 

The Sydney metropolitan area, which is located on the southeast coast of Australia (Fig. 1), has a 

temperate climate with mild winters and warm summers. The average annual temperature in Sydney 

is 17.8 °C, with 1200 mm of precipitation throughout the year, and elevation ranging from 0 to 500 m. 

It has a population of 5 million (Australian Bureau of Statistics, 2021). The city's rapidly expanding 

urban area has contributed to increasing the city's vulnerability to urban heat effects. Despite the 

importance of urban warming in Sydney, only a few studies have been conducted in this metropolitan 

area. Most of these studies have used fixed-point air temperature data from synoptic-scale 

meteorological forecasting networks (Sidiqui et al., 2016), whereas characterising surface temperature 

has been less explored. Thus, using a more appropriate air temperature dataset combined with remote 

sensing satellite imagery and clear metadata on urban characteristics may be a more suitable approach 

for monitoring surface and canopy urban heat, exploring the impact of urbanisation, and identifying 

the drivers of intra-urban variability across Sydney. 

 

Fig. 1. The location of the study area. a) Netatmo weather stations over Sydney, Australia. b) Local Climate Zone (LCZ) map 
of Sydney. 

2.2. Urban landscape data 

In order to comprehensively explore urban land cover and structure in Sydney, we use an LCZ map, 

with a resolution of 100m, obtained from a global LCZ map created by Demuzere et al. (2022). This 

standardised landscape classification system enables a consistent comparison of various regions in 

urban areas. However, the absence of direct spatial or building height information in the satellite 

imagery used to generate the LCZ maps is a limitation of this urban dataset. To further understand the 
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urban landscape, we also use the ―Geoscape‖ dataset derived from building-resolving, 3D land cover 

data at 2m (Lipson et al., 2022). This open dataset enables the categorisation of building height and 

elevation along with impervious surfaces and vegetation, with a resolution of 300 m. The Geoscape 

variables used in this study include building and road path fraction, frontal density (the ratio of the 

frontal area and the total surface area used for analysing urban ventilation corridors), building height, 

low vegetation fraction (e.g. grass), tree fraction, water fraction, and sky view factor (referring to the 

fraction of visible sky when viewed from a surface and influences on the microclimate by trapping 

heat and providing shade in urban areas). 

2.3. Satellite remote sensing data 

For determining LST in Sydney, we selected sixteen Landsat 8 images captured on cloudless days 

during all seasons from 2019 to 2022 via the United States Geological Survey (USGS), Earth-explorer 

website (earthexplorer.usgs.gov). The Landsat imagery has a spatial resolution of 100 m and 

corresponds to 10 am (+/− 15 min) mean local time. LST maps were computed and extracted using 

Google Earth Engine (GEE), which is a geospatial cloud-computing platform (Gorelick et al., 2017). 

The Statistical Mono-Window (SMW) algorithm was used to calculate land surface temperature 

(LST) from Meteosat First and Second Generation satellites. The algorithm is developed by the 

Climate Monitoring Satellite Application Facility (Duguay-Tetzlaff et al., 2015) and uses an empirical 

relation between top-of-atmosphere brightness temperatures and LST in a single thermal infrared 

channel. It is based on a linearisation of the radiative transfer equation and takes into account surface 

emissivity from ASTER Global Emissivity Database with a correction for vegetation dynamics using 

NDVI. The LST maps retrieved from this algorithm have been demonstrated to achieve a satisfactory 

level of accuracy (Ermida et al., 2020). 

LST = Ai * Tb/ε + Bi * 1/ε + Ci (1) 

where Tb refers to the top-of-atmosphere brightness temperature in the thermal infrared channel and ε 

represents the surface emissivity of the channel. The coefficients Ai, Bi and Ci are calibrated for 

different classes based on the values of total column water vapour and view zenith angle.  

2.4. Crowdsourced Weather station data 

Crowdsourced air temperature data were collected from over 800 Netatmo citizen weather stations 

scattered throughout Sydney. Since historical crowdsourced data is not available, the data used in this 

study was obtained by recording Netatmo data for the 16 selected cloudless days from 2019 to 2022. 

Netatmo weather stations are composed of two modules, indoor and outdoor. The outdoor module 

used in this study measures real-time weather variables such as air temperature and humidity with 
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accuracy of ±0.3°C and 3%, respectively. The collected outdoor data is then displayed on the Netatmo 

Weathermap web portal if the user consents to share the data (Fenner et al., 2021).  

Sensors placed in shaded areas tend to provide accurate readings; however, those located in direct 

sunlight, indoors, or in other improper locations may produce inaccurate measurements (Varentsov et 

al., 2020). Therefore, a quality control process was applied to the dataset, filtering it according to the 

five main steps outlined in the framework developed by Fenner et al. (2021). This process removed 

temperature readings: (a) taken by stations with duplicate coordinates; (b) deemed outliers based on 

their z-score compared to other readings; (c) if more than one-fifth of the readings in a whole month 

were filtered out in the previous steps; (d) if the readings are determined to have been taken indoors 

due to a weak correlation with the median temperature of all readings; and (e) with unrealistically 

high values that were deemed outliers compared to the adjacent stations. To facilitate comparisons 

among stations following the QC process, Ta data were adjusted for elevation variations relative to a 

reference height. This reference height was determined as the average elevation of all professionally-

operated weather stations within the city. 

2.5. Statistical analysis 

We conducted statistical analyses of the relationship between Ta and LST across different seasons and 

locations in Sydney. For this purpose, we retrieved the LST values of the pixels where the weather 

stations were located and used them as the surface temperature corresponding to those stations on 

each selected day. We first compared the range of LST and Ta for all the stations during different 

seasons in Sydney. Days are arranged in chronological order based on months and days, but not years, 

except for summer. We have also considered daily minimum and maximum air temperatures obtained 

from the Australian Bureau of Meteorology website (bom.gov.au). Each day was assigned to a season 

based on how well that aligned with climatological mean conditions for that season. Since the 

meteorological conditions of Sep 2020 closely resembled those of summer days, the analysis for this 

day was shifted into the summer season.  

A seasonal comparison of LST and Ta variability across the primary Sydney LCZs, and their 

temperature differences and spatial variability were mapped for the individual days within the study 

area. In this analysis, we focused on the main LCZs in Sydney: 3. compact low-rise, 6. open low-rise, 

and 8. large low-rise, 9. sparsely built, and A. dense trees and B. scattered trees. These are also the 

categories with the highest number of Netatmo stations.  

We analysed the spatial autocorrelation of LST and Ta to identify the spatial clusters of high and low-

temperature values across different seasons in Sydney. We used the Hot Spot Analysis (Getis-Ord 

Gi*) tool in ArcMap 10.8, which enables identifying statistically significant spatial clusters of hot and 

cool spots. The Getis-Ord Gi* statistical value and p-value can be calculated by this tool for each 
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feature in the dataset. While a feature with a high value may be interesting, it doesn't necessarily 

indicate a statistically significant hot spot. To be considered a statistically significant hotspot, a 

feature must have a high value and be surrounded by other high-value features (Getis and Ord, 2010). 

We also conducted Pearson correlation analysis to investigate LST-Ta relationships as well as the 

effects of Geoscape variables (such as building height, tree fraction, water fraction, etc.) on LST and 

Ta across the primary LCZs in Sydney during different seasons.  

Moreover, we employed machine learning methods to comprehensively investigate the impact of 

urban form and fabric on LST variability across different seasons in Sydney. Specifically, we used the 

Gradient Boosting (GB) regression technique which combines decision trees in sequence. At each 

step, a new tree is generated based on the prior performance, resulting in a robust model that 

minimises prediction errors (Friedman, 2001). With this machine learning approach, we were able to 

determine the contribution of urban morphology (Geoscape and terrain variables) on LST variation as 

the target variable. For all the analyses, 70% of the data was used for model training, while the 

remaining 30% was reserved for testing the performance of the model after training. The trained 

model performance was measured using adjusted R
2
 and RMSE, and to minimise the effect of random 

sampling (test and train splitting), we performed the entire process ten times. 

Feature importance in a GB model is a metric that indicates how much each variable contributes to the 

reduction of the model fit variance. To examine the effects of urban form and fabric on LST, we 

determined the importance of individual explanatory features for each selected day. It is worth noting 

that we minimised the effect of potential multicollinearity before calculating the feature importance as 

collinearity can distort model estimation when the correlation coefficients between explanatory 

variables exceed a threshold of 0.7 (Dormann et al., 2013; Naserikia et al., 2022). For each day, we 

trained the GB model with different permutations of n variables, where n was chosen to maximise the 

number of predictors for model training, while satisfying the collinearity threshold (R = 0.7). We then 

calculated the variables' importance only if the corresponding model achieved an acceptable 

prediction performance on the test dataset (R ≥ 0.8). To enhance the robustness of the results, we 

repeated the entire process five times using different random portions of the data as the test and train 

sets. Lastly, we calculated the average importance scores and presented them in bar charts for each 

individual day. The framework of the study is presented in Fig. 2. 
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Fig. 2. The research framework of the study 
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3. Results and Discussion 

3.1. Surface and air temperature characteristics in Sydney across different seasons 

In this section, we use crowdsourced weather station data in Sydney, Australia, combined with remote 

sensing satellite images to explore surface and air temperature characteristics and the intra-urban 

temperature variabilities during different seasons. 

3.1.1. Variability of LST and Ta values 

To understand how LST and Ta differ in Sydney, their spatial and temporal variability is investigated 

across different seasons. Fig. 3 shows that there is greater seasonal variability in LST compared to Ta. 

The largest inter-seasonal variation in urban temperature can be observed during the transitional 

seasons (autumn and spring), while the lowest is seen in winter when temperatures tend to be more 

stable and consistent throughout the city. Except for winter, LST was found to have consistently 

higher values than Ta on the selected days. A significantly higher maximum LST can be seen in 

summer observations (ranging from 46.8 to 57.3 °C) compared to other seasons. This can be 

attributed to several factors, including sun angle, the intensity of solar radiation, and longer days. 

During summer, solar insolation is greater contributing to the significantly higher maximum LST 

values observed on warm days. 

 

Fig. 3. Range and distribution of LST and Ta values for Sydney across different days (summer, autumn, winter, and spring, 
respectively). Coloured areas of the violin plots represent the distribution of LST and Ta values. Days are arranged in 
chronological order based on months and days, but not years, except for summer. Each day was assigned to a season 
based on its alignment with climatological mean conditions for that season. Since the meteorological conditions of Sep 
2020 closely resembled those of summer days, the analysis for this day was shifted into the summer season. Within the 
summer season, the days were sorted based on maximum LST values. 

LST values show larger ranges in summer (24.3 - 57.3 °C) and spring (18.2 - 49.9 °C) than in autumn 

(11.3 - 36.7 °C) and winter (9.5 - 18.3 °C). During winter, LST values are highly concentrated around 

the median (ranging from 13.3 to 15.2 °C), while during summer, they are more dispersed and show a 

more elongated distribution. This indicates that LST varies greatly within the city from October to 

February (late spring and summer), with values differing considerably from Ta during this period. 
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However, from April to October (autumn, winter, and early spring), there is no significant difference 

in the intra-urban variation of LST and Ta. The greater ranges of LST in summer likely result from the 

earlier sunrise and higher sunshine intensity leading to greater warming on sunlit surfaces compared 

with other periods. With the satellite temperature observations taken in the mid-morning, at 

approximately 10 am, most shaded surfaces will have not yet been exposed to sunlight since cooling 

overnight. 

The significant seasonal variability in LST spatial heterogeneity found in this study is consistent with 

results from seasonal LST assessment in global cities with varying background climates (Naserikia et 

al., 2022). However, our findings contrast with previous research conducted in Shenzhen, China (Cao 

et al., 2021). Despite Shenzhen's climate similarities to Sydney, this study found no significant 

difference in LST between different seasons during the day. The discrepancy in findings may be 

attributed to the satellite data used for extracting LST in these studies. The study of Shenzhen 

employed MODIS data, which has a coarser resolution compared to the Landsat imagery used in this 

research. In addition, Shenzhen, located at ~22°N, experiences a less pronounced seasonal variation 

compared to Sydney's ~33°S latitude, resulting in a generally more seasonal climate in Sydney. 

Additionally, the summer months in Shenzhen have more cloud cover, which is supported by the 

average monthly hours of sunshine being around 200 hrs/month in Shenzhen compared to 

approximately 250 hrs/month in Sydney. A moister climate would likely reduce the range of LST 

(from soil moisture/vegetation). The exact timing of satellite flyover could also play a role, as 

different timing can influence LST measurements. Furthermore, pollution, which can be considerable 

in Shenzhen due to emissions in the Pearl River Delta conglomerate of cities with a high population 

density (85 million), might contribute to the lower LST variability observed in summer. 

Fig. 3 also shows that the ranges of LST and Ta values are very similar in all winter days and most 

autumn days, while there is a significant difference between the range of these two temperature 

variables in summer and spring. This pattern is mainly attributed to the variation in solar radiation. 

During winter, the strength of the solar radiation is lower than it is in summer, and for LST, solar 

radiation is a dominant factor, especially at the time of capturing temperature data (10 am). In 

contrast, for Ta, there are materials in the urban environment that absorb heat and release it later, 

resulting in a delayed effect of solar radiation on air temperature during summer. Therefore, we do not 

see an immediate effect of solar radiation on Ta. Furthermore, for LST, the larger zenith angle during 

winter at the same satellite overpass time leads to increased shadowing, further influencing surface 

temperature readings. For Ta, winter conditions often present increased levels of moisture. This tends 

to reduce overnight cooling, which in turn narrows the daily temperature range as well as altering the 

energy balance to reduce sensible heat flux and more effective conduction of heat away from the 

surface.  
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3.1.2. Spatial variations in temperature difference between LST and Ta  

To better understand how Ta differs from LST across Sydney, we calculated the difference between 

the two at all Ta measurement sites. As shown in Fig. 4, the temperature difference between LST and 

Ta varies across the seasons. During summer, the temperature difference (LST - Ta) can vary widely, 

ranging from 9 to 38 °C. In contrast, during winter, the range of difference is smaller, with values 

ranging from -7 to 9 °C.  In autumn, the difference ranges from -2 to 17 °C, whereas in spring, it 

ranges from 2 to 33 °C. Studies examining surface and canopy urban heat have found that LST is 

usually higher than Ta during the daytime (Hu et al., 2019; Shreevastava et al., 2021), which we see 

for the most part in Sydney; however, we also observe equal or lower LST than Ta in some 

measurement sites during cold days, resulting in a negative difference (-7< LST – Ta <0). This may be 

due to the reduced solar radiation, which results in less energy being absorbed by urban surfaces. In 

addition, variations in surface thermal properties and/or warmer air being advected into the area can 

contribute to lower LST values compared to Ta during the cold months. 

The largest temperature difference is observed during summer and late spring, whereas the smallest 

difference can be seen during winter. The spatial variability in LST-Ta difference within the city is 

also largest during summer and spring, while the lowest is observed during the winter days. This 

difference tends to increase with increasing distance from the coast, particularly during warm days 

(Fig. 4), highlighting the moderating influence of the ocean on Ta. Fig. 3 also indicates that less built-

up areas tend to show a smaller difference between LST and Ta. In particular, the stations located in 

the northern coastal part of the city tend to exhibit a smaller temperature difference compared to those 

in denser built-up areas such as the central and western parts of the city. This illustrates the role of 

urban complexity, specifically the interplay between geography and urban form and fabric, in shaping 

temperature patterns. A recent study has also demonstrated the notable impact of this complexity on 

air temperature distribution across Sydney (Potgieter et al., 2021).  

In built-up areas, there is a higher proportion of impervious surfaces (such as pavements, roads, and 

buildings) that absorb and store heat more readily compared to natural surfaces. These areas also have 

a lower albedo and absorb more solar radiation, leading to an increase in surface temperatures and 

wider differences between LST and Ta. Some parts of the urban surfaces such as well insulated roofs 

do not efficiently store or conduct heat. When dry, they can rapidly heat up under direct solar 

radiation exposure, thereby broadening the LST distribution at the time of Landsat satellite overpass. 

In contrast, natural areas have a higher albedo and are more porous, allowing for greater storage of 

water, which can regulate temperatures through evaporation. Additionally, the presence of vegetation 

provides shade and cooling through transpiration, further reducing LST and narrowing the difference 

between LST and Ta in less built-up areas. 
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Fig. 4. The temperature difference between LST and Ta on acquisition dates in Netatmo stations across Sydney. The daily 
min and max air temperatures (°C) - obtained from Australian Bureau of Meteorology (BoM) - are shown in the bottom 
right corner of each map. Each day was assigned to a season based on its alignment with climatological mean conditions 
for that season. 

3.1.3. Spatial distribution of LST and Ta hot and cold spots 

To gain a better understanding of the distribution of hot and cold spots for LST and Ta in Sydney 

during different seasons, we conducted a spatial analysis using Hot Spot Analysis (Getis-Ord Gi*). 

Our findings, illustrated in Fig. 5, demonstrate significant seasonal variability in the occurrence of 

LST hot and cold spots. During summer and spring, LST hot spots are predominantly located further 

inland, away from the coast. This is not only because the central parts of the city generate and trap 
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more heat but also due to the cooling effect of sea breezes along the coast, which limits the extent of 

LST hot spots. In contrast, the higher heat capacity of the ocean enables it to act as a heat source in 

winter, keeping coastal areas warmer than inland. However, in the western and central parts of the 

city, the moderating influence from the ocean is less impactful, which can result in cooler 

temperatures compared to coastal areas. 

The distribution of cool and hot spots for Ta in Sydney differs from that of LST, and their respective 

cluster areas do not always overlap. However, a better match between LST and Ta hot spots can be 

seen in winter, with both observed in the coastal areas in the east. Previous research has demonstrated 

the significant influence of the distance from the ocean on air temperature, not only in Sydney 

(Potgieter et al., 2021) but also in other coastal cities such as Los Angeles (Vahmani and Ban-Weiss, 

2016). However, for the distribution of Ta cold spots, our results show that vegetation plays an 

important role, this can be seen in the northern, inland regions of the city, which have greater 

vegetation cover compared to the coastal areas. Interestingly, the spatial pattern of cool and hot spots 

for Ta is more consistent across seasons than that of LST, indicating a relatively stable distribution of 

air temperature in Sydney throughout the year. The north, west, and south parts of Sydney are mostly 

situated in the non-significant and cold spot categories due to their proximity to mountains. The 

insights gained from these findings can assist decision-makers in identifying high-priority areas, 

optimizing urban vegetation, and allocating resources more effectively at the local scale. 

 

Fig. 5. Spatial distribution of LST and Ta hot and cold spots in Sydney across different seasons (a. summer, b. autumn, c. 
winter, and d. spring). e. shows elevation (grayscale) and city border (shaded brown) in the study area. The mean values of 
LST and Ta have been calculated for each grid cell and Netatmo station, respectively, using data from all four days in each 
season. Netatmo stations that were not classified as hot or cold spots were excluded.  
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3.2. The relationship between surface and air temperature and the influence of land 

cover and urban morphology 

Previous studies have acknowledged that land cover and building characteristics play a significant 

role in shaping urban thermal environments (Krayenhoff et al., 2021; Masson et al., 2020; Nice et al., 

2022). However, these studies have not analysed the individual contributions of these characteristics 

to LST and Ta and their relationship. To address this shortcoming, we used LCZ, surface cover, and 

building height data to explore the impact of urban form and fabric on intra-urban surface and air 

temperature variability in Sydney. 

3.2.1. Seasonal variability of LST and Ta across different LCZs  

Here, we assessed how LST and Ta distributions vary under different LCZs during different seasons in 

Sydney. Fig. 6 illustrates the boxplot distribution of LST and Ta in each day categorized by LCZ. 

Similar to Fig. 3, Fig. 6 shows that LST is generally higher than Ta in almost all days, with the largest 

difference in summer, and the lowest in winter. There is also a greater seasonal variation in LST 

compared to Ta. It also shows that the temperature difference between LST and Ta is higher in the 

built LCZs - particularly those classified as compact low-rise and large low-rise - compared to the 

natural ones. While the Ta values remain relatively consistent across various LCZs, the corresponding 

LST ranges show slight variations in these LCZs due to variability in surface cover, vegetation, and 

other physical characteristics. The LCZs with dense and scattered trees, low plants, soil, and sand tend 

to show the lowest LST values, followed by sparsely built areas, whereas compact low-rise and large 

low-rise show a higher LST range. The range of LST values observed in large low rise LCZs is 

similar to that of compact low-rise but higher than that of open low-rise LCZs, reflecting differences 

in the amount and type of surface cover and the associated heat storage and release. The higher LST 

values observed in large low-rise LCZs compared to open low-rise LCZs can be attributed to the 

presence of slightly more impervious surfaces and fewer green spaces in large low-rise LCZs, which 

leads to greater heat absorption and reduced evaporative cooling. These findings emphasize the 

importance of taking into account the specific characteristics of each LCZ in urban heat studies, 

especially when predicting Ta based on satellite-derived LST. 
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Fig. 6. Range and distribution of LST and Ta values across different days and seasons for the main LCZs in Sydney with the 
highest number of Netatmo stations. Days are arranged in chronological order based on months and days, but not years, 
except for summer. Each day was assigned to a season based on its alignment with climatological mean conditions for that 
season. Since the meteorological conditions of Sep 2020 closely resembled those of summer days, the analysis for this day 
was shifted into the summer season. Within the summer season, the days were sorted based on maximum LST values in all 
LCZs. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



17 

 

3.2.2. LST- Ta relationships across different LCZs  

To investigate the relationship between LST and Ta, we conducted a Pearson correlation analysis. 

This allowed us to better understand how changes in surface temperature may influence the air 

temperature. Similar to previous research (Cao et al., 2021; Kim et al., 2021; Shen et al., 2020), we 

found a positive correlation between LST and Ta in all selected days. However, the proportion of 

variation in Ta explained by LST varies in different seasons. For instance, in summer, there are many 

data points with similar values of Ta, but their LST values differ considerably. The opposite was 

observed in winter days. This shows the complexity of the interplay between surface and air 

temperature in urban areas, which varies depending on the time of year. 

As shown in Fig. 7, the Pearson correlation coefficient is slightly stronger in summer (ranging from 

0.22 to 0.45) than that in other seasons (autumn: ranging from 0.15 to 0.37, winter: 0.08 to 0.35, 

spring: 0.17 to 0.35). This is in contrast with the findings of a study in Milton, Canada (Burnett and 

Chen, 2021), but consistent with another study in the Basin and Range province of the western United 

States (Mutiibwa et al., 2015). When combining all days in each season, the correlation is stronger in 

autumn (0.89) and weaker in winter (-0.11), indicating the highest inter-seasonal variations in Ta and 

LST values in autumn and the lowest in winter. These findings highlight the importance of seasonal 

variation in the LST-Ta relationship; however, they also confirm that the correlation between LST and 

Ta is affected by other factors beyond just seasonal changes, adding complexity to this relationship.  

 

Fig. 7. The correlations between LST and Ta for Sydney across different days and seasons. All the relations are statistically 
significant at 0.05 level (except Aug 2020 with P-value of 0.18). Each day was assigned to a season based on its alignment 
with climatological mean conditions for that season. 
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To gain a deeper understanding of these factors and their impact, we conducted an analysis of LST-Ta 

correlations across different LCZs to investigate the role of surface cover and structure variability. In 

all LCZs (except for compact mid-rise), LST showed positive correlations with Ta (Table 1). 

Categorizing the stations based on the LCZs they are situated within results in a stronger relationship 

between LST and Ta. Interestingly, LST-Ta correlations tend to be stronger in less densely built-up 

areas. As indicated by Table 1, natural LCZs show a stronger relationship compared to built LCZs. A 

similar result was observed in a study conducted in southeastern China (Sheng et al., 2017), finding 

that this relationship was stronger in vegetated areas compared to impervious surfaces. Among the 

built LCZs, sparsely built and large low-rise LCZs mostly illustrate stronger correlations than open 

low rise and compact low rise. The closer correspondence between LST and Ta in less densely built-

up areas may be attributed to the heat exchange between the land surface and the atmosphere, which 

is more direct and less influenced by human-made structures in natural LCZs and less built-up 

surfaces. Further, within the more dense built-up areas the sensor would be capturing mostly rooftops 

for LST, whereas Ta measurements would be from within the street canyon. Despite the limited data 

available for the compact mid-rise LCZ, strong negative correlations between LST and Ta were 

observed in this LCZ on two days (R > 0.8). This indicates that Ta decreases with increasing LST 

values in these regions, which could be attributed to shading caused by deeper building canyons 

(Johansson and Emmanuel, 2006; Masson et al., 2020), highlighting the importance of shading in 

moderating thermal environments in high-density urban areas.  

This table can also show the importance of seasonal variability in the interplay between LST and Ta. 

Although the correlations may not be strong on individual days (~R < 0.4), considering the entire 

dataset for the entire year reveals a robust relationship (~R > 0.8) between LST and Ta across all 

LCZs, which is more climatological (rather than providing the ability to determine spatial variations 

of Ta from LST).  However, the strength of the correlation varies significantly when accounting for 

season and urban form. These findings highlight that using LST as a direct proxy to represent urban 

air temperature and improve thermal environment may not always be appropriate, particularly when 

focusing on spatial patterns; however, they may provide insights for developing predictive models of 

air temperature using remotely sensed data when other key factors are taken into account. 
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Table 1: Correlation coefficient between LST and Ta across different LCZs. 

 

3.2.3. Impact of ecological infrastructure and building morphology on LST and Ta across 

different LCZs  

Here, we extend the analyses to investigate the impact of surface cover determined by impervious and 

vegetated covers by exploring the correlation of urban morphology variables with LST (Fig. 8-Fig. 9) 

and Ta (Appendix A, Fig. A. 1) across different LCZs in Sydney. Fig. 8 shows the scatterplots for a 

single selected day presented as a sample, while Fig. 9 and Fig. A. 1 cover the entire study period and 

display the Pearson correlation coefficient values for all days included in this study. On almost all 

days, LST was found to be positively correlated with building fraction, frontal density, and road path 

fraction while showing negative correlations with sky view factor, building height, tree fraction, and 

water fraction. This illustrates the warming effect of building and road density on land surface, and 

the cooling impact of shading, open spaces, trees, and water. The strength of the relationship between 

these variables (except low vegetation and water fraction) and LST is generally higher in open low-

rise LCZ and lower in large low-rise.  
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Fig. 8. A sample of the scatterplots showing the correlation between Geoscape variables and LST across different LCZs in 
Sydney on a summer day (Feb 2021). 
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Furthermore, a clear seasonal variation can be seen in the correlation between LST and urban 

morphology variables. The significance of the seasonal cycle was also observed in a study conducted 

in mainland China, showing a stronger relationship between LST and urban impervious surfaces in 

summer than in winter (Ma et al., 2016). As shown in Fig. 9, the strongest correlation between LST 

and building and road path fraction was observed from December to April (between 0.2 and 0.8). The 

strength of the correlation then decreases for winter days (from -0.2 to 0.4). However, in late winter, 

the correlation gradually begins to increase and continues to rise during the spring season. Although 

the built surfaces and roads remained largely unchanged across seasons, the increase in sunshine 

duration and intensity during warm months had an impact on surface temperature. The pattern of 

correlations between frontal density and LST is very similar to the previous two variables in all 

seasons except spring; like in winter, there is a less pronounced correlation between frontal density 

and LST across different LCZs during spring. However, on warm days, the greater impact of frontal 

density on LST highlights the significant role of wind-driven ventilation in regulating surface 

temperature (Yang et al., 2019). A recent study conducted in The Pearl River Delta in China has also 

demonstrated the notable impact of urban airflow on Ta, resulting from decreased frontal area density 

(Liu et al., 2021).  

The effect of the sky view on LST shows a very similar pattern to frontal density but with opposite 

directions of correlation. The negative correlation between SVF and LST can be explained by the fact 

that in urban areas with higher SVF, the increase in built surfaces and higher roof fraction results in 

higher temperatures (Jamei et al., 2016). Urban areas with high SVF allow for more efficient cooling 

of the surface, whereas areas with low SVF can trap heat, lower ventilation performance, and increase 

temperature due to having less open sky and more obstructions (Yang et al., 2013). A recent study has 

also shown that a low SVF, resulting in reduced ventilation capacity, can contribute to elevated 

surface temperature during the day (Kim et al., 2022). Considering these, creating ventilation paths 

and open spaces in urban areas can be an effective mitigation strategy for surface and air urban heat as 

it can increase the sky view factor and decrease the density of the frontal area, thereby allowing for 

the movement of cooler air into urban areas and the removal of hot air. This can be achieved through 

the creation of open spaces, pedestrian walkways, squares, and plazas in built-up areas. However, the 

effectiveness of these approaches may depend on their connectivity to areas of cooler air to enable 

efficient advection. It is important to consider local climate conditions; for instance, increased sky 

view factors could lead to reduced shading and greater exposure to solar radiation, which may not be 

beneficial in hotter and drier climates. 

Building height and spacing has often been found to be the main factors influencing urban climate 

(Cai et al., 2018; Mou et al., 2017; Nice et al., 2022). Whereas, studies investigating the relationship 

between building height and LST have reported conflicting results, with some suggesting a positive 

correlation between building height and LST (Guo et al., 2016), while others have found negative 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



22 

 

relationships, which means taller buildings are associated with lower LST (Zheng et al., 2019). This 

inconsistency among different findings may be attributed to the variation in the urban landscapes of 

the study areas, such as differences in the percentage of vegetation and impervious surfaces, as well as 

differences in the background climates. Moreover, the relationship between building height and LST 

is not solely dependent on height, but it is influenced by both height and density of buildings. When 

buildings are densely packed, the influence of building height on LST is limited because the shadows 

cast by taller buildings are not clearly visible. The timing of satellite overpasses can also be a 

contributing factor. In the morning, we might anticipate a more pronounced "cool island" effect in 

densely urban areas, whereas in the afternoon, we might expect a more intense "heat island" effect in 

those areas. Despite the inconsistent findings of previous studies, our investigation into the 

relationship between building height and LST across different LCZs in Sydney revealed a negative 

correlation between the two. We found that the effect of building height on LST is strongest during 

summer and spring, with correlations ranging from almost -0.2 to -0.5. This stronger negative 

correlation could be attributed to higher buildings providing more shading, particularly in areas with 

more vegetation on warm days. In contrast, during late autumn and most winter days, no significant 

effect is observed, particularly when combining all the LCZs. It is worth noting that there may be 

some misclassification in the LCZ scheme. This can be observed in Fig. 8, where some data points 

with building heights higher than 10m appear in compact, open, and large low-rise LCZs where 

building heights should range from 3-10m (Stewart and Oke, 2012). 

The cooling effect of trees is noticeable, especially during summer and spring, with correlations 

ranging from -0.2 to -0.85. It is worth noting that satellite measurements might not fully capture all 

shaded areas. Specifically, when shade is cast by tree crowns, these crowns can obscure a portion of 

the shaded region from satellite detection (depending on the solar zenith angle). The effect of low 

vegetation on LST is much less pronounced in most LCZs. While low vegetation is negatively 

correlated with LST in large low-rise areas, it shows a positive correlation in sparsely built LCZ. This 

disparity indicates the complexity of the impact of low vegetation on LST. For instance, recent 

research has shown that shaded and sun-exposed grass have distinct impacts on LST. Shaded grass 

can have a cooling effect, whereas grass and low vegetation exposed to direct solar radiation are not 

as effective at cooling surface temperature (Park et al., 2021). The variation in the impact of low 

vegetation on surface temperature can also be attributed to the different types of grass present in urban 

areas, such as dry, watered, sparse, or dense grass. A study by Wetherley et al., (2018) found a 

relationship between increased irrigation and decreased LST values, indicating that moisture content 

significantly influences the temperature-modulating effects of low vegetation. 

The effect of water fraction on LST shows a clear seasonal pattern, with the strongest effect observed 

during summer and spring, followed by autumn, especially in compact low-rise (ranging from -0.3 to 

-0.5) and large low-rise areas (ranging from -0.4 to -0.6), and the weakest impact in winter. 
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Specifically, the weakest relationship can be seen in sparsely built areas, followed by dense tree LCZ. 

A study conducted in Changchun, China revealed that water significantly impacts surface temperature 

from autumn to spring, although this effect was not observed during winter (Yang et al., 2020). 

Although the water fraction in urban areas may not be a significant determinant of LST in winter, the 

distance from the ocean should not be overlooked. As observed in Fig. 5, distance from the coast 

plays an important role in shaping the local temperature distribution in winter and should be 

considered in urban planning and climate adaptation strategies. It is worth noting that the second 

selected day in summer shows a very different pattern from other summer days, although it matches 

summer days in terms of the range of LST and Ta (as shown in Fig. 3). This difference may be due to 

the fact that the day falls in March, which is typically in autumn instead of summer. These results 

suggest that building variables (such as building and road path fraction, frontal density, sky view 

factor and building height) are important factors contributing to LST variability, especially during the 

warmer months when there is more direct and intense solar radiation. 
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Fig. 9. The strength and direction of the correlations between Geoscape variables and LST, classified by LCZ on acquisition 
dates. The highlighted x-axis label (Feb 2021) corresponds to the specific summer day shown in Fig. 8, where scatterplots 
illustrating the correlations between Geoscape variables and LST are presented. 

Due to the limited data available for Ta in all selected LCZs, even when considering crowdsourced 

data, most of the correlations extracted for assessing the effects of urban form and fabric on Ta are not 

statistically significant. Therefore, all the data was integrated into one plot (Appendix A, Fig. A. 1) to 

compare different LCZs across different days. In contrast to LST, there is no significant seasonal 

variability for the correlations between land cover variables and Ta. As shown in Fig. A. 1 in 

Appendix A, the strongest effect of urban form and fabric on Ta can be observed in sparsely built and 

large low-rise LCZs.  Similar to LST, Ta was found to have positive correlations with building 
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fraction, frontal density, and road path fraction, while showing negative correlations with tree fraction 

and sky view factor on most days.  This shows the warming impact of building and road density on 

the atmosphere, while the cooling effect of open spaces and trees, respectively. Low vegetation can 

have a warming effect in open low-rise, but a cooling effect in compact low-rise and when combining 

all LCZs. This may be explained by the fact that in open low-rise areas, a significant portion of the 

surface is covered by impervious materials, such as concrete and asphalt, which low vegetation, like 

grass, cannot effectively compensate for. Moreover, the surface is not shaded in this LCZ. In contrast, 

in compact low-rise, shading covers a larger percentage of the area, which enhances the cooling effect 

of low vegetation. This increased coverage can explain why we observe a cooling effect in compact 

low-rise areas. 

3.2.4.  Explanatory power of building morphology on LST and the contributing factors 

Given the uncertainty of investigating the input variables individually, we examined the combination 

of these urban form parameters (built-up, vegetation, and water fractions) along with terrain variables 

(distance from the coast and elevation) to explain the LST variation across Sydney. By analysing the 

combined effects of these parameters, we aim to gain a more comprehensive understanding of the 

complex relationships between urban morphology and surface temperature patterns in Sydney. 

Overall, the GB regression model used for the analysis confirmed that the variables integrated in this 

study could collectively well explain the variance in LST across different days in Sydney (Fig. 10). 

The adjusted R² shows the highest values during summer (ranging from 0.78 to 0.84) and spring days 

(0.7 - 0.82), indicating that approximately 80% of the variation in LST can be explained by the input 

variables in the model. This is a strong indication that the model is a good fit for the data and that the 

urban morphology variables are strong predictors of LST during summer and spring. However, during 

winter days, the adjusted R² ranges from 0.44 to 0.57, which is considerably lower than that observed 

in summer and spring. Although the model still explains a significant amount of the variation in LST 

in winter days, it suggests that the urban morphology variables may not be as effective in predicting 

LST during cold days as they are in summer. While the adjusted R
2
 shows higher values during 

summer and spring, the prediction error (RMSE) is the lowest during winter (0.91 - 1.33 °C) and 

autumn (1.02 – 1.25 °C). This suggests that there may be more uncertainty in LST prediction during 

warm days than in cold periods. Moreover, the RMSE value here is influenced by the distribution of 

temperature data. In Sydney, LST values show a wider range during summer and spring compared to 

autumn and winter (Fig. 3), which results in higher RMSE values in warm seasons. The dependency 

of RMSE on the spatial range of temperature was also observed in previous research (Venter et al., 

2020), mapping Ta using remote sensing and Netatmo data. These statistics underscore the importance 

of accounting for seasonal variability in studies that examine the contributing factors to urban 

temperature characteristics. 
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Fig. 10. Gradient boosting model performance, measured by adjusted R2 and RMSE. A comparison of explanatory potential 
of all variables on LST across different days and seasons (summer, autumn, winter, and spring, respectively). 

To gain a better understanding of which variables have the greatest impact on explaining the variance 

in LST, we employed the GB model to determine the importance of features. As shown in Fig. 11, a 

significant seasonal variation can be observed in the dominant explanatory factors of LST in Sydney. 

In almost all days from December to April (summer and relatively warm days in autumn), total built, 

road path fraction, and building fraction have the largest contribution relative to the other factors in 

LST variation. However, their contribution decreases after April, with the start of the colder months, 

and the dominant explanatory factors change to tree fraction, followed by distance from the coast and 

elevation. Starting from August (the last month of winter), the moderating influence of the ocean 

becomes less pronounced, whereas the effect of water fraction becomes increasingly influential in 

explaining LST variability during spring. 

A significant effect of tree fraction was observed in summer but not in winter when considering 

individual variables and their correlations with LST (as shown in Fig. 9). However, the opposite 

pattern emerges when all the variables are integrated, as observed in Fig. 11, which uses a machine 

learning approach to assess the importance of variables. In this integrated analysis, tree fraction shows 

limited predictive power for LST in summer days but becomes significant in winter (and relatively 

colder days in autumn and spring). Therefore, it is important to consider the combined effect of 

multiple variables when exploring LST variation rather than focusing solely on individual factors. 

Although many studies have reported the cooling effect of total vegetation cover (Estoque et al., 2017; 

Shiflett et al., 2017; Zhang et al., 2021), the impact of low vegetation versus tree fraction has not been 

explored sufficiently. While the effect of tree fraction is noticeable, particularly on cold days, low 

vegetation does not appear to play a significant role in LST variation. This finding highlights the 

complexity of the interactions between urban landscape and LST and provides valuable insights for 

advancing our understanding and predicting LST dynamics across different seasons. 
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Similar to the results shown in Fig. 9, the importance scores in the second selected day in summer 

show a different pattern compared to other summer days. Although this day falls within the same 

range of LST and Ta as other summer days (as shown in Fig. 3) and shows a similar temperature 

difference between LST and Ta (Fig. 4), as well as a comparable pattern of correlation between LST 

and Ta shown in the scatterplot (Fig. 7), the feature importance scores for this day more closely 

resembles that of spring days. This discrepancy may be due to the radiation levels on that day. While 

it is a warm day, it is not a typical summer day in terms of radiation, despite the similarities in 

temperature and correlation patterns. 

 

Fig. 11. Importance scores of predictor variables obtained from a trained GB model explaining LST variations across 
different days and seasons. 
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4. Conclusion 

In this study, we used crowdsourced data combined with remote sensing satellite imagery (Landsat 8) 

to explore intra-urban and seasonal variabilities in air and surface temperature in a city with complex 

regional geographical influences and varied urban form. We also assessed the overlay of these 

datasets with building-level urban data and the LCZ scheme in order to identify the factors 

contributing to these variabilities. The outcomes of this study indicated that surface and air 

temperature have distinct characteristics, and their interaction differs by season and LCZ. 

Our finding revealed that there is a greater seasonal variability in LST compared to Ta at morning 

overpass time. The temperature difference between LST and Ta varied depending on the season, 

distance from the ocean and surface cover. These factors also play significant roles in the spatial 

distribution of hot and cold spots for LST and Ta, particularly for LST. We observed that the 

distribution for Ta hot and cold spots differed from that of LST, and their respective cluster areas did 

not always overlap spatially. We also found that the temperature difference between LST and Ta was 

more pronounced in the built LCZs compared to the natural LCZs (dense and scattered trees). These 

findings show that LST may not fully capture the spatial variations of air temperature in urban 

environments. 

Results from our study also indicate that urban form and seasonality modulate the relationship 

between LST and Ta. Classifying the measurement sites based on the LCZs they are situated within 

resulted in stronger correlations between LST and Ta. Natural LCZs showed stronger relationships 

compared to built LCZs and among the built LCZs, less densely built-up areas tended to show 

stronger relationships. While the relevance of this correlation is more important during summer 

months and in densely populated regions, it appears that the correlation is not as reliable for more 

dense built-up areas and during warm seasons. 

Analysis of the correlation between LST and urban morphology variables revealed seasonal and intra-

seasonal variations. In general, stronger relationships were observed in the summer, early and mid-

autumn, and spring, while weaker relationships were observed in winter. Investigating the bivariate 

association between LST and land cover variables showed that trees could have a notable cooling 

effect, particularly during the summer and spring. However, low vegetation does not appear to play a 

significant role in LST variation in most LCZs. In contrast to LST, there is no significant seasonal 

variability for the correlations between Geoscape variables and Ta. 

When investigating the impact of individual land cover variables on LST, we found that tree fraction 

had a significant effect during summer, but not in winter. However, when all variables were taken into 

account using machine learning, tree fraction was found to contribute significantly to LST variation in 

winter, as well as on relatively colder days in autumn and spring. This highlights the importance of 
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considering the combined effect of multiple variables when exploring LST variability, rather than 

focusing solely on individual factors. 

The detailed spatial information presented by this study provides insights into understanding the 

mechanisms of surface and air temperature variability in urban environments, including the 

relationship between the two and the driving factors across different seasons. We expect that the 

comprehensive spatial analysis presented here can further serve as a theoretical foundation for 

evaluating urban heat and accurately predicting air temperature based on satellite LST, which can help 

the development of effective heat mitigation strategies and improve thermal comfort in cities.  

Despite these significant findings, there are some limitations in this study that need to be mentioned. 

The analysis in this study was limited to clear sky daytime data, as the Landsat satellite only provides 

information on daytime surface temperature. The timing of satellite overpass at 10 am might yield 

different heat island dynamics compared to an afternoon or evening overpass. Thus, further 

investigation is needed to explore diurnal variability and assess how the urban temperature dynamic 

may vary throughout the day. A detailed temporal analysis could also provide more insights into the 

relationship between surface and air temperature, especially when analysed under varying weather 

conditions. For a more comprehensive understanding of the complex interaction between LST and Ta, 

additional meteorological variables such as wind speed and humidity should also be considered. 

Future studies could aim to test hypotheses that focus on how differing synoptic conditions modulate 

the observed variations in surface and air temperatures.  

Despite the higher spatial resolution of crowdsourced air temperature data, not all regions and LCZs 

are equally represented; open low-rise and compact low-rise have a significantly higher number of 

stations compared to other LCZs. Therefore, when using data like this, we recommend supplementing 

the analysis with additional sensors in those LCZs to ensure equitable representation of the entire 

population. 
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Fig. A. 1. The strength and direction of the correlations between Geoscape variables and Ta in Sydney, classified by LCZ on 
acquisition dates. 
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Highlights 

 Urban form and seasonality modulate the relationship between LST and Ta. 

 Temperature difference between LST and Ta is greater in the built LCZs compared 

to the natural LCZs, especially during warm days. 

 Built LCZs that have less building density tend to show stronger LST-Ta 

relationships. 

 LST does not fully capture the seasonal and spatial variability in urban thermal 

environments. 
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