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Abstract:  

Accurately predicting weather and climate in cities is critical for safeguarding human health and strengthening urban 
resilience. Multi-model evaluations can lead to model improvements, however there have been no major 
intercomparisons of urban-focused land surface models in over a decade. Here, in Phase 1 of the Urban-PLUMBER 
project, we evaluate 30 land surface models' ability to simulate surface energy fluxes critical to atmospheric 
meteorological and air quality simulations. We establish minimum and upper performance expectations for participating 
models using simple information-limited models as benchmarks. Compared with the last major model intercomparison at 
the same site, we find broad improvement in the current cohort's predictions of shortwave radiation, sensible and latent 
heat fluxes, but little or no improvement in longwave radiation and momentum fluxes. Models with a simple urban 
representation (e.g. “slab” schemes) generally perform well, particularly when combined with sophisticated 
hydrological/vegetation models. Some mid-complexity models (e.g. “canyon” schemes) also perform well, indicating 
efforts to integrate vegetation and hydrology processes have paid dividends. The most complex models that resolve 
three-dimensional interactions between buildings in general did not perform as well as other categories. However, these 
models also tended to have the simplest representations of hydrology and vegetation. Models without any urban 
representation (i.e. vegetation-only land surface models) performed poorly for latent heat fluxes, and reasonably for 
other energy fluxes at this suburban site. Our analysis identified widespread human errors in initial submissions that 
substantially affected model performances. Although significant efforts are applied to correct these errors, we conclude 
that human factors are likely to influence results in this (or any) model intercomparison, particularly where participating 
scientists have varying experience and first languages. These initial results are for one suburban site, and future phases of 
Urban-PLUMBER will evaluate models across twenty sites in different urban and regional climate zones. 

1. Introduction 

Over a decade has passed since the first International Urban Land Surface Model Comparison Project (PILPS-Urban) 
evaluated 32 models at two urban sites (Grimmond et al., 2010, 2011). Since then, new urban models have been 
developed, existing models have increased capabilities, and a new generation of modellers are using them. Expectations 
that urban schemes be integrated within weather and climate models have also grown: simulations are undertaken at 
finer spatial scales, and the wider modelling community recognises the importance of simulating meteorological 
conditions within cities (Masson et al., 2020; Sharma et al., 2021). Therefore, it is timely to undertake a new evaluation of 
land surface models used in meteorological simulations over urban areas. 

This project, Urban-PLUMBER, focusses on the local-scale (order 0.1-5 km) energy exchange between the urban land 
surface and the atmosphere. The last intercomparison with a similar focus, PILPS-Urban (Grimmond et al., 2010, 2011) 
established that knowledge of an urban site’s surface cover fractions significantly improved model performance. “Urban” 
models can include impervious surfaces (e.g., buildings, roads) and pervious surfaces (e.g. vegetation, bare earth), but 
not all urban models include both. In PILPS-Urban, models that neglected vegetation or porous ground performed poorly 
in latent, sensible, and radiant heat fluxes. This may have been expected at a suburban site with about 40% vegetation 
fraction (Grimmond et al., 2011); however, their performances were also poorer at an urban site nearly devoid of 
vegetation (Grimmond et al., 2010). PILPS-Urban concluded that models with simpler urban geometry (i.e. with fewer 
parameters describing built up areas) generally performed better than more complex models, as simpler models were 
better able to use provided site information. Further analysis of the suburban site results (Best and Grimmond, 2015) 
concluded the dominant physical processes that urban models should capture, by importance, are 1) bulk surface albedo 
during the day, 2) trapping of longwave radiation between urban structures at night, and 3) evapotranspiration over 
diurnal and seasonal timescales.  

Urban-PLUMBER builds on PILPS-Urban, which in turn drew on the methods of PILPS (Project for the Intercomparison of 
Land Surface Parameterization Schemes). Since the 1990’s, PILPS projects have undertaken land surface model evaluation 
and comparison (Henderson-Sellers et al., 1996, 1995; Slater et al., 2001; Bowling et al., 2003). A coordinating group 
defines the project framework (the protocol) and provides participating modelling groups with both meteorological data 
to drive land surface models and surface characteristics parameters to configure models. After running a model on their 
computers, participants submit their outputs to coordinators. Coordinators analyse outputs and communicate results. 
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More generally, model intercomparison projects (MIPs) have been undertaken across all Earth system spheres, and have 
become a foundational element of climate science (Eyring et al., 2016). Together with PILPS-Urban, two additional MIPs 
have been influential in the design of the current project. 

PLUMBER (Protocol for the Analysis of Land Surface Models Benchmarking Evaluation Project) (Best et al., 2015) 
demonstrated the benefit of using benchmarks to set the performance expectations for models. In traditional model 
comparison, models are ranked by various error metrics for select observed outputs. Although this helps identify outlying 
model performances it does not help determine whether the cohort overall is performing well or poorly. Furthermore, it 
may lead to subjective assessment of models being (un)fit for purpose and misdirecting subsequent model development 
priorities (Best et al., 2015). The benchmarks used in PLUMBER were simple empirical and physically-based models with 
far fewer inputs than the participating land surface models. Comparing models with benchmarks indicates the strengths 
and weaknesses of the cohort and hence areas for future development. Unsettlingly, PLUMBER found very simple 
empirical models such as a linear regression driven by shortwave radiation observed at other sites (i.e. trained out-of-
sample) outperformed all participating land surface models across a suite of standard metrics when predicting sensible 
heat fluxes over twenty sites. The PLUMBER project authors concluded that complex and computationally expensive land 
surface models were not effectively using the information available in the forcing data when determining surface-
atmosphere turbulent fluxes, arguing this challenged broadly accepted concepts used to model the surface energy 
balance. In Urban-PLUMBER we adopt a similar benchmarking approach but apply it for the first time in an urban setting. 

ESM-SnowMIP (Earth System Model–Snow Model Intercomparison Project) (Menard et al., 2021) found widespread 
human errors affecting model performance but, unlike some earlier comparisons, it encouraged resubmissions where 
initial results showed unexpected behaviour. As such, most modellers resubmitted their results when errors were 
identified. Errors included incorrectly configuring model start times, using input data from the wrong sites, incorrectly 
formatted model outputs (variable name or sign), and hardcoded bugs (i.e. coding errors in model parameterisation). In 
the same way, Urban-PLUMBER aims to reduce human errors via an initial assessment and resubmission process to 
better focus on intended model functionality. 

The Urban-PLUMBER project involves 30 models (Table 1, Appendix 1), 20 urban sites (Lipson et al., 2022a), 50 site-years 
of meteorological observations, 200 site-years of synthetic data, and 55 model output variables. Here, in Phase 1 of the 
project, we focus on evaluating model performance of five observed surface-atmosphere fluxes at one suburban site 
(Preston, Melbourne, Australia) over 16 months. The same site and observational data were used in PILPS-Urban 
(Grimmond et al., 2011), allowing direct comparison with those results; hence, our objectives here are to 1) evaluate land 
surface model performance in an urban setting using a benchmarking methodology, and 2) assess how the current cohort 
of models compare to earlier participants of PILPS-Urban. 

2. Methods 

2.1. Overview of modelling approaches 

Many urban land surface models exist to parameterise urban surface-atmosphere exchanges (Grimmond et al., 2009; 
Garuma, 2018; Nazarian et al., 2023) and are developed for various purposes including to predict lower boundary 
conditions for weather, climate or air quality simulations; forecast environmental conditions within the urban canopy 
(e.g. between buildings at pedestrian level); test interventions intended to improve these conditions; and predict 
anthropogenic feedbacks relating to energy and water use or thermal comfort.  

Although there is effectively a continuum of models with different levels of complexity for different physical processes 
(Fig. 1, 2, Appendix 1), here we broadly classify models into one of five cohorts (Figure 2) based on the representation of 
urban impervious surfaces (buildings, roads etc): 
(a) Non-urban schemes [participants in cohort n=2]: Most global and some regional weather and climate models lack an 

explicit urban scheme (Best, 2006; Oleson et al., 2018; Daniel et al., 2019; Zhao et al., 2021). Rather they simulate 
these areas using bare earth, rock or vegetation. Including models in this class helps determine the importance of 
using an urban scheme at a suburban site. 
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(b) One-tile (slab) schemes [n=5]: These treat built areas as a homogenous flat surface with parameters modified to 
represent the bulk influence of all urban elements. Some one-tile urban schemes represent built urban elements 
only (buildings, paving, roads etc), while others include the effects of vegetation and other surface types (water, bare 
soil etc). Therefore, optimal effective bulk surface parameters are model, site and output specific (Salamanca et al., 
2009). Methods to estimate effective surface parameters include tuning to appropriately scaled observations (Best 
et al., 2006), from more detailed models (Martilli et al., 2015), or from more detailed input data (Wouters et al., 
2016). 

(c) Two-tile schemes [n=5]: These resolve two urban surface facets (e.g. roofs and “street canyons”) with different 
thermal and radiative properties, and therefore different surface energy balances. Best et al. (2006) suggested two-
tile schemes provide benefit because one-tile heat capacity values could not be selected which provide both the 
correct amplitude and phase for observed sensible heat fluxes. While most two-tile schemes have surface 
parameters constant throughout a simulation, some parameterise the radiative and thermal effects of canyons from 
sun angle and morphology (e.g. MORUSES; Porson et al., 2010; CHTESSEL_U; McNorton et al., 2021). In this project 
these are classified as two-tile rather than canyon schemes, as they resolve two surface energy balances only. 

(d) Canyon schemes [n=13]: These resolve the energy balance for roof, wall and ground surfaces separately (Masson, 
2000). Radiation reflection and trapping are simulated in 2D with an infinite canyon assumption. The details of 
canyon schemes vary widely, with single or multiple atmosphere layers, sub-facets (e.g. multi-faceted walls), fixed or 
averaged building orientation, independent facet thermal and radiative properties, constant or distributed building 
heights, and those that include pervious ground, low vegetation and/or street trees between buildings (Fig. 1, 2). 

(e) More complex schemes [n=5]: These resolve 3D interactions between urban facets using a variety of approaches. 
Repeated cuboids allow for two perpendicular streets while retaining some of the computational efficiency a canyon 
approach (Kanda et al., 2005). Statistical distributions can characterise realistic urban environments and have been 
used to determine 3D radiative interactions between buildings and urban vegetation similar to 3D radiative 
interactions between clouds (Hogan, 2019a, b). This allows complex urban environments to be simulated in a 
computationally efficient manner (Stretton et al., 2022). Building and tree resolving models represent 3D 
interactions more explicitly, allowing micro-climate conditions to be resolved, but at a larger computational cost. 

Models can be further distinguished by how or if hydrological and anthropogenic processes are addressed, again with a 
large variety of approaches (Fig. 1). How models represent built, hydrological and anthropogenic processes are used here 
to obtain a measure of each model’s ‘total complexity’ (Fig. 2). Participating model's parameterisations are individually 
summarised in Appendix 1. 

Table 1: Participating models. Table 2 and Appendix 1 provide further details for each model. Section 2.1 provides an overview of 
urban modelling approaches and references. 

ID Submission 
name 

Urban land surface model Vegetation land surface model  
(if distinct from urban model) 

01 ASLUMv2.0 
Arizona State University Single-Layer Urban 
Canopy Model v2.0 (integrated vegetation) 

02 ASLUMv3.1 
Arizona State University Single-Layer Urban 
Canopy Model v3.1 (integrated vegetation) 

03 BEPCOL Building Effect Parameterization - Column model 
Bare soil model based on Regional Atmospheric Modelling 
System (RAMS) 

04 CABLE - Community Atmosphere–Biosphere Land Exchange model 

05 CHTESSEL - 
Carbon Hydrology Tiled ECMWF Scheme for Surface 
Exchanges over Land (CHTESSEL) 

06 CHTESSEL_U Urban scheme from CHTESSEL 
Tiled ECMWF Scheme for Surface Exchanges over Land 
(CHTESSEL) 

07 CLMU5 Community Land Model Urban  (integrated vegetation) 
08 CM Canopy Model  (integrated vegetation) 
09 CM-BEM Canopy Model - Building Energy Model (integrated vegetation) 
10 JULES_1T One-tile urban scheme from JULES Joint UK Land Environment Simulator (JULES) 
11 JULES_2T Two-tile urban scheme from JULES Joint UK Land Environment Simulator (JULES) 
12 JULES_MORUSES Met Office Reading Urban Exchange Scheme  Joint UK Land Environment Simulator (JULES) 
13 K-UCMv1 Klimaat Urban Canopy Model (integrated vegetation) 
14 Lodz-SUEB Lodz SUrface Energy Balance  (integrated vegetation) 
15 Manabe_1T One-tile urban scheme from JULES Manabe bucket 
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16 Manabe_2T Two-tile urban scheme from JULES Manabe bucket 
17 MUSE Microscale Urban Surface Energy model Bowen ratio method 
18 NOAH-SLAB Slab urban scheme from Noah-LSM Noah Land Surface Model (Noah-LSM) 
19 NOAH-SLUCM Single Layer Urban Canopy Model (SLUCM) Noah Land Surface Model (Noah-LSM) 
20 SNUUCM Seoul National University Urban Canopy Model  Noah Land Surface Model (Noah-LSM) 

21 SUEWS 
Surface Urban Energy and Water Balance 
Scheme  (integrated vegetation) 

22 TARGET 
The Air-temperature Response to Green/blue-
infrastructure Evaluation Tool (TARGET) (integrated vegetation) 

23 TEB-CNRM 
Town Energy Balance (TEB) with road canyon 
hypothesis for radiation ISBA (included in SURFEX) 

24 TEB-READING 
Town Energy Balance (TEB) with road canyon 
hypothesis for radiation Simple partitioning using fixed Bowen ratio and albedo 

25 TEB-SPARTCS 
Town Energy Balance with SPARTACUS-Urban 
for radiative exchanges ISBA (included in SURFEX) 

26 TERRA_4.11 TERRA_URB TERRA (stand-alone version) 
27 UCLEM Urban Climate and Energy Model (UCLEM) (integrated vegetation) 
28 UT&C Urban Tethys-Chloris (UT&C) (integrated vegetation) 
29 VTUF-3D Vegetated Temperatures of Urban Facets (VTUF) MAESPA 
30 VUCM Vegetated Urban Canopy Model (VUCM) (integrated vegetation) 

 

Table 2: Participating model information. Model may include an U: urban and/or V: vegetation land surface scheme, scale developed 
for M: micro, L: local, R: regional, G: global; and intended purpose to simulate CF: climate and weather forecasting, AQ: air 
quality, TA: temperature of air in canopy, TC: thermal comfort, WS: water sensitive urban design, E: energy consumption 
analysis, H: hydrological analysis, SEB: surface energy balance, O: operational model for numerical weather prediction, or as a 
BM: benchmark for this study. 

ID Submission name Version(s) Scheme(s) Scale(s) Primary Purpose(s) Participating author(s) 
01 ASLUMv2.0 v2.0 U L/R CF/TA/TC/WS/SEB Wang, Wang 
02 ASLUMv3.1 v3.1 U L/R CF/TA/TC/WS/SEB Wang, Wang 
03 BEPCOL v1 U/V L TA/SEB Simón-Moral, Martilli 
04 CABLE CABLE trunk r7025 V G CF De Kauwe 
05 CHTESSEL CHTESSEL-IFS-CY47R1 V G CF McNorton, Boussetta 
06 CHTESSEL_U CHTESSEL-IFS-CY47R1_URBAN U/V G CF McNorton, Boussetta 
07 CLMU5 release-clm5.0.34 U R/G CF Oleson 
08 CM CM v2021 U R/G TA/SEB Takane, Kondo 
09 CM-BEM CM-BEM v2021 U R/G TA/TC/SEB/E Takane, Kikegawa 
10 JULES_1T GL9 U R/G CF/O Best 
11 JULES_2T GL9 U R/G CF Best 
12 JULES_MORUSES GL9 U R/G CF/O Hendry, Best 
13 K-UCMv1 v1 U/V L TA/TC/SEB Beyers, Roth 
14 Lodz-SUEB v3 U L SEB Fortuniak 
15 Manabe_1T GL9 U/V L  SEB/BM Best 
16 Manabe_2T GL9 U/V L  SEB/BM Best 
17 MUSE V1.0 U M/L CF/TC/SEB Lee, Lee 
18 NOAH-SLAB Noah-LSM v3.4.1 U/V L CF Steeneveld, Tsiringakis 
19 NOAH-SLUCM Noah-LSM v3.4.1 U/V L/R CF/TA/SEB Tsiringakis, Steeneveld 
20 SNUUCM SNUUCM+Noah-LSM v1.0 U/V L/R CF/AQ Park, Baik 
21 SUEWS SUEWS v2020a U L TA/TC/WS/H/SEB Sun, Blunn 
22 TARGET TARGET-Java v1.1 U/V L TA/TC/WS Nice 

23 TEB-CNRM SURFEX v9 U R/G 
CF/TA/TC/WS/H/SEB/
O 

Machado, de Munck, 
Schoetter, Masson, Lemonsu 

24 TEB-READING TEB v4.1.0 U/V R CF/TA/SEB Meyer 

25 TEB-SPARTCS SURFEX v9 
U R/G CF/TA/TC/WS/H/SEB Machado, de Munck, 

Schoetter, Masson, Lemonsu 
26 TERRA_4.11 v4.11 U/V L/R CF/AQ/TC/WS/SEB/O Demuzere, Varentsov 
27 UCLEM CCAM r4909 U G CF/E Thatcher, Lipson 
28 UT&C v1.0 U/V L/R TA/TC/WS/H/SEB Meili, Fatichi, Manoli, Bou-Zeid 
29 VTUF-3D Java v1.0  U M TA/TC/WS/SEB Nice 
30 VUCM V1.0 U M/L CF/AQ/TA/TC/WS/H Lee, Han 
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Figure 1: Model schematics of the main built, hydrological and behavioural attributes for participating models. Here models are 

categorised into five cohorts (left column) based on the geometric representation of buildings, with built, hydrological and 
behavioural attributes used to refine a ‘total complexity’ (Fig. 2). Block array, statistical distribution and building-resolved 
models are grouped together into a “complex” cohort in later analysis. 
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Figure 2: Participating model capabilities. Grouped into cohorts (non-urban, one-tile, two-tile, canyon, complex: defined by approach 
to the built part of the urban area) and sorted from lower to higher ‘total complexity’ as calculated by assessing the included 
built, hydrological and behavioural attributes of submissions (green cells). Blue cells indicate a model is capable of representing 
the process but was not used in this submission. Frequency of approaches are indicated in right column. The ‘complexity score’ 
for each process is subjective. It is intended to be indicative only, helping to distinguish models within cohorts. 
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2.2. Experiment design and data 

2.2.1. Site description 

Simulations are undertaken for the Preston area in Melbourne, Australia (AU-Preston; Lipson et al., 2022a), the same site 
used in PILPS-Urban Phase 2 (Grimmond et al., 2011). The site area includes 1-2 storey detached residential buildings, 
some row-style 1-2 storey commercial buildings, and substantial tree and lawn cover (Fig. 3). The neighbourhood is 
classed as an open low-rise (LCZ6) Local Climate Zone (Demuzere et al., 2022; Stewart and Oke, 2012). The region is 
classified as having a temperate oceanic climate (CfB) under the Köppen-Geiger system (Beck et al., 2018). 

The site parameter values (Table 3) provided to participants are drawn from publications (Coutts, 2006; Coutts et al., 
2007a, b; Grimmond et al., 2011; Nice et al., 2018) or, when unavailable, estimated from high resolution global datasets 
(e.g. OpenLandMap soil datasets; Hengl, 2018a, b, c). 

 

Figure 3: Study area, AU-Preston: (a) location within Melbourne, Australia with the extent of the ERA5 (Hersbach et al., 2020) grid cell 
used for gap-filling observations (red rectangle) (image: © OpenStreetMap contributors); and, (b) aerial imagery around the 
flux tower site (yellow cross with circle of 500 m radius) (image: © State of Victoria (Department of Environment, Land, Water 
and Planning)). 

Table 3: Site-descriptive metadata. Parameters 1-9 were provided to participants for use in the ‘baseline’ experiment, while the 
‘detailed’ experiment allowed the use of all parameters. For detailed definitions see Lipson et al. (2022a). 

ID Parameter Value Units Footprint Source 
a) Baseline experiment parameters (1-9)  
1 Latitude -37.7306 degrees_north tower (Coutts et al., 2007a)  
2 Longitude 145.0145 degrees_east tower (Coutts et al., 2007a) 
3 Ground height 93 m tower (Coutts et al., 2007a) 
4 Measurement height above ground 40 m tower (Coutts et al., 2007b) 
5 Impervious area fraction 0.62 1 500 m radius (Grimmond et al., 2011) 
6 Tree area fraction 0.225 1 500 m radius  (Grimmond et al., 2011) 
7 Grass area fraction 0.15 1 500 m radius  (Grimmond et al., 2011) 
8 Bare soil area fraction 0.005 1 500 m radius  (Grimmond et al., 2011) 
9 Water area fraction 0 1 500 m radius  (Grimmond et al., 2011) 
b) Detailed experiment parameters (1-24)  
10 Roof area fraction 0.445 1 500 m radius  (Grimmond et al., 2011) 
11 Road area fraction 0.13 1 500 m radius  (Grimmond et al., 2011) 
12 Other paved area fraction 0.045 1 500 m radius  (Grimmond et al., 2011) 
13 Building mean height 6.4 m 500 m radius  (Grimmond et al., 2011) 
14 Tree mean height 5.7 m 500 m radius  (Nice et al., 2018) 
15 Roughness length momentum 0.4 m 500 m radius  (Coutts et al., 2007b) 
16 Displacement height 7.92 m 500 m radius  (Coutts, 2006, p.228) 
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17 Canyon height width ratio 0.42 1 500 m radius  (Grimmond et al., 2011) 
18 Wall to plan area ratio 0.4 1 500 m radius  (Grimmond et al., 2011) 
19 Average albedo at midday 0.151 1 radiometer view median of observations 
20 Resident population density 2940 person km-2 suburb average (Coutts et al., 2007a) 
21 Anthropogenic heat flux mean 11 W m-2 500 m radius  (Best and Grimmond, 2016a) 
22 Topsoil clay fraction 0.18 1 250 m grid (Hengl, 2018a) 
23 Topsoil sand fraction 0.72 1 250 m grid  (Hengl, 2018b) 
24 Topsoil bulk density 1230 kg m-3 250 m grid  (Hengl, 2018c) 

 

2.2.2. Observational and forcing data 

Observations for the AU-Preston site were gathered using sensors mounted on a telecommunication tower 40 m above 
ground to measure local scale conditions (i.e rather than microscale; Coutts et al., 2007a). Measurement height is 6.25 
times mean building height (Table 3) and is thus assumed to be within the constant flux layer and inertial sub-layer. Raw 
data were obtained over 474.4 days (2003-08-12 to 2004-11-28) at high frequency (1-10 Hz), which are then quality 
controlled and averaged to 30-minutes with period ending timestamps. Quality control removes periods unsuitable for 
eddy covariance observations (e.g., strongly stable conditions or periods subject to flow interference), along with 
significant outliers and unphysical values (Coutts et al., 2007a, b; Lipson et al., 2022a).  

The site observations are split into (1) forcing data: provided to participants to drive models, and (2) analysis data: 
withheld from participants and used to evaluate model performances (Table 4). Analysis data are not gap-filled; models 
are evaluated against observed data only, and not analysed during periods with gap-filled SWdown (except where 
SWdown=0 at night, which is assumed valid). SWup is not analysed at night. After quality control and periods of 
equipment failure, remaining analysis data are well spread between day and night, and across the four seasons (Table 4). 
Additional processing description, observational data and plots are included in Lipson et al., (2022c). 

The forcing dataset is gap-filled since it needs to be continuous for models. Small gaps (≤ 2 hours) are filled by linearly 
interpolating from available data. Larger gaps are filled using ERA5 global reanalysis (Hersbach et al., 2020) hourly data 
on single levels at 0.25° spatial resolution (Hersbach et al., 2018). As gridded data differ from point observations 
(Martens et al., 2020), and ERA5 does not use a  model with urban climate effects (McNorton et al., 2021), diurnal and 
seasonal adjustments are applied to bias-correct ERA5 data using available site observations and nearby rain gauges 
before gap-filling (Lipson et al., 2022a).  

Systematic and random errors are present in any observations used to force and evaluate models. Random errors in flux 
observations over forested areas generally scale with the magnitude of the flux (Hollinger and Richardson, 2005; 
Richardson et al., 2006). Flux observations at urban sites have reported random and systematic uncertainties in the same 
range as observed over vegetated ecosystems (Järvi et al., 2018). At this site, daytime flux errors have been estimated to 
be up to 10% (Best and Grimmond, 2015). Evaluating models over extended periods reduces the effects of random 
errors. However, we cannot account for systematic errors if they exist, nor can we assess if surface energy closure is 
achieved with the available observations. 

Annualised rainfall during the analysis period (682 mm) was near the long-term average. However, preceding drought 
conditions and ongoing restrictions on domestic irrigation led to lower moisture availability and higher Bowen ratios 
during the study period (Coutts et al., 2007b). Conditions were otherwise reasonably representative of typical local 
climatology (Lipson et al., 2022c). 

Table 4: Observational data description and availability. Forcing data are gap-filled with bias-corrected reanalysis data (Lipson et al., 
2022a). Analysis data are used for model evaluation without gap-filling. DJF=December, January, February (summer); MAM: 
March, April May (autumn); JJA: June, July, August (winter); SON: September, October, November (spring). 

Variable Description Units Positive All  Day Night DJF MAM JJA SON 
a. Forcing data   [%] [%] [%] [%] [%] [%] [%] 
SWdown Downward shortwave 

radiation 
W m-2 Downward 85.7 38.8 47.7 19.2 19.4 19.1 28.0 

LWdown Downward longwave 
radiation 

W m-2 Downward 71.8 38.2 33.6 19.2 19.4 13.7 19.5 

Tair Air temperature K - 100.0 52.3 47.7 19.2 19.4 23.5 37.9 

 1477870x, ja, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4589 by T
he U

niversity O
f M

elbourne, W
iley O

nline L
ibrary on [05/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

Qair Specific humidity kg kg-1 - 100.0 52.3 47.7 19.2 19.4 23.5 37.9 
PSurf Station air pressure Pa - 86.3 46.0 40.2 19.1 19.1 16.4 31.7 
Wind_N Northward wind 

component 
m s-1 Northward 99.9 52.2 47.7 19.2 19.4 23.5 37.9 

Wind_E Eastward wind 
component 

m s-1 Eastward 98.9 51.7 47.3 18.8 19.4 23.4 37.2 

Rainf Rainfall rate kg m-2 s-1 Downward 100.0 52.3 47.7 19.2 19.4 23.5 37.9 
Snowf Snowfall rate kg m-2 s-1 Downward 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
b. Analysis data          
SWup Upward shortwave 

radiation 
W m-2 Upward 35.9 35.9 0.0 11.5 7.3 5.9 11.2 

LWup Upward longwave 
radiation 

W m-2 Upward 66.2 35.1 31.1 19.0 15.8 13.4 18.0 

Qle Latent heat flux W m-2 Upward 43.1 19.8 23.4 11.3 9.3 11.5 10.9 
Qh Sensible heat flux  W m-2 Upward 43.3 19.8 23.5 11.3 9.4 11.6 11.0 
Qtau Momentum flux N m-2 Downward 73.3 35.4 37.9 18.9 15.8 14.1 24.5 

2.2.3. Spin-up strategy 

Soil wetness at the beginning of a simulation (the initial conditions) can strongly influence the modelled surface energy 
balance. Most land surface models require years to reach a hydrological equilibrium when forced by local meteorology 
(Yang et al., 1995; Best and Grimmond, 2014). As soil states are model-dependent, initial conditions cannot simply be 
transferred between models nor set to one state across models (Koster et al., 2009). Ideally, each model would reach 
their own equilibrium during a spin-up period which is not analysed, with 10 years considered generally sufficient across 
a wide range of land surface models (Best et al., 2015; Best and Grimmond, 2016b). 

As model forcing observations are rarely available to allow such a long spin-up at urban sites, past evaluation strategies 
include discarding some initial observations as spin-up (Grimmond et al., 2011), repeating a single-year of observations 
several times (Best et al., 2015), using global reanalysis products such as ERA5 (Hersbach et al., 2020) or reanalysis data 
with bias-corrections applied from gridded observations, such as WFDE5 (Cucchi et al., 2020). Using reanalysis for spin-up 
represents inter-annual variability prior to the analysis period and allows observations to be used for analysis. However, 
gridded reanalysis data (with grid spacing of order: 30 km or coarser) may be unsatisfactory if local urban effects are not 
captured. To address this, we use site bias corrected ERA5 timeseries for ten years prior to analysis (Lipson et al., 2022a). 
This provides meteorology (precipitation, solar radiation, temperature, wind etc.) over a sufficiently long period for soil 
states to equilibrate with local conditions prior to the analysis period. Of the 30 participating models, five did not use the 
full spin-up period (ASLUMv2.0, ASLUMv3.1, BEPCOL, K-UCMv1, TARGET) because a long spin-up was not deemed 
necessary by those participants. 

2.2.4. Baseline and detailed experiments 

To assess how site-specific information impacts model performance, two experiments are undertaken. First, as a 
baseline, participants configured their models using only land cover and location information (parameters 1-9, Table 3) 
and their default model configurations. This is designed to evaluate models configured with information typically 
obtainable from global high resolution land cover datasets. Second, for a detailed submission, participants could use all 
parameters in Table 3. This is designed to evaluate if performance improves with parameters that are more challenging 
to obtain and not typically globally available (e.g. building height, canyon aspect ratio, and a breakdown of hard surfaces 
into building, road and paved fractions). 

The previous intercomparison at the same site (PILPS-Urban: Grimmond et al., 2011) included four stages with 
increasingly detailed site information for participants. The baseline experiment in the current project is most similar to 
PILPS-Urban Stage 2, and the detailed experiment to PILPS-Urban Stage 4 (for which model outputs are reanalysed and 
compared with the current cohort in Section 3: Results). 

2.2.5. Requested model outputs 

Of the 55 variables participants are asked to return, here we analyse four surface energy fluxes—upward shortwave 
(SWup) and longwave (LWup) radiation, sensible (Qh) and latent heat flux (Qle)—as well as the momentum flux (Qtau) 
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(Table 4b). The additional 50 variables are collected to undertake more detailed analysis in future studies and for error 
checking purposes (e.g. to check input forcing aligned with output timesteps). 

Variable names and formats follow the conventions of the Assistance for Land-surface Modelling Activities (ALMA) 
(Bowling and Polcher, 2001), as used in previous PILPS projects to facilitate data exchange in (non-urban) land surface 
model intercomparisons projects. Variables requested include both the ALMA “mandatory” and additional urban-specific 
variables (e.g. anthropogenic heat (Qanth) and water (Qirrig) fluxes, storage heat flux (QStor), roof, wall and road surface 
temperatures (RoofSurfT, WallSurfT, RoadSurfT), bulk air temperature within buildings and in street canyons 
(TairBuilding, TairCanyon), and urban canopy albedo (UAlbedo). Outputs are further described in the modelling protocol 
(Lipson et al., 2020).  No submission included all requested outputs (Figure 4). 

2.2.6. Submission and feedback 

Submissions were accepted through a web portal (https://modelevaluation.org) that stores data and undertakes 
comparison with observation (Abramowitz, 2018). Various automatic and manual checks (Table 5) are undertaken to 
diagnose human errors in model configuration and outputs, as these cause poor performance that prevents model design 
or parameterisation from being appropriately assessed (Menard et al., 2021). On submission, immediate feedback is 
provided to participants to inform of basic file formatting errors. Subsequently, timeseries and energy closure plots are 
provided to participants by project coordinators. Shortwave radiation is chosen as a focus for feedback because it is a 
relatively simple flux to model, and has an instantaneous response, making timing issues between forcing and outputs 
more obvious. Also, correctly representing the bulk albedo is known to be important for urban model performance, as 
the net shortwave radiation dominates the energy balance (Best and Grimmond, 2015). 

Following feedback, participants had an opportunity to resubmit prior to more complete analysis and final error statistics 
being shared. The number of submissions (including the first) varied from 1 to 9. Initial checks identified human errors 
including incorrect start times, mislabelling of outputs, variable sign errors, forcing interpolation errors (where model 
timestep was shorter than forcing) and errors in model source code causing unphysical or unexpected behaviour. Results 
were presented to participants through the project website (https://urban-plumber.github.io/), including timeseries plots 
of all submitted variables and individual model results and metadata (archived in supplementary material). 

 
Figure 4: Submitted variables. Variables analysed here are defined in Table 4, with others defined in the Urban-PLUMBER modelling 

protocol (Lipson et al., 2020), following the ALMA naming conventions (Bowling and Polcher, 2001). Two models (CABLE and 
CHTESSEL) submitted only the baseline experiment, as they could not use the detailed urban parameters (Table 3). 

 1477870x, ja, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4589 by T
he U

niversity O
f M

elbourne, W
iley O

nline L
ibrary on [05/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://modelevaluation.org/


 

Table 5: Submission error checks. Feedback was provided to participants, who were able to resubmit prior to final analysis.  
 Check Action Purpose Number 

affected 
a) Immediate feedback from modelevaluation.org  
Timestep number ensure timestep length and simulation period matched expectations some  
Included variables check number of variables submitted  all  
Variable names check submitted variables names are as requested some 
Variable units check submitted variable units are as requested some 
Mean fluxes plots provide feedback on sign and magnitude of mean fluxes some 
b) Feedback after manual checks (i.e. subsequent weeks): Plots include: 
SWdown ensure timestamps of submission matched expectations some 

SWdown (subset) 
check if modelled SWdown matches forcing: some using < 30-min timesteps introduces 
interpolation errors 

some 

Energy closure 
lack of surface energy balance closure may indicate incorrect partitioning, output format or 
sign errors 

many 

SWnet (average) simulated midday albedo: midday albedo provided for detailed experiment some 
Anthropogenic flux simulated anthropogenic flux: expect mean magnitude provided for detailed experiment some 

 

2.3. Evaluation methods 

2.3.1. Benchmarks 

Following PLUMBER (Best et al., 2015), we use benchmarks (Fig. 5) to guide performance expectations that are both 
physically- (e.g. Manabe, 1969; bucket model) and empirically-based. The empirical benchmarks are determined by 
statistical regressions using observational data independent of the site (so-called ‘out-of-sample’), meaning that data 
from the site being tested are not used to establish regression parameters. PLUMBER used out-of-sample benchmarks to 
provide a lower bound on performance expectations. Here we include two ‘in-sample’ empirical benchmarks (i.e. derived 
using test site data) to give an expected upper bound on flux predictability. More complex empirical models with lagged 
inputs can improve benchmarks further (Haughton et al., 2017); however, the benchmarks described below are sufficient 
for our analysis and allow direct comparison with those used in PLUMBER. 

The out-of-sample regressions are trained using meteorological data: downward shortwave radiation (SWdown), air 
temperature (Tair), and relative humidity (RH) from 20 urban sites (Table A.2). The sites are from Europe, the Americas, 
Asia and Australia, and have different regional climates, urban surface characteristics and observational period (Lipson et 
al., 2022a). All empirical benchmarks rely only on contemporaneous meteorological data (i.e. do not draw on data from 
previous periods to make predictions). 

Six benchmarks are categorised into three groups. The ALMA short-names (Table 4) are used to denote model driving 
variables of empirical benchmarks.  

Group one includes a single physically-based benchmark: 

a) Manabe_1T: A simple ‘slab and bucket’ model (Fig. 5a) based on physical principles (i.e. conservation of energy, 
mass and momentum). The impervious (built) fraction is simulated using a one-tile slab scheme (Best, 2005). For the 
pervious fraction a simple representation allows precipitation to fill a store which overflows when full, and otherwise 
freely evaporate (Manabe, 1969). At each timestep, the impervious and pervious tile outputs are calculated and 
aggregated with a weighted mean. Manabe_1T is configured using baseline parameters (Table 3: parameters 1-9). 
Additionally, Manabe_1T is treated as a participating model (i.e. evaluated against other benchmarks) through a 
secondary configuration using the detailed site parameters (Table 3). 

Group two has three out-of-sample empirical benchmarks: 
b) REG1-SWdown: Linear regression with one variable (SWdown, Fig. 5b) is used separately to predict SWup, LWup, 

Qh, Qle, and Qtau. At night all predicted values are constant because SWdown = 0 W m-2.  
c) REG2-SWdown-Tair: Two-variable (SWdown and Tair) linear regression (Fig. 5c) provides some information at night 

and provides benefit for variables strongly dependent on temperature (e.g. LWup and Qh). 
d) KM3-SWdown-Tair-RH: A piecewise multi-variable regression. Following PLUMBER’s conceptual arguments, three 

predictor variables (SWdown, Tair and RH data) are split into three groups (low, medium and high) to create 33=27 
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clusters, for which independent regressions are trained. K-means clustering (Pedregosa et al., 2011) is used to 
partition training data unsupervised (Fig. 5d). To use this benchmark, at each timestep the proximity of the forcing 
data to one of the 27 training cluster centroids is determined, and then that cluster's regression is applied to form a 
prediction. This benchmark equates to PLUMBER’s EMP3KM27 (Best et al., 2015), which outperformed all 
participating land surface models when predicting sensible and latent heat fluxes across 20 sites based on common 
metrics. 

Group three has two in-sample empirical benchmarks: 

e) KM3-IS-SWdown-Tair-RH: Following the previous k-means clustering method, but trained with in-sample data only 
(i.e. AU-Preston). This will outperform an equivalent out-of-sample model, but performance is expected to degrade if 
applied to dissimilar conditions (i.e. another site) because of overfitting. 

f) KM4-IS-SWdown-Tair-RH-Wind: K-means is applied incorporating a fourth variable (wind speed), increasing the 
clusters to 34 following the above rationale. Wind speed provides information to help predict turbulent heat and 
momentum fluxes. 

Benchmark time series data are openly available (Lipson and Best, 2022).  

 
Figure 5: Example benchmark diagrams. a) Manabe_1T, b) REG1-SWdown, c) REG2-SWdown-Tair, d) KM3-SWdown-Tair-RH with 

cluster centroids (black crosses), and (e-h) predictions using corresponding (a-d) benchmarks. A two-week period of upward 
longwave radiation (LWup) is used as an example of benchmark output (coloured lines, with observations in black). Error 
statistics are calculated over all available periods, for mean absolute error (MAE), mean bias error (MBE), normalised standard 
deviation (nSD) and the coefficient of determination (r2), all defined in Table A.1. 

2.3.2. Error metrics 

Following PLUMBER (Best et al., 2015), we use statistical measures in three groups: 

1) Commonly used model comparison statistics: mean absolute error (MAE) measures average error; mean bias error 
(MBE) for overall bias; normalised standard deviation (nSD) compares the variance of model output to that of the 
observations; correlation coefficient (r) measures pattern errors.  

2) Extremes of the observed distribution: absolute error at the 5th and 95th percentile of observed and modelled outputs. 
3) Shape of the distribution compared to observations: skewness measures differences in symmetry of the distributions; 

kurtosis measures differences in the weight of the tails of the distribution; overlap indicates the closeness of fit across 
the two distributions. 

We also separately use centred root mean square error (cRMSE) as a measure which combines variance and pattern 
errors, but does not capture bias errors (Taylor, 2001). For aggregated scoring, error statistics (e.g. MBE) are redefined 
into error metrics (𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀) to be positive with perfect score of zero (Table A.1). For benchmark scoring, MAE gives 
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identical results to the normalised mean error (NME) used in PLUMBER. All statistics and metrics are defined in Appendix 
Table A.1. 

2.3.3. Benchmark scoring 

PLUMBER used a simple rank-based score to evaluate models and benchmarks (Best et al., 2015). However, simple 
ranking may give a false impression of difference where metric results are nearly identical (Haughton et al., 2016). 
Relative scoring allows relative performance to be shown (Sabot et al., 2020). Furthermore, if global extrema are used 
across all models and benchmarks, this ensures a single benchmark has the same relative score across models. 

Thus, our scoring differs from PLUMBER. For each participating model 𝑖𝑖, variable 𝑣𝑣 and metric 𝑚𝑚, a score 𝑆𝑆 is calculated 
for the 𝑖𝑖th model using the minimum and maximum metric result across all models and benchmarks for that variable: 

𝑆𝑆𝑖𝑖,𝑣𝑣,𝑚𝑚 = 𝑚𝑚𝑖𝑖,𝑣𝑣−min(𝑚𝑚𝑣𝑣)

max(𝑚𝑚𝑣𝑣)− min(𝑚𝑚𝑣𝑣)
                                                                          (1)  

This gives a score of 0 for the best performing model or benchmark, and 1 for the poorest, with all others scaled relative 
to the range of results. Rescaling scores between 0 and 1 ensures that no metric has greater weight when aggregated 
with others. Different metric scores (Section 2.3.1) are aggregated into groups with: 

𝑆𝑆𝑖̅𝑖,𝑣𝑣 = 1
𝑛𝑛𝑚𝑚

∑ 𝑆𝑆𝑖𝑖,𝑣𝑣,𝑚𝑚
𝑛𝑛𝑚𝑚
𝑚𝑚=1                   (2) 

where 𝑛𝑛𝑚𝑚 is the number of metrics in group being aggregated (e.g. for the extremes group 𝑛𝑛𝑚𝑚 = 2). 

3. Results 

To build our understanding of the model’s performance, we initially consider one error statistic, the MAE (Section 3.1: 
Fig. 6). Although no single measure can fully characterise model skill (Jackson et al., 2019), MAE provides a simple and 
unambiguous measure of average error (Willmott and Matsuura, 2005) and allows comparison of error magnitude across 
fluxes in natural units (W m-2). Subsequently, three statistics (for correlation, variance and difference errors) are analysed 
in a Taylor diagram (Taylor, 2001) (Section 3.2: Fig. 7). Aggregated benchmark performance scores (Section 2.3.3) are 
then analysed in benchmarking diagrams, using common error metrics (Section 3.3: Fig. 8). Finally, all metrics (common, 
extreme and distribution) are used to compare models with benchmarks (Section 3.4: Fig. 9). The PILPS-Urban Phase 2 
Stage 4 (Grimmond et al., 2011) (hereafter G11) anonymised model outputs are reanalysed here conforming to this 
project’s metrics and analysed periods. 

3.1. Assessment using the Mean Absolute Error (MAE) 

Individual model MAE results are combined into boxplots (Fig. 6) for three experiments (G11, baseline and detailed) with 
results also analysed by model cohort (Section 2.1). The performance of the ensemble mean (i.e. the mean of 
participating model outputs at each timestep; rightmost column) and the benchmarks (coloured horizontal lines) are also 
shown (Fig. 6).  

For upward shortwave radiation (SWup), the detailed site information (e.g. albedo) improved all cohort performance 
where utilised (non-urban models did not submit detailed simulations). Most one-tile, two-tile and canyon models 
outperform the physical and out-of-sample benchmarks when given detailed information, whereas complex models did 
not use this information as effectively. The ensemble means perform similarly across the three experiments (G11, 
baseline and detailed), matching the best performing individual models. The relatively low MAE for all benchmarks (2.3 – 
7.0 W m--2) indicates this flux can be well simulated with few inputs. 

For upward longwave radiation (LWup), providing more detailed site information reduced the MAE for one-tile models, 
but performance changed little for other model types (in some cases becoming poorer). Most models outperform the 
physical benchmark but only some beat the empirical benchmarks. The ensemble mean timeseries outperforms the 
physical and out-of-sample benchmarks. The LWup benchmark MAE values are larger (5.2 — 22.4 W m-2) than for SWup, 
indicating the flux is more challenging to predict with the information available to benchmarks. 

For sensible heat flux (Qh), providing detailed information broadly improves performance, particularly for two-tile, 
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canyon and complex cohorts. Models with initially large baseline anthropogenic heat fluxes benefitted from knowing this 
site’s relatively small flux magnitude (11 W m-2 annual mean). All cohort mean and median MAE outperform the physical 
and out-of-sample empirical benchmarks for the detailed simulations, with the ensemble mean able to outperform all 
benchmarks (including in-sample benchmarks). The larger benchmark errors (18.5 — 32.9 W m-2) indicates that the flux is 
more challenging to predict than either radiative flux.  

For latent heat flux (Qle), more detailed information provided little benefit for reducing MAE, and performance degrades 
slightly with more complex cohorts (based on built geometry, not vegetation or hydrology attributes). This suggests the 
more detailed information (mostly related to urban morphology) may not be in a form useful for models. However, the 
non-urban models do most poorly as, without any impervious surface fraction, they vastly overestimate 
evapotranspiration. The detailed ensemble mean outperforms all individual models and the in-sample empirical 
benchmarks. Qle has a relatively high benchmark range (18.6 – 26.1 W m-2), indicating a greater challenge to predict than 
radiative fluxes. 

In summary, the range of MAE is lower for the current models than for the G11 models, indicating better performance of 
urban models in the present intercomparison. Differences in mean MAE for models in G11 and detailed experiments 
(which have comparable site information) are statistically significant for SWup, Qh and Qle, but not for LWup (t-test, 
p<0.05). The range of MAE for the detailed simulations are generally smaller than for the baseline, indicating models 
benefited from additional site information. The difference in the mean MAE for baseline and detailed experiments 
reaches significance in SWup only. 

 

Figure 6: Mean absolute error (MAE) boxplot results. Individual models (dots) are split into cohorts (Section 2.1) with benchmarks 
(horizontal lines) for four fluxes: upward shortwave radiation (SWup), upward longwave radiation (LWup), sensible heat flux 
(Qh) and latent heat flux (Qle). Boxplots are shown for model experiments (left to right in each column): 1) PILPS-Urban Phase 
2 Stage 4 (G11: Grimmond et al., 2011; grey), 2) Urban-PLUMBER baseline (blue) and 3) Urban-PLUMBER detailed (orange). The 
level of information in G11 (the final stage of PILPS-Urban) is comparable to the detailed experiment in this project. Boxes 
show the 25th and 75th percentile, median (horizontal line), full range (whiskers) and mean (open circle). 

3.2. Taylor diagram evaluation 

A Taylor diagram (Taylor, 2001) combines three error statistics: 1) a difference error metric (centred root mean square 
error: cRMSE); 2) a variance error metric (modelled standard deviation normalised by observed standard deviation: σ�) 
and 3) a correlation error metric (Pearson’s correlation coefficient: 𝑟𝑟;  all defined in Table A. 1). Taylor diagrams use the 
centred RMSE (the RMSE after mean bias is removed) because it has a geometric dependence with the other two 
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(independent) metrics, allowing the construction of the diagram (Fig. 7). For each model, a marker shows where the 
three metrics intersect. The cRMSE of benchmarks is indicated by the concentric dashed lines. A model that would 
perfectly align with observations is indicated with a star at the figure base. The G11 PILPS-Urban Phase 2 Stage 4 results 
(small dots) are compared with the detailed experiments, as the site information available in each is comparable. 

For SWup, most Urban-PLUMBER (UP) models and benchmarks are grouped tightly around the observation star (Fig. 7a). 
Some UP models (e.g. 20, 22, 29) have high correlations, but different variances than observed, indicating errors in bulk 
albedo. Others (e.g. 09) captured the observed variance well, but had lower correlation, indicating a potential time-of-
day issue with SWup (either a time offset, or in this model’s case, an asymmetrical diurnal profile). Using cRMSE as a 
metric, 23 of 30 UP models outperform at least one benchmark, while only 18 of 31 of the G11 models do (Table 6). The 
spread in σ� and 𝑟𝑟 indicates G11 models had greater albedo and time-of-day errors than UP models (Fig. 7). 

For LWup (Fig 7b), many participating models have larger variance than observed because of an overprediction in the 
diurnal range of LWup. Some UP models (e.g. 22, 20) are high-end outliers, with σ� of approx. 1.7 (i.e. 170% of 
observations), greater than the cRMSE of all benchmarks. G11 outliers are larger still (0.5 to 2.0). The LWup ensemble 
mean in UP and G11 performs similarly, as do the number of models that outperform benchmarks (Table 6). In UP, one 
model (18: NOAH-SLAB) outperformed all benchmarks in cRMSE. 

For Qh (Fig 7c), correlation and variance statistics (and hence cRMSE) improved substantially in UP compared with G11. 
For UP, 28 of 30 models outperform at least one benchmark in cRMSE (cf. 18 of 31 in G11, Table 6). Twelve UP models 
outperform all out-of-sample benchmarks (cf. six G11 models). One UP model (14: Lodz-SUEB) outperforms the four-
variable in-sample benchmark, which is the upper limit of performance expectations. The UP ensemble mean also 
performs very well, outperforming all benchmarks nSD, R and cRMSE. The UP ensemble mean variance is nearly identical 
to observations (σ�=1.00), while for G11, 26 models had higher variance than observations and the ensemble mean 
σ�=1.23. Higher variance in G11 models indicates an overprediction in maximum Qh values or a general overestimation of 
the variability in Qh. As cRMSE is “centred” it does not measure bias error (Taylor, 2001). For Urban-PLUMBER, the MBE 
for Qh ensemble mean is 5.2 W m-2 (cf. 12.1 W m-2 in G11), indicating the UP models have improved partitioning of 
available energy into Qh. 

Compared with other fluxes, the poorer cRMSE of the six benchmarks for Qle (Fig7d) indicates this flux is more 
challenging to predict, or that it requires other inputs to improve performance (e.g., precipitation, soil states or 
vegetation characteristics). Most UP and G11 models underestimate the variance of this flux. The ensemble mean’s σ� = 
0.70 (i.e. 70% of observations standard deviation). However, this is an improvement over the G11 ensemble mean (σ� = 
0.60). The G11 results exclude six models that did not provide Qle output (i.e. some assumed Qle = 0 W m-2). The 
ensemble mean for Urban-PLUMBER MBE (-4.1 W m-2) is better than for G11 (-8.2 W m-2 for G11 models that explicitly 
resolved Qle). Combined with the improved ensemble mean Qh MBE, this indicates the UP models are better at 
partitioning available energy into Qh and Qle. No model in either project outperformed in-sample empirical benchmarks 
for Qle (Table 6). 

Eleven models provided the simulated momentum flux (Qtau) from both Urban-PLUMBER and G11 (Fig 7e). Performance 
in both projects are similar cf. benchmarks (Table 6). Benchmarks without wind information (i.e. one, two and three 
variable empirical benchmarks) did not perform well. All models ranked between the 3-variable and 4-variable in-sample 
benchmarks, and all were able to beat out-of-sample empirical benchmarks. 
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Figure 7: Taylor diagram combines the normalised standard deviation (σ�), correlation coefficient (𝑟𝑟) and cRMSE (defined Table A.1). 

Models (coloured numbers) have better performance if closer to star at diagram base, with cohort colours: non-urban (dark 
greens), one-tile (blues), two-tile (greens), canyon (orange to reds), complex (purples). Benchmarks models (coloured symbols) 
with their cRMSE contours (concentric dashed lines), and the PILPS-Urban Phase 2 Stage 4 (G11: small black circles). 
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Table 6: Number of models outperforming the cRMSE benchmarks for Urban-PLUMBER detailed simulations (UP) and PILPS-Urban 
Phase 2 Stage 4 (G11) (Grimmond et al., 2011). Models are executed for the same site with the same observations but different 
models (or versions). Higher number (bold) is better. 

 Flux SWup LWup Qh Qle Qtau 
 Project UP G11 UP G11 UP G11 UP G11 UP G11 
 Total models 30 31 30 31 30 31 30 25 11 11 

beat at least: 1 benchmark (physical or empirical) 23 18 28 28 28 18 22 16 9 10 
 2 benchmarks (physical or empirical) 22 18 20 16 15 6 10 7 9 10 
 3 benchmarks (physical or empirical) 22 18 4 6 12 6 8 5 9 10 
 all out-of-sample benchmarks (physical and empirical) 0 1 4 6 12 6 5 3 4 3 
 1 in-sample empirical benchmark 0 0 1 1 7 2 0 0 9 10 
 2 in-sample empirical benchmarks 0 0 1 1 1 0 0 0 0 0 

3.3. Benchmarking evaluation: common metrics 

We can evaluate model results relative to the benchmarks for various experiments using the aggregated scores (Eq. 1 and 
2) from four common metrics (MAE, MBE, nSD, R). A lower relative score indicates better performance (Fig. 8). Of the 30 
models in this project, 11 (in an earlier form) also participated in G11, so allow direct comparison. In Figure 8, the models 
are ordered in increasingly complex cohorts (Section 2.1), and within cohorts by the ‘total complexity’ (Fig. 2), which 
includes hydrology and anthropogenic related characteristics. 

For SWup, providing more detailed site information consistently improves the aggregate scores. The models in the 
simpler cohorts (one-tile, two-tile) benefit more from the more detailed information (square marker in each model 
column), where eight of ten outperformed both physical and out-of-sample empirical benchmarks (dark green, model 
column base). Almost all canyon models outperform a benchmark, and in the detailed experiment three outperform all 
physically-based and out-of-sample empirical benchmarks. Only one complex model outperforms a benchmark for SWup 
(excluding G11 results), indicating the complex cohort have more difficulty using provided site information. The ensemble 
mean (last column) for G11 and UP performs well, beating all out-of-sample benchmarks (dark green) in the more 
detailed experiments. 

For LWup, additional site information does not always improve performance, and sometimes degrades it. Performances 
of cohorts are inconsistent, with some models in non-urban, one-tile, two-tile and canyon categories outperforming all 
physical and out-of-sample empirical benchmarks, but others beat none. The canyon and complex models, and some 
two-tile models with radiation parameterisations, should be able to improve their LWup performance by utilising the 
detailed building morphology information provided (e.g. representing canyon longwave trapping), but appear unable to 
do so. The most complex urban schemes again are not able to effectively use provided information, with none 
outperforming a multivariate empirical benchmark. The ensemble mean performance changes little between G11 and 
UP. 

For Qh, the non-urban, and most one-tile, two-tile and canyon models outperform all out-of-sample empirical 
benchmarks (dark green). This is in stark contrast to PLUMBER (Best et al., 2015) when no model outperformed even the 
one-variable linear regression at non-urban sites. Again, fewer complex models are able to beat empirical benchmarks, 
but all outperform the physically-based benchmark. Some one-tile (14), two-tile (11, 16) and canyon (01, 07, 19) models 
beat the three-variable, but not the four-variable in-sample benchmarks, which we consider as an upper performance 
expectation. Providing additional site information more frequently improves, rather than degrades, performance. The 
biggest improvements occur in models that assumed initially large baseline anthropogenic heat fluxes (e.g. models 21, 
24, 26), drawing on the detailed characteristic estimates of mean anthropogenic flux. Substantial improvement in the 
ensemble mean occurs from G11 to UP baseline to detailed experiments, with the latter outperforming all benchmarks, 
including those trained in-sample (purple). Qh is the only variable where the ensemble mean beats all the benchmarks 
for common metrics.  

Although additional site information degrades Qle model performances as often as it improves it, the improvements are 
larger in magnitude. Hence, the ensemble mean improves across the three experiments, in each case outperforming all 
the out-of-sample and physical benchmarks. Non-urban models are unable to outperform any benchmark because they 
overestimate Qle magnitudes. The three best performing models in Qle (10, 11, 12) are all JULES-based models used with 
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different urban schemes. Some one-tile (10, 14, 18), two-tile (11, 12), canyon (07, 13, 23, 27, 28) and complex (09, 25) 
models outperform all physical and out-of-sample benchmarks in detailed simulations. It is unclear at this stage why 
these models are performing well in Qle, as they all differ in their approaches in representing vegetation and hydrology 
processes. Further analysis across multiple sites may be informative. No detailed information for vegetation is provided 
that may have improved model performance further, e.g. leaf area index (LAI) phenology or stomatal conductance. 

The 11 models that submitted Qtau results perform better for the detailed than the baseline simulations but have a 
slightly degraded ensemble mean than for G11. Of the benchmarks, the four-variable in-sample benchmark (i.e. including 
wind speed) performs best, followed by the physically-based benchmark (Manabe_1T). Other benchmarks, without 
lacking the critical wind speed information for the momentum flux, perform poorly. No clear pattern is evident by 
modelling approaches. 

 

Figure 8: Benchmarking assessment for ‘common’ set of metrics (MAE, MBE, nSD, R) showing benchmarks (coloured lines) and models 
(black markers). Lower scores are better (Eq. 1 – 2). Model columns include up to three markers for different experiment 
submissions (1. PILPS-Urban Phase 2 Stage 4 (G11), 2. baseline and 3. detailed). Colours at the base of each column indicate the 
benchmarks a model outperforms per experiment (colour, lower legend). Models are ordered by nominally increasing 
complexity (Fig. 2). For Qtau, grey indicates no submission. 
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3.4. Benchmarking evaluation: all metrics 

The prior metrics (MAE, MBE, nSD, R and cRMSE) are focussed on central tendency rather than the extremes and/or the 
distribution. Ability to predict high impact weather events (historical, current, future climate) makes performance skill for 
extremes important. We therefore expand the “common” benchmark scorecard results from the base of Fig. 8 with 
“extreme” and “distribution” error metrics in Fig. 9. Relative performances (as in Fig. 8) for metric groups are provided in 
supplementary material (Fig. S1 – S3). 

For Qh and Qle, some models outperform in-sample benchmarks (purple), with many able to outperform all out-of-
sample benchmarks (green). An exception is that all model cohorts find predicting the 95th percentile for Qh challenging 
(white or blue) because they overestimate the upper Qh tail. For Qtau, models generally perform very well compared 
with in-sample empirical benchmarks, although this flux is heavily reliant on instantaneous wind information which is 
only provided in the most complex benchmark (KM4-IS-SWdown-Tair-Rh-Wind). Most models assessed for Qtau perform 
similarly to the simple physically-based benchmark (Fig. 8). 

The ensemble mean timeseries performs strikingly well across all fluxes, beating in-sample benchmarks for many metrics 
in Qh, Qle and Qtau, and beating most out-of-sample benchmarks in SWup and LWup. The ability of the ensemble mean 
to outperform even empirical models trained in-sample suggests the participating models adequately span the range of 
uncertainty from the parameterisation of processes. 
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Figure 9: All metric benchmarking results. Models are ordered nominally by increasing complexity (Fig. 2) showing benchmark 
scorecard of individual and aggregated metrics based on ability to outperform benchmarks (colour) for both the baseline (left) 
and detailed (right) simulations. Note a single box indicates only one submission made. For Qtau, grey indicates no submission.  

4. Discussion 

PILPS-Urban established that correctly representing the ratio of impervious to pervious surfaces is of first-order 
importance for urban model performance (Grimmond et al., 2011), so we do not investigate that here and provide land 
fraction information in the first ‘baseline’ experiment (Table 3a). We instead assess the impact of secondary information 
(e.g., three-dimensional morphology, bulk albedo, anthropogenic heat) in a ‘detailed’ experiment (Table 3b). We also 
compare outputs from Urban-PLUMBER (UP) models with those from PILPS-Urban Phase 2 Stage 4 (G11) (Grimmond et 
al., 2011), which used the same site and observations. 

Current models show reduced errors across four energy fluxes (Fig. 6), with a lower MAE range, and lower mean MAE for 
both the baseline and detailed experiments compared with G11 (however not reaching statistical significance for LWup). 
For cRMSE (Table 6), we find broad improvement for upward shortwave (SWup), sensible (Qh) and latent (Qle) heat 
fluxes, but little or no improvement in upward longwave (LWup) and momentum (Qtau) fluxes. When assessing 
performance using four common evaluation metrics (Fig. 8), the ensemble mean has clearly improved for Qh and Qle but 
is little changed or slightly degraded for SWup, LWup and Qtau.  

These results suggest the current generation of models is performing better than the G11 models for Qh and Qle. In the 
last decade considerable community effort has been applied to improve existing and develop new models with particular 
focus on better resolving vegetation and soil processes after these were found to be highly important for performances 
in previous intercomparisons (Grimmond et al., 2010, 2011). This implies the better performance seen here is from 
model development, but model application (i.e. configuration) may have also improved. Compared with G11, participants 
previous experience modelling the site, the provision of more site-specific data (Table 3), the additional rapid automatic 
feedback identifying human errors, and/or improved spin-up strategy may also have enhanced performance, rather than 
model parameterisation improvements alone. 

The poorer correlation of G11 models compared with current models (Fig. 7) indicates time-of-day errors (i.e. human 
rather than model errors). However, when all models with SWup correlations below 0.99 are excluded from the analysis 
(i.e. retaining only those with good timing) , G11 models still perform poorer for LWup, Qh and Qle compared with the 
current cohort (Fig. S4), implying other factors have led to performance improvements. 

Feedback provided to participants prior to final evaluation (Table 5) significantly reduces SWup and LWup errors for some 
models, and to a lesser degree also reduced Qh and Qle errors (Fig. S5). Models that resubmitted more times are 
generally able to improve their performances relative to their first submission but did not typically outperform those that 
submitted only once. When models are categorised by previous experience modelling with this site (e.g. via the G11 
project), more experienced groups tend to have lower errors, particularly in the initial submissions (Fig S6). This suggests 
that resubmission helped “level the playing field” for those with less experience with the application of a model at this 
site. 

Those models which undertook the extended 10-year spinup tend to have better performance in detailed simulations 
than those that did not (Fig. S7), however this effect was small. Models with a closed surface energy budget have better 
performance in radiative fluxes, but not in turbulent fluxes (Fig. S8). Fully separating the various influences (better 
models, more experienced modellers, better spinup strategy) will require additional investigation to assess their relative 
impacts. However, in synthesis, urban model performance has improved since the last major urban model 
intercomparison over a decade ago. 

Flux magnitudes and dominant processes vary diurnally, and so separately analysing day and night periods provides 
additional insight. Compared with standard benchmarking scores (Fig. 8), daytime only (Fig. S9) and nighttime only (Fig. 
S10) results are presented in supplementary material. For LWup most models’ daytime results degrade in comparison 
with benchmarks, with fewer outperforming the two-variable out-of-sample regression. However, at night, most models 
beat all out-of-sample benchmarks. The complex model cohort benefits most at night, with all but one complex geometry 
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model beating all in-sample benchmarks, and nearly matching the performance of the in-sample benchmarks. Best and 
Grimmond (2015) found a similar result, concluding that the more complex geometric representations were able to 
account for nighttime longwave trapping between urban structures that simpler schemes could not. In this project, some 
models in every cohort perform well for LWup at night, but the most complex cohort was most consistently improved, 
and had the best overall detailed experiment results, implying they were better able to use the additional morphology 
information provided at that later stage. For Qh, Qle, and Qtau most models across all cohorts perform very well at night, 
typically beating one or both in-sample benchmarks, and nearly every model easily surpassing the out-of-sample 
empirical benchmarks. For nighttime Qh, some models in the urban canyon and complex categories performed better 
than all non-urban, one-tile and two-tile models, again implying more complex geometry is beneficial at night. The same 
consistent benefit from more complex geometry was not apparent in daytime periods, nor in the overall assessments. 

The use of benchmarking helps to guide performance expectations (Best et al., 2015). For example, without 
benchmarking Qle appears to be poorly modelled according to the Taylor plot statistics (Fig. 7), as was concluded in the 
earlier PILPS-Urban study (Grimmond et al., 2010, 2011). However, the benchmark results show that it is more 
challenging for models to minimise the Qle errors than, for example, SWup errors (Fig. 7). Benchmark assessment of 
extremes and distribution skill finds Qle to be one of the better modelled fluxes, with models able to outperform the in-
sample empirical benchmarks in many instances (Fig. 9: purple). Likewise, Qh is well modelled for the common (Fig. 8) 
and other (Fig. 9) metrics, compared to benchmarks. Fewer models outperform benchmarks for LWup (Fig. 7, 8), 
particularly in the daytime (Fig. S9). More site information generally degraded the ensemble mean skill in LWup (Fig. 6, 
8), except for more complex models at night (Fig. S10).  The overall poor performance in LWup compared with 
benchmarks indicates an area for which model development may prove beneficial. This may be difficult, as LWup is 
dependent on surface temperature, itself a result of the surface energy balance, so is sensitive to errors in all other 
surface energy fluxes (and related parameterisations). The evaluation of LWup is additionally complicated by the fact that 
the footprint of radiative observations from a flux tower differ from the footprint of the turbulent fluxes (Sailor, 2011; 
Schmid et al., 1991), so may be poorly represented by site parameters, which were intended to capture the larger 
turbulent flux footprint. 

A key PILPS-Urban (Grimmond et al., 2010, 2011) finding was that simpler models generally performed as well or better 
than more complex models. Similarly, we find the ‘complex’ models (Section 2.1) are often outperformed by one-tile, 
two-tile and canyon models (Fig. 6, 8, 9). However, model complexity needs to consider many aspects of urban 
environments, including morphological, hydrological, vegetation and anthropogenic influences. Some of the most 
complex ‘built’ representation have the simplest soil, water and vegetation approaches (Fig. 2). The simpler models 
within a cohort (i.e. left side of each cohort, Fig. 8, 9) often had poorer intra-cohort results. Thus, the hydrological and 
vegetation complexity is important. Many simpler PILPS-Urban built schemes benefitted from being coupled to more 
sophisticated vegetation land surface models, performing well, as they do here. However, the two participating non-
urban models (with sophisticated hydrology) significantly overpredict Qle, performing worse than benchmarks and all 
other model cohorts in this flux (Fig. 6, 7, 8). This indicates the representation of impervious surfaces is important even at 
this suburban site. Canyon models have improved compared with earlier evaluations, with some performing here as well 
as the best one-tile and two-tile schemes. This implies that community efforts in model development over the last 
decade have paid dividends, particularly the focus on integrating soil hydrology and/or vegetation into canyon models.  

In stark contrast with PLUMBER (Best et al., 2015), this project’s submissions are often able to outperform all out-of-
sample empirical benchmarks for Qh and Qle, and in some cases for the three or four variable in-sample benchmarks (Fig. 
6 - 9). For common metrics, PLUMBER (Best et al., 2015) found no model able to outperform a single-variable linear 
regression using SWdown for Qh, or a three-variable regression for Qle in applications (over non-urban terrain). An 
explanation such as Urban-PLUMBER simply having better models than PLUMBER is unlikely as some models (CABLE, 
CHTESSEL) or their vegetation components (NOAH, JULES) participated in both projects. Analysis coding errors are 
unlikely as we confirmed we could recreate the PLUMBER results using their site, model data and aggregation methods. 
These results suggest models for urban areas perform better than those for non-urban areas when assessed against the 
same empirical benchmarks. 
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Urban sites are highly diverse, and only one case is considered here. The AU-Preston site could be unrepresentative of 
other urban sites used for training, leading to poorer performing regression using out-of-sample data. This is supported 
by the fact that the out-of-sample three-variable regression (KM3-SWdown-Tair-RH) performed poorer than simpler 
regressions for Qh and Qle (Fig. 6, 7, 8), indicating overfitting. However, some models outperform the regressions trained 
in-sample (i.e. using only AU-Preston data), therefore good model performances are not simply related to the site’s 
(un)representativeness. Alternatively, models may have performed well here because we provide participants with more 
site-specific information (Table 3) than in PLUMBER. For the latter, participants were provided with a single plant 
functional type descriptor (e.g. grassland). However, some Urban-PLUMBER models are outperforming benchmarks in 
the ‘baseline’ experiment when only minimal surface information is given, so better model performance is not simply 
from the surface descriptions provided in this project. 

Ultimately, models participating in Urban-PLUMBER are performing better against benchmarks than the PLUMBER 
project land surface models were able to. This implies the complexity of urban surfaces benefits from the more complex 
modelling techniques used to address urban areas, compared with the natural landscapes evaluated in PLUMBER. A 
multi-site evaluation is required to confirm these initial results (now underway). 

In Urban-PLUMBER, we focus on bulk local scale surface-atmosphere exchanges as these variables and scale acts as the 
lower boundary conditions for weather, climate and air quality modelling. They may also act as the upper boundary 
conditions for more detailed models used for applications in cities (e.g. pedestrian thermal comfort). Some modellers 
using the latter type of models declined to participate in this project as their models require more detailed surface 
information than we could provide, and are more computationally intensive, making long (e.g. 10+ years) simulations 
unfeasible. Some models are not intended to predict the bulk land-atmosphere exchanges assessed here, but for 
predicting other details within the urban canopy. Other model intercomparison projects have encountered this challenge 
(bulk vs detail). ESM-SnowMIP (Menard et al., 2021) found comparatively complex models developed for specific 
purposes, and tested rigorously for their intended use, are outperformed by simpler bulk models when bulk variables are 
assessed. Thus, intended model use is a key consideration when evaluating performance. 

Following ESM-SnowMIP (Menard et al., 2021) and our earlier experience (e.g. Grimmond et al., 2010), that human errors 
can be widespread in intercomparison projects, we provide rapid automatic checks with feedback to participants, and 
follow up with manual checks (Table 5). Allowing resubmission where human errors are identified enables this evaluation 
to focus more closely on intended model performance. Identified human errors included: start times, output labels, 
variable sign, and forcing interpolation errors. These, plus model source coding mistakes, all impacted initial results. Our 
initial feedback focused on SWup to check that forcing and output timing aligned, and we link this to the net 
improvement in SWup performance seen (cf. G11, Fig. 6). Best and Grimmond (2015) previously established that 
correctly modelling the bulk surface albedo is critical for model performance for all surface energy fluxes. Ensuring 
albedo is simulated better in this project helps focus evaluation on other aspects of model design, such as the impact of 
hydrology, vegetation and anthropogenic influences. 

While considerable efforts are undertaken to compare models rather than users, the different application of models will 
impact results, and undoubtedly some human errors remain. Hence, individual model results presented here should be 
interpreted with caution. We highlight broad patterns, but cannot untangle whether individual model performances are a 
result of 1) aspects of model design, 2) user model configuration, or 3) model assessment methods (e.g. variables, 
metrics, spatial and time scales). A multi-site evaluation will provide more certainty for model performances. 

Despite the limitations of any model comparison project, they remain one of the foundational elements of climate 
science (Eyring et al., 2016). Model intercomparisons help define common working practices amongst disparate 
modelling groups, identify broad strengths and weaknesses of different modelling approaches, build the knowledge and 
skills of participating scientists and help direct future community efforts to improve the skill and application of models. 

5. Conclusions 

An international group of 45 scientists have evaluated the performance of 30 land surface models at a suburban site in 
Melbourne, Australia. Participating models vary in the complexity of their built geometry, hydrology and anthropogenic 
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representations. Ten error metrics are used with both physically-based and empirical benchmarks to assess the models 
performance. 

Key study findings: 
• Compared to the earlier PILPS-Urban model comparison at the same site (Grimmond et al., 2011), there is broad 

improvement in modelling upward shortwave radiation (SWup), sensible (Qh) and latent (Qle) heat fluxes, but 
little/ no improvement in upward longwave radiation (LWup) and momentum (Qtau) fluxes. 

• As in PILPS-Urban, the ensemble mean timeseries performs very well across all fluxes, suggesting participating 
models adequately span the range of uncertainty from the parameterisation of processes. 

• As in PILPS-Urban, some one and two-tile urban schemes (particularly when coupled to sophisticated 
soil/vegetation land surface schemes), performed well across all fluxes. 

• Some canyon models also perform well, indicating the integration of hydrology and vegetation into canyon 
models after PILPS-Urban has paid dividends. 

• ‘Complex’ urban models are generally outperformed by others, but their overall performance is likely penalised 
by having simpler hydrological and vegetation approaches.  

• Schemes that do not represent impervious surfaces (i.e. non-urban models), as well as urban models with 
simplistic hydrology/vegetation performed poorly in Qle, confirming that representing both pervious and 
impervious surfaces is important in suburban locations. 

• Detailed site information broadly improves turbulent heat fluxes but has little impact on daytime radiant fluxes. 
• A two variable out-of-sample regression outperforms most models for daytime LWup, thus indicating an area for 

which future model development may prove beneficial. 
• Many models outperform the non-linear three-variable empirical benchmarks for Qh, with some even beating 

in-sample non-linear benchmarks (i.e., exceeding expected predictability using contemporaneous information). 
This is in stark contrast to the PLUMBER (Best et al., 2015) results where no model outperforms simple SWdown 
linear regression derived from 20 non-urban sites for standard statistical metrics. It is not clear from this study if 
model design, model configuration, spin-up strategy and/or poorer performing benchmarks explain this. 

• The empirical benchmarks may be less effective in urban locations because of anthropogenic (human 
behavioural) influences on fluxes, or non-contemporaneous information (e.g. memory effects of surface heat 
storage) being more important at urban sites, particularly at night. This implies more complex modelling 
techniques (i.e. land surface models rather than simple empirical models) may provide greater benefit in urban 
landscapes. 

• Results are based on a site previously used in evaluation studies. When the details of a site are not known and 
not previously modelled, we should not expect such a high level of performance. 

Recommendations and lessons learnt from this project: 

• We recommend the use of benchmarks when evaluating models to help guide performance expectations. In this 
project, simple information limited models set minimum expectations, while more complex in-sample empirical 
models helped indicate an upper bound for performance expectations. 

• Model evaluations traditionally consider observational and modelling errors caused by parameterisation design 
decisions but should also explicitly consider errors caused by human factors (communication or coding errors in 
model or postprocessing code). 

• Human errors can be reduced (but probably not eliminated) by providing participants with initial feedback and 
allowing resubmission prior to final analysis. We recommend the use of web-based analysis portals (e.g. 
modelevaluation.org) that can provide immediate feedback to participants (plots and error statistics), 
particularly: 

o indicating variables that exceed expected physical limits, as well as checks on energy closure, as this 
helps identify model numerical errors, or errors in submitted variable’s identification, units or sign 

o correlation of modelled vs observed shortwave radiation, as this flux varies nearly linearly with forcing, 
helping indicate time-of-day human errors.  
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• Model configuration files (e.g. parameter namelists) and model revision numbers should be submitted with 
model outputs to help ascertain why outputs have changed between submissions, and allow submissions to be 
reproducible. 

• Participating in a model intercomparison project can be time consuming. However, intercomparisons are useful 
for improving our understanding of model performances in general, as well as providing opportunities to build 
the experience and skills of those who participate. Hence this project’s methods, data and results could be used 
as a training tool for new modellers, in addition to providing benchmarks to test future model developments. 
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8. Supplementary material 

Supplementary material include: 

• Fig. S1: Benchmark evaluation for extreme group of metrics (equivalent to Fig. 8). 
• Fig. S2: Benchmark evaluation for distribution group of metrics. 
• Fig. S3: Benchmark evaluation for all metrics combined. 
• Fig. S4: Categorical MAE plot considering only models with SWup correlations of > 0.99 to exclude models with 

time-of-day errors. 
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• Fig. S5: Comparison of MAE for initial and baseline submissions. 
• Fig. S6: Categorical MAE plot for participants with/without previous experience in modelling the AU-Preston site. 
• Fig. S7: Categorical MAE plot for models that did/did not complete full the spin-up period. 
• Fig. S8: Categorical MAE plot for models that did/did not close the surface energy balance. 
• Fig. S9: Benchmark evaluation for daytime periods (equivalent to Fig. 8) 
• Fig. S10: Benchmark evaluation for nighttime periods (equivalent to Fig. 8) 

Associated results include: 

• Individual model results (error metrics, individual timeseries and time-averaged plots, variable distribution plots, 
submitted metadata, and list of values outside of ALMA expected ranges. 

• Collective timeseries for every submitted output in the baseline and detailed experiments 

9. Data availability 

Supplementary material and associated model results are available from https://urban-plumber.github.io/AU-
Preston/plots/ and archived at https://doi.org/10.5281/zenodo.7388342 (Lipson et al., 2022b). 

Observation timeseries data are openly available from https://doi.org/10.5281/zenodo.7104984 (Lipson et al., 2022c).  

Benchmark timeseries data are available from https://doi.org/10.5281/zenodo.7330052 (Lipson and Best, 2022). 

Appendix A1 

A1.1 Error metric definitions 

Table A.1: Error statistics and metrics used to evaluate models. Metrics (𝑚𝑚) used in group scores are normalised to be positive with 0 a 
perfect score. M represents modelled values, and O the observed values. An overbar (e.g. 𝑂𝑂�) indicates the mean of 𝑛𝑛 samples. 
n varies with observational availability. 𝑋𝑋5 is value of 𝑋𝑋 at the 5th percentile of its distribution. Note that for the purposes of 
scoring models relative to benchmarks, the mean absolute error metric gives equivalent results to the normalised mean error 
metric used in PLUMBER (Best et al., 2015). 

Metric/ statistic Abbreviation/ 
symbol 

Formula Source 

Statistical measures  
Mean absolute error MAE 

�
|𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖|

𝑛𝑛
 

- 

Mean bias error MBE �
𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖

𝑛𝑛
 - 

Pearson correlation coefficient 𝑟𝑟  ∑(𝑀𝑀𝑖𝑖 −𝑀𝑀�) (𝑂𝑂𝑖𝑖 − 𝑂𝑂�)

�∑(𝑀𝑀𝑖𝑖 − 𝑀𝑀�)2 �∑(𝑂𝑂𝑖𝑖 − 𝑂𝑂�)2
 

- 

Standard deviation σX  
�∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2

𝑛𝑛 − 1
 

- 

Normalised standard deviation σ�  σ𝑀𝑀
σ𝑂𝑂

 (Taylor, 2001) 

Skewness 𝜇𝜇𝑋𝑋  1
𝑛𝑛
��

𝑋𝑋𝑖𝑖 − 𝑋𝑋�
σ𝑋𝑋

�
3

 
(Best et al., 2015) 

Kurtosis 𝐾𝐾𝑋𝑋  1
𝑛𝑛
��

𝑋𝑋𝑖𝑖 − 𝑋𝑋�
σ𝑋𝑋

�
4

− 3 
(Best et al., 2015) 

Perkins skill score PSS  � min (𝑏𝑏𝑏𝑏𝑛𝑛𝑀𝑀,𝑘𝑘 , 𝑏𝑏𝑏𝑏𝑛𝑛𝑂𝑂,𝑘𝑘)
100

1
 

(Perkins et al., 2007) 

Centred and normalised 
root mean square error 

cRMSE �1 + σ� 2 − 2σ�  ⋅ 𝑟𝑟 (Taylor, 2001) 

Common group metrics  
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Mean absolute error metric 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀  𝑀𝑀𝑀𝑀𝑀𝑀 - 
Mean bias error metric 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀  |𝑀𝑀𝑀𝑀𝑀𝑀| (Best et al., 2015) 
Normalised standard deviation metric 𝑚𝑚𝑆𝑆𝑆𝑆 |1 − σ�| (Best et al., 2015) 
Correlation coefficient metric 𝑚𝑚𝑅𝑅 1 − 𝑟𝑟 (Haughton et al., 2017) 
Extremes group metrics  
Absolute error at the 5th percentile 𝑚𝑚5 |𝑀𝑀5 − 𝑂𝑂5| (Best et al., 2015) 
Absolute error at the 95th percentile 𝑚𝑚95 |𝑀𝑀95 − 𝑂𝑂95| (Best et al., 2015) 
Distribution group metrics  
Skewness metric 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �1 −

𝜇𝜇𝑀𝑀
𝜇𝜇𝑂𝑂
� (Haughton et al., 2017) 

Kurtosis metric 𝑚𝑚𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  �1 −
𝐾𝐾𝑀𝑀
𝐾𝐾𝑂𝑂
� (Haughton et al., 2017) 

Overlap metric 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 1 − PSS (Haughton et al., 2017) 
 

A1.2 Benchmark observational data 

Table A.2: Site locations of tower observational data used to generate the empirical benchmarks for this study. For the 
out-of-sample benchmarks, data from the AU-Preston site are not used to train the empirical models. For the in-sample 
benchmarks, only AU-Preston data are used to train the model. Tower data are openly available (Lipson et al., 2022c, a). 

Sitename City Country Observed period Latitude Longitude References 
AU-Preston Melbourne Australia Aug 2003 – Nov 2004 -37.7306 145.0145 (Coutts et al., 2007a, b) 
AU-SurreyHills Melbourne Australia Feb 2004 – Jul 2004 -37.8265 145.099 (Coutts et al., 2007a, b) 
CA-Sunset Vancouver Canada Jan 2012 – Dec 2016 49.2261 -123.078 (Christen et al., 2011; Crawford and 

Christen, 2015) 
FI-Kumpula Helsinki Finland Dec 2010 – Dec 2013 60.2028 24.9611 (Karsisto et al., 2016) 
FI-Torni Helsinki Finland Dec 2010 – Dec 2013 60.1678 24.9387 (Järvi et al., 2018; Nordbo et al., 2013) 
FR-Capitole Toulouse France Feb 2004 – Mar 2005 43.6035 1.4454 (Masson et al., 2008; Goret et al., 2019) 
GR-HECKOR Heraklion Greece Jun 2019 – Jun 2020 35.3361 25.1328 (Stagakis et al., 2019) 
JP-Yoyogi Tokyo Japan Mar 2016 – Mar 2020 35.6645 139.6845 (Hirano et al., 2015; Ishidoya et al., 2020) 
KR-Jungnang Seoul South Korea Jan 2017 – Apr 2019 37.5907 127.0794 (Jo et al., n.d.; Hong et al., 2020) 

KR-Ochang Ochang South Korea Jun 2015 – Jul 2017 36.7197 127.4344 (Hong et al., 2019, 2020) 

MX-Escandon Mexico City Mexico Jun 2011 – Sep 2012 19.4042 -99.1761 (Velasco et al., 2011, 2014) 
NL-Amsterdam Amsterdam Netherlands Jan 2019 – Oct 2020 52.3665 4.8929 (Steeneveld et al., 2020) 
PL-Lipowa Łódź Poland Jan 2008 – Dec 2012 51.7625 19.4453 (Fortuniak et al., 2013; Pawlak et al., 

2011) 
PL-Narutowicza Łódź Poland Jan 2008 – Dec 2012 51.7733 19.4811 (Fortuniak et al., 2013, 2006) 
SG-TelokKurau06 Singapore Singapore Apr 2006 – Mar 2007 1.3143 103.9112 (Roth et al., 2017) 
UK-KingsCollege London UK Apr 2012 – Jan 2014 51.5118 -0.1167 (Bjorkegren et al., 2015; Kotthaus and 

Grimmond, 2014a, b) 
UK-Swindon Swindon UK May 2011 – Apr 2013 51.5846 -1.7981 (Ward et al., 2013) 
US-Baltimore Baltimore USA Jan 2002 – Jan 2007 39.4128 -76.5215 (Crawford et al., 2011) 
US-Minneapolis Minneapolis USA Jun 2006 – May 2009 44.9984 -93.1884 (Peters et al., 2011; Menzer and 

McFadden, 2017) 
US-WestPhoenix Phoenix USA Dec 2011 – Jan 2013 44.9984 -93.1884 (Chow, 2017; Chow et al., 2014) 

A1.3 Participating model descriptions 

For each model (Figure A.1- A.30) characteristics (Figure 1) are summarised. Table 2 gives the version of the model used 
in this paper. Diagrams are indicative only. Individual models have attributes not represented in diagrams. 
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Figure A.1: ASLUMv2.0 (Arizona State University Single-Layer Urban Canopy Model) (Wang et al., 2021, 2013) is a single-layer canyon 

model that analytically resolves surface temperatures and conductive heat fluxes based on Green’s function (Wang et al., 
2011b), and explicitly resolves sub-facet heterogeneity and urban vegetation. ASLUMv2 incorporates detailed hydrology, multi-
layer soil/ground and roof vegetation (via a multi-layer green roof model), and enables simulations of irrigation, anthropogenic 
heat, and urban oasis effect (Yang et al., 2015). 

 
Figure A.2: ASLUMv3.1 (Wang et al., 2021, 2013) is the same as ASLUMv2.0 (Fig. A.1) plus additionally represents urban trees with 

radiative exchange between trees and street canyons (Wang, 2014), shading, canopy transmittance, evapotranspiration, and 
root water uptake (Wang et al., 2021). 

 
Figure A.3: BEPCOL is a multilayer canyon model based on the building effect parameterization (BEP; Martilli et al., 2002) with 

parameterizations for drag coefficient and the length scales used for turbulent transport and turbulence dissipation (Simón-
Moral et al., 2017). BEPCOL does not explicitly consider vegetation and the non-urban fraction is computed by the bare soil 
model from RAMS (Tremback and Kessler, 1985). 

 
Figure A.4: CABLE (Community Atmosphere–Biosphere Land Exchange model) (Kowalczyk et al., 2006; Wang et al., 2011a) is used in 

regional and global climate models including ACCESS (Kowalczyk et al., 2013). CABLE has a one-layer, two-leaf canopy 
vegetation scheme with up to five tiles (vegetation types, bare soil and ice) but no urban tile. In this project CABLE uses four 
soil layers, up to three snow layers, and models impervious urban surfaces as bare soil. 
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Figure A.5 CHTESSEL (Carbon-Hydrology Tiled ECMWF Forecasts Scheme for Surface Exchanges over Land) is the land surface model 

used in the Integrated Forecast System (IFS). This is used by ECMWF for weather forecast and to create reanalysis products 
(Balsamo et al., 2009; Boussetta et al., 2013; ECMWF, 2020). CHTESSEL can tile up to six non-urban surfaces (high and low 
vegetation, bare soil, intercepted canopy water, shaded and sunlit snow). It has four soil and one snow layer. Tile fractions in 
this project are based on global surface cover databases as used in IFS products, i.e. without urban surfaces. 

 
Figure A.6: CHTESSEL_U (Urbanised Carbon-Hydrology Tiled ECMWF Forecasts Scheme for Surface Exchanges over Land) a two-tile 

(roof, canyon) urban scheme (McNorton et al., 2021) to CHTESSEL (Fig. A.5). It follows MORUSES (Fig. A.13) infinite canyon 
assumptions for radiative effects. The urban surfaces (cf. CHTESSEL) have increased runoff and reduced soil infiltration. 

 
Figure A.7: The CLMU (Community Land Model Urban) is a single-layer urban canopy model that consists of roofs, walls (sunlit and 

shaded) and impervious and pervious canyon floor (Oleson and Feddema, 2020; Oleson et al., 2010). It features a simple 
building energy model to explicitly represent space heating and air conditioning of building interiors and a pervious canyon 
floor to approximate evaporation from vegetated surfaces within the urban canyon. Radiation parameterizations account for 
trapping of shortwave and longwave radiation inside the urban canyon. Roof and canyon floor hydrologic processes including 
snow accumulation and melt, liquid water ponding, and runoff are simulated. CLMU is embedded within a global climate 
model, the Community Earth System Model (CESM), incorporating three urban tiles or land units, categorized by density of 
development, within each model grid cell. Urban extent and thermal, radiative, and morphological properties are prescribed 
from the global dataset of Jackson et al. (2010) as modified by Oleson and Feddema (2020). 

 
Figure A.8: CM is a multi-layer urban canopy model with roofs (impervious roof and vegetation), walls (impervious wall and 

vegetation) and roads (impervious road and vegetation) (Kondo and Liu, 1998; Kondo et al., 2005). These impervious tiles 
consider water content and ponding for the present comparison. CM considers an urban block in which buildings stand on a 
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lattice array. This horizontal arrangement of buildings is defined using the average length of the building and distance between 
buildings. CM accounts for building drag, anthropogenic heat release (prescribed), and three-dimensional radiation 
interactions and distribution of the height of buildings. A new parameterization for mixing length is introduced (Kondo et al., 
2015). 

 
Figure A.9: CM-BEM is CM (Fig. A.8) coupled to a building energy model (BEM) (Kikegawa et al., 2003, 2006). It is embedded within 

WRF (WRF-CM-BEM: Kikegawa et al., 2014). It has three urban categories: office, and two residential types. The BEM, box-type 
heat budget model, simulates heating, ventilation, and air conditioning (HVAC) system energy consumption and the resulting 
anthropogenic heat release including sensible and latent heat components. BEM can consider whether the outdoor units are 
air-cooled or water-cooled. CM-BEM can integrate social big data such as real-time population and estimate the impacts of 
human behaviour changes on urban temperature and energy consumption (Takane et al., 2022). 

 

Figure A.10 JULES_1T is a one-tile urban scheme (Best, 2005) within the Joint UK Land Environment Simulator (JULES) (Best et al., 
2011). JULES is a community land surface model forming part of the UK Met Office’s Unified Model (UM). JULES has nine non-
urban surface tiles (five vegetation types, inland water, bare soil and ice). Tiles can be covered with up to three snow layers. 
Soil hydro-thermodynamics are modelled through four soil layers, with the top layer coupled to the urban tile through 
longwave radiation only. 

 
Figure A.11 JULES_2T is a two-urban tile (roof, canyon) (Best et al., 2006) version of JULES_1T (Fig. A.10). 

 
Figure A.12 JULES_MORUSES, has the same two urban tiles (roof, canyon) as JULES_2T (Fig. A.11) but uses MORUSES (Porson et al., 

2010). MORUSES has only two facets (roof and canyon) but includes a parameterisation for canyon radiative effects which 
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updates canyon bulk values such as albedo, emissivity, heat capacity and aerodynamic resistance. This provides benefits of 
canyon schemes with a computational efficiency gain important for use in operational numerical weather prediction. 

 

Figure A.13: K-UCMv1 (Klimaat Urban Canopy Model v1) solves the local surface energy balance based on land cover input and 
regional meteorological forcing. To calculate conduction the urban facets (ground, roof, walls) have 10 layers. Effects of low 
vegetation are accounted for in the surface energy balance without shadowing effects. Vegetation is perfectly watered and 
non-vegetation surfaces store no water. 

 
Figure A.14: Lodz-SUEB (Łódź SUrface Energy Balance model) (Fortuniak, 2003) is a bulk scheme that aggregates urban and natural 

surfaces parameters based on surface fraction. The ground heat flux assumes a 12-layer slab. This is a single snow layer and 
any surface liquid water or snow, if present, assumed to completely cover the slab. Moisture content on the slab is constrained 
between site-specific limits, with excess leading to runoff and supply from deeper layers during dry periods. 

 

Figure A.15: Manabe_1T uses a one tile urban scheme (Best, 2005) with a simple Manabe bucket model for non-urban fractions 
(Manabe, 1969). A Manabe bucket model has no heat conduction into the soil and accumulates precipitation until it freely 
evaporates or exceeds storage capacity as runoff (Pitman, 2003). We use this “slab and bucket” scheme as a physically-based 
benchmark. 

 

Figure A.16: Manabe_2T only differs from Manabe_1T (Fig. A.15) in that its uses a two-tile urban scheme (roof, canyon) (Best et al., 
2006). 
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Figure A.17: MUSE (Microscale Urban Surface Energy) (Lee and Lee, 2020)  is a building-resolving microscale urban surface model for 

real urban meteorological and environmental applications. It represents urban buildings on a 3-dimensional Cartesian grid and 
solves urban physical processes of shortwave and longwave radiative transfer, turbulent exchanges of momentum and heat, 
and conductive heat transfer into urban subsurfaces. The effect of urban vegetation is parameterized based on a simple Bowen 
ratio method in calculating the radiative and turbulent sensible/latent heat fluxes.  

 
Figure A.18: NOAH-SLAB uses a bulk one-tile urban scheme (Liu et al., 2006) with the Noah land surface model (Noah-LSM) (Chen and 

Dudhia, 2001). Separate urban and non-urban energy and water balances are simulated then weighted by surface fraction. 
Although Noah-LSM has up to 27 land-use tiles (including urban), here the urban and one dominant non-urban land-uses are 
used. For the non-urban surface parameters (e.g. albedo, roughness length) are set to urban values provided, allowing 
evaporation from vegetation for an otherwise urban surface. 

 
Figure A.19: NOAH-SLUCM uses Noah-LSM as in NOAH-SLAB (Fig. A.18) but uses the Single-Layer Urban Canopy Model (Chen et al., 

2011; Kusaka et al., 2001) rather than the urban slab scheme. SLUCM separates the urban tile into three facets (roof, road, 
wall) using a 2D-canyon approach but without street orientation or varying building heights. A diurnally varying anthropogenic 
heat flux is prescribed. 

 
Figure A.20: SNUUCM (Seoul National University Urban Canopy Model), a single-layer model, parameterises shortwave and longwave 

radiation absorption and reflection, energy and moisture turbulent exchanges between surfaces and adjacent air, and 
conductive heat transfer through sublayers (Ryu et al., 2011). It calculates canyon wind speed using regression equations based 
on CFD model simulations. Here the non-urban area fluxes are simulated by the Noah land surface model v3.4.1 (Chen and 
Dudhia, 2001).  
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Figure A.21: SUEWS (Surface Urban Energy and Water Balance Scheme) (Järvi et al., 2011; Ward et al., 2016) has two impervious 

(buildings, paved areas) and five pervious (evergreen trees and shrubs, deciduous trees and shrubs, grass, bare soil and water) 
surface types, underneath which is a single vertical layer for soil model with lateral flow between surfaces (except water tile). 
Storage heat fluxes can be calculated using empirical relations with net all wave radiation (Grimmond et al., 1991) while the 
latent heat flux is calculated as the integrated resistance network of all the surfaces. There is one snow layer but with clearance 
activities between surfaces.  Anthropogenic heat emissions, irrigation related fluxes and snow clearing are either modelled 
with empirical relations or prescribed with observed values. It has a dynamic leaf area index model to allow phenology to 
change through the year and between years.  

 
Figure A.22: TARGET (The Air-temperature Response to Green/blue-infrastructure Evaluation Tool) (Broadbent et al., 2019) models the 

canyon-to-block scale street-level air temperature impacts of green/blue infrastructure. Grid points are represented as 
idealized urban canyons using width/height to define the geometry and an aggregate of land cover surface types (concrete, 
asphalt, grass, irrigated grass, vegetation, and water). TARGET is designed to predict street-level conditions, not bulk surface-
atmosphere fluxes. 

 
Figure A.23: TEB-CNRM uses the multi-layer version (Hamdi and Masson, 2008; Schoetter et al., 2017) of the urban canopy model 

Town Energy Balance (Masson, 2000) and part of Météo-France’s SURFEX Land Surface Model (Masson et al., 2013; Le Moigne 
et al., 2018). Here TEB buildings (roofs, walls), roads and urban vegetation on the ground (grass, shrubs) (Lemonsu et al., 2012) 
influence each other directly. Wind effects are averaged assuming all street orientations exist. Water and snow can be present 
on roofs, roads and urban vegetation. Street trees are treated as an elevated tree-foliage stratum that partially covers the 
ground and shadows walls and ground surfaces (Redon et al., 2017).  Soil hydrology is resolved in three soil compartments 
below vegetation, roads and buildings (Stavropulos-Laffaille et al., 2018, 2021). A Building Energy Model (BEM) is included with 
human behaviour (Bueno et al., 2012; Schoetter et al., 2017).  
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Figure A.24: TEB-READING uses the offline single-layer Town Energy Balance model (Masson, 2000) software (Meyer et al., 2020a) 

version 4.1.0 (Masson et al., 2021). TEB 4.1.0 is similar to the single layer TEB used in SURFEX version 8.1 (Le Moigne et al., 
2018) but with a simple vegetation scheme and time-constant Bowen ratio, albedo, roughness, soil temperature and water 
availability (Meyer et al., 2020a, b). This simplified vegetation scheme neglects heat conduction and assumes neutral 
conditions for friction velocity. The Building Energy Model by Bueno et al. (2012) uses MinimalDX (Meyer and Raustad, 2020) to 
improve air conditioners' modelling.  

 
Fig. A.25: TEB-SPARTCS is builds on TEB-CNRM (Fig. A.23) by incorporating the SPARTACUS-Urban radiative transfer within the urban 

canopy using a discrete ordinate method (Hogan, 2019a, b), which assumes an exponential distribution of wall-to-wall 
distances and allows varying building heights (Hogan, 2019a). In this project the buildings all have the same height and tree 
height is limited to building height. 

 

Fig. A.26: TERRA_4.11 uses the bulk urban scheme TERRA_URB (Wouters et al., 2015, 2016) with TERRA-ML (Schulz et al., 2016) for 
non-urban surfaces that are characterized by eight soil layers and a one-layer snow scheme. As the latter does not account for 
urban features (eg. urban pollution, snow removal or a change in effective albedo due to snow-free walls, roads), the urban 
fraction is considered as completely snow-covered in the presence of snowfall. TERRA_URB uses the Semi-empirical URban 
canopy dependencY algorithm (SURY) to condense the three dimensional urban canopy information to a limited number of 
bulk properties (Wouters et al., 2016; Varentsov et al., 2020). Aggregated diurnal and seasonal anthropogenic heat fluxes 
(traffic, industry, etc. combined) are prescribed by equations proposed in Flanner (2009). The TERRA version used here is a 
standalone version, which differs from the official TERRA version embedded in the recent COSMO(-CLM) version (Rockel et al., 
2008; Garbero et al., 2021) (Rockel et al., 2008, Garbero et al., 2021). Where possible, features from the online version are 
approximated using the same underlying data sources. For more information on this submission see 
https://github.com/matthiasdemuzere/urban-plumber-terra-pub. 
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Fig. A.27: UCLEM (Urban Climate and Energy Model), with integrated street vegetation and building energy/waste heat (Lipson et al., 
2018; Thatcher and Hurley, 2012), is used in the stretched grid global climate model CCAM (McGregor and Dix, 2008). The four 
urban facets (roof, road, two walls) have four layers/ five nodes for heat conduction (Lipson et al., 2017), with single-layer 
snow on a fraction of roof and road surfaces. Low (grass and shrub) canyon and roof vegetation use a reduced set of prognostic 
variables with a simple bucket hydrology. Irrigation is assumed to when soil moisture approaches wilting point. 

 

Figure A.28 UT&C: (Urban Tethys-Chloris)(Meili et al., 2020) combines an urban canyon approach with ecohydrological principles of 
Tethys-Chloris (Fatichi et al., 2012) . Vegetation can occur on roofs and within the canyon (i.e. ground vegetation and/or street 
trees).  Separate soil columns occur below impervious, bare and vegetated ground facets. Transpiration is modelled as a 
function of plant photosynthetic activity and environmental conditions (Meili et al., 2021). Irrigation can be prescribed at the 
soil surface or through preserving soil moisture in deep soil layers. Wall facets are split into upper and lower parts to partition 
their contribution to near surface heat fluxes. Snow and water bodies are currently not modelled in UT&C v1.0. 

 

Figure A.29: VTUF-3D (Vegetated Temperatures of Urban Facets in 3D)(Nice et al., 2018) resolves energy transfers in three dimensions 
by combining TUF-3D (Krayenhoff and Voogt, 2007) with the MAESPA tree model (Duursma and Medlyn, 2012). The vegetation 
shading and physiological processes are directly integrated with building and urban effects, allowing the role vegetation and 
water to be assessed in human thermal comfort in urban areas. 

 

Figure A.30: VUCM (Vegetated Urban Canopy Model) (Lee and Park, 2008; Lee, 2011; Lee et al., 2016) is the first mesoscale urban 
canopy model that parametrizes radiative/dynamic/thermodynamic/hydrological processes of urban vegetated area (tree, 
grass, soil) interactively with urban artificial surfaces (roof, wall, road), which has been developed based on an integrated 
framework of a 2-dimensional single canyon and a new single tree canopy concept.  
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We evaluate 30 land surface models' ability to simulate surface energy fluxes critical for meteorological and air quality 
simulations. Compared with the last major model intercomparison at the same site over a decade ago, we find broad 
improvement in the current cohort's predictions of shortwave radiation, sensible and latent heat fluxes, but little or no 
improvement in longwave radiation and momentum fluxes. We also conclude that human factors are likely to influence 
results in this (or any) model intercomparison. 
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