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In urban climate studies, datasets used to describe urban characteristics have traditionally
taken a class-based approach, whereby urban areas are classified into a limited number of
typologies with a resulting loss of fidelity. New datasets are becoming increasingly available
that describe the three-dimensional structure of cities at sub-metre micro-scale
resolutions, resolving individual buildings and trees across entire continents. These
datasets can be used to accurately determine local characteristics without relying on
classes, but their direct use in numerical weather and climatemodelling has been limited by
their availability, and because they require processing to conform to the required inputs of
climate models. Here, we process building-resolving datasets across large geographical
extents to derive city-descriptive parameters suitable as common model inputs at
resolutions more appropriate for local or meso-scale modelling. These parameter
values are then compared with the ranges obtained through the class-based Local
Climate Zone framework. Results are presented for two case studies, Sydney and
Melbourne, Australia, as open access data tables for integration into urban climate
models, as well as codes for processing high-resolution and three-dimensional urban
datasets. We also provide an open access 300m resolution building morphology and
surface cover dataset for the Sydney metropolitan region (approximately 5,000 square
kilometres). The use of building resolving data to derive model inputs at the grid scale better
captures the distinct heterogenetic characteristics of urban form and fabric compared with
class-based approaches, leading to a more accurate representation of cities in climate
models. As consistent building-resolving datasets become available over larger
geographical extents, we expect bottom-up approaches to replace top-down class-
based frameworks.
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1 INTRODUCTION

A transformation is underway in how urban form and fabric are described for urban climate
modelling and observation studies. For the last 50 years, datasets used in urban environment or
climate studies have typically described urban areas using types or classes in a “top-down” approach,
whereby regions of a city, and sometimes surrounds, are classified based on a limited number of
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urban surface and land-use characteristics (e.g., Masson et al.,
2003; Jackson et al., 2010; Stewart and Oke, 2012; Demuzere et al.,
2020). In more recent years, very high resolution (sub-metre)
urban datasets have become increasingly available that resolve the
characteristics of individual buildings and trees over entire cities,
regions and continents (PSMA Australia, 2020; Biljecki et al.,
2021; Sirko et al., 2021).

These new building-resolving datasets are transforming the
way cities can be represented in urban climate models, as spatial
dataset parameters are no longer tied to a class type but can be
defined for each model grid at any resolution from the “bottom-
up” (Figure 1). Where available, these new datasets can be used to
produce direct inputs for climate modelling studies at the grid
level, or to inform locally appropriate parameter choices in
traditional class approaches. The transition to a bottom-up
approach, however, is ongoing as many regions do not have
access to this urban element-resolving data, and many urban
climate models are designed to rely on a class approach when
defining urban area characteristics (Masson et al., 2020).

Enhanced accuracy in the representation of urban areas in
climate modelling is vital. Cities experience the dual burden of
global warming from increased greenhouse gas emissions, and
localised warming due to urbanization. This urban heat differs
not only from the non-urbanised surrounds but also spatially
within a city due to differences in urban density and surfaces. To
fully understand the interaction between climates of cities and
assess the role of both current and future urbanization in urban
climate challenges, it is important for this intra-urban variability
to be captured when modelling a city’s climate (Martilli et al.,
2020; Potgieter et al., 2021).

Accurate representation of urban areas requires description of
four categories of features in both the urbanized areas and
surrounds: a) form (urban and vegetated morphology), fabric
(materials and surface cover), function (land use and
anthropogenic effects), and regional geographic factors
(topography and distance from water). Due to computational
costs, however, mesoscale models are unable to resolve all urban
features while modelling atmospheric processes spanning the
entire region. Instead, urban canopy models are defined that
assume simplified building geometry in a “building-averaged”

approach. The most common geometrical assumptions used in
urban models are bulk (1-dimensional), canyon (2-dimensional)
or block array (3-dimensional) (Nazarian, 2022). Different
modelling assumptions then require different types of
morphological and surface cover inputs (outlined in Table 1),
further distinguished by the representation of sub-models for
vegetation impact and/or thermal comfort characteristics within
the street canopy. Accurate urban descriptions are of even greater
importance with local and micro-scaled modelling (at sub 10 m
resolutions) and in three dimensions, with models such as PALM
(Fröhlich and Matzarakis, 2020), ENVI-met (Bruse, 1999),
VTUF-3D (Nice et al., 2018), and SOLWEIG/UMEP
(Lindberg et al., 2018), as the improved model input can result
in more realistic output.

Historically, urban areas have been captured in models via
land use classification. This is often done by just one urban
land type, where different urban regions are represented with a
constant set of parameters. Single class approaches have been
used in both global models (if urban areas are represented) (Li
et al., 2016; Katzfey et al., 2020) and in mesoscale models
(Argüeso et al., 2014). Moving beyond one urban land-use
class, cities in global or mesoscale models have also been
classified on levels of urban density (Ma et al., 2018; Oleson
and Feddema, 2020) or by dividing urban areas into different
categories such as residential, commercial, and industrial
(Chen et al., 2016). These methods provide information on
urban form and/or function but fidelity is limited by the
number of defined classes.

In a key development, Stewart and Oke (2012) proposed Local
Climate Zones (LCZ). LCZs classify city form, fabric, and
function into 10 urban classes, and non-urban land cover
types into seven classes. The primary motivation for
developing LCZs was to improve the description of sites in
observational studies in a move away from the historical
urban-rural differentiation when investigating urban heat. The
classification has been widely used to determine appropriate
urban and rural sites for traditional urban heat island intensity
calculations (Siu and Hart, 2013) and to explore variability in
intra-urban air temperatures in observation studies (Núñez-Peiró
et al., 2021; Potgieter et al., 2021).

FIGURE 1 | Schematic of the transformation of city-descriptive data from top-down derived urban classifications (ranging from a single urban class to the ten urban
classes defined by the LCZ system, left to right) to gridded model input of parameters (right) over large geographical areas, that are derived bottom-up from building and
tree resolving datasets.
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LCZs have also become commonly used in urban climate
modelling, with LCZ classes being integrated into urban land
cover classification in mesoscale models (Brousse et al., 2016;
Zonato et al., 2020). World Urban Database and Access Portal
Tools (Ching et al., 2018), a community led initiative to collect
worldwide data on urban form, fabric and function, at its lowest
level of detail produces LCZ maps of cities and their surrounding
areas. The maps are produced via users classifying small
subsections of a city as training data, which are then used in
machine learning algorithms to classify the entire region of
interest. More recently, WUDAPT workflows have been
streamlined into open, online services (e.g., the LCZ
Generator; Demuzere et al., 2021).

A limitation of the LCZ approach in the context of numerical
modelling is that LCZ parameters are provided as a range of
values with substantial overlap between classes, while urban
canopy models typically accept explicitly defined values.
Common methods of dealing with these challenges include
using the midpoints of the LCZ range proposed in Stewart
and Oke (2012) for each LCZ used (Mughal et al., 2019), or
setting the parameters for LCZ ranges using additional datasets
that provide local knowledge (Hirsch et al., 2021).

These traditional top-down approaches, although useful for
widespread analyses where data may be lacking, have limitations
in that there is often a level of local knowledge or estimation
required when setting parameter values, and that outputs are not
likely to be consistent between different users and regions. New
urban datasets are emerging that directly characterize the 3D
urban form produced via methods such as LiDAR and aerial
photography observations. Among these high-resolution datasets
is the emergence of 3D building models that provide
comprehensive representation of built environments in cities
across large geographical extents (Biljecki et al., 2016; Biljecki
et al., 2021). These novel datasets allow a bottom-up assessment
of parameters required to accurately represent intra-urban
variability in urban form in climate models, and some have
been used to configure models at city-scales (e.g., Simón-
Moral et al., 2020). Potential datasets include very high-
resolution (~1 m) surface cover data, three-dimensional
building or tree data, as well as incidental and public domain
data that can be extracted from social media or the web,
contributing to a multi-disciplinary approach to urban climate
research, i.e., urban climate informatics (Middel et al., 2022).
Coverage of suitable bottom-up datasets, especially at a global

scale, remains a challenge. Global datasets of high-resolution
impervious surface maps (Zhang et al., 2020; Sun et al., 2022) or
urban dwellings (e.g., the Global Urban Footprint (GUF) (Esch
et al., 2012)) are becoming available but lack important
characteristics such as land cover types and feature heights.
The Copernicus Land Monitoring Service updates the
CORINE Land Cover dataset (Büttner, 2014) providing 27
land cover classes at 6-year intervals but only provides
coverage of Europe (39 countries). Some promising global
morphology datasets derived from satellite data have begun to
be reported (Esch et al., 2022), but as of writing are not yet
publicly available.

In this paper, we use high-resolution, element-resolving
datasets to 1) create maps which define actual urban form
through the different urban parameters necessary for urban
climate models, gridded to appropriate scales, without the
fidelity limitations of class approaches and 2) improve
traditional class-based approach parameter choices with local
data. We use the Australian cities of Sydney and Melbourne as
case studies and describe how to extract precise and localized
ranges of model parameters using the continental-scale Geoscape
datasets (PSMA Australia, 2020) of individual building geometry
with ~1 m accuracy (Geoscape Buildings v2.0, 2020), 2 m land
surface (Geoscape Surface Cover v1.6, 2020) and tree
characteristics (Geoscape Trees v1.6, 2020). These parameter
values are then compared with those calculated by the LCZ
method (Stewart and Oke, 2012) via a distribution assessment
and presented as data tables for integration into urban climate
models.

2 MATERIALS AND METHODS

This section details the city-descriptive data used and processed
in this analysis. Two data sources are considered: 1) Local Climate
Zone (LCZ) maps which represent a top-down approach for
characterizing urban neighbourhoods based on local urban form,
and 2) the Geoscape datasets that represent the bottom-up
method for detailing three-dimensional form at the level of
individual buildings and trees. While the LCZ maps are
defined and developed at local scales, building-resolving
datasets require reprocessing to resolutions suitable for
observation and modelling studies. The list of urban
parameters that are available through processing both data

TABLE 1 | City-descriptive parameters for various modelling purposes.

Model type Input parameters

Urban canopy models
Bulk (slab) model Built fraction, roughness length
Canyon model Plan area density (or building fraction), aspect (or height-to-width) ratio, mean building height, building height standard

deviation, displacement height, roughness length
Block array model Plan area density (or building fraction), wall area density, mean building height, building height standard deviation,

displacement height, roughness length
Sub-models
Vegetation model Tree fraction, low vegetation (grass/shrubs) fraction, bare earth fraction, water fraction, tree canopy height, roughness length
Thermal comfort model Sky view factor, roughness length, displacement height, roughness length
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sources are included in Table 2. These parameters cover a range
of inputs required by urban climate models pertaining to surface
cover, morphology, canopy attribute, and thermal attributes
(Table 1).

Sydney and Melbourne greater regions are selected for this
analysis as they represent the largest metropolitan areas in
Australia with a population of 5.4 and 5.1 million, respectively
(census data obtained by Australian Bureau of Statistics in
June 2020). The climate subtype of Sydney and Melbourne is
classified as temperate with warm summers and cool winters,
according to the modified Köppen-Geiger classification system
used by the Australian Bureau of Meteorology and based on a
standard 30-year climatology (1961–1990) (Bureau of
Meteorology, 2021).

2.1 Local Climate Zone Datasets
To provide a standardized landscape classification for both
Sydney and Melbourne, maps of local climate zones (LCZs) at
100 m resolution are obtained from the LCZ Generator tool
(Demuzere et al., 2021) as part of the WUDAPT initiative
(Bechtel et al., 2015; Ching et al., 2018). The LCZ Generator is
available as a web-based platform that enables the LCZ mapping
of global cities using freely available satellite imagery and
machine learning algorithms. The LCZ classification requires
valid training areas (obtained using local insight) as input
parameters and uses an automated cross-validation approach
(Bechtel et al., 2019) to provide an accuracy assessment.

The resulting LCZ maps of Sydney and Melbourne are shown
in Figures 2, 3, respectively (Conroy, 2021; Nazarian, 2022).
There were 13 LCZs identified in greater Sydney (8 built-up and
five natural classes) with three dominating built-up categories:
sparsely built, open low-rise, and compact low-rise (Figure 2A).
In greater Melbourne, 14 LCZs were classified (8 built-up and six
natural classes) with open low-rise and sparsely built areas
representing more than 80% of the built up LCZs (Figure 3-
left). The higher percentage of low plants in greater Melbourne
can be explained by the larger number of local farms in the area. A
higher percentage of compact low-rise neighbourhoods in Sydney
is observed in older inner-city suburbs that are often water-bound
and in the proximity of the central business district areas. Overall,
both cities only have a small percentage of compact LCZs
presented (19 and 6% of built-up LCZs for greater Sydney and
Melbourne, respectively) a consequence of the low-density
suburban sprawl which comprises most Australian cities.

2.2 Geoscape Derived Datasets
2.2.1 Land Cover Data
An independent high resolution dataset of two-dimensional land
cover (Geoscape Surface Cover v1.6, 2020) was used to define
surface cover fractions and enable comparison with the LCZ
approach. The Geoscape surface data consists of 10 surface type
categories at 2 m resolution, collected through remote sensing
between 2017 and 2019, with coverage of all Australian towns and
cities with populations greater than 200 persons. Coverage

TABLE 2 | List and symbols of urban parameters available through LCZ maps and our bottom-up method (BUM) using building and tree resolving datasets. The name of
each parameter in the final processed dataset is also shown.

Parameters used in urban climate modelling Symbol LCZ BUM Parameter name

Surface cover
attributes

Building fraction (or plan area density) λp Yes Yes building_fraction
Tree fraction λvt No Yes tree_fraction
Low vegetation fraction (grass, shrubs etc.) λvl No Yes lowveg_fraction
Water fraction λwa No Yes water_fraction
Bare earth fraction λbe No Yes bareearth_fraction
Impervious surface fraction excluding buildings, as defined in Stewart and Oke, (2012) λif Yes Yes roadpath_fraction
Total built fraction (including buildings, roads) λtb No Yes total_built
Total pervious fraction (including vegetation, water, bare earth) λtp Yes Yes total_pervious

Morphology attributes Frontal area density λf No Yes frontal_density
Wall area density λw No Yes wall_density
Building height (mean) (noted in Stewart and Oke, (2012) as “height of roughness elements” for
urban LCZ 1-10)

Havg Yes Yes building_height

Building height (maximum) Hmax No Yes building_height_max
Building height (standard deviation) Hstd No Yes building_height_std
Tree height (mean) (noted in Stewart and Oke, (2012) as “height of roughness elements” for
natural LCZ A-F)

HTavg Yes Yes tree_height

Tree height (standard deviation) HTstd No Yes tree_height_std
Terrain roughness class — Yes No —

Sky view factor ψ Yes Yes skyview_factor
Canyon aspect (or height-to-width) ratio h/w Yes Yes height_to_width
Roughness length Macdonald et al. (1998) z0,mac No Yes roughness_mac
Roughness length Kanda et al. (2013) z0,kan No Yes roughness_kanda
Displacement height Macdonald et al. (1998) zd,mac No Yes displacement_mac
Displacement height Kanda et al. (2013) zd,kan No Yes displacement_kanda

Thermal attributes Surface admittance μ Yes No —

Surface albedo α Yes No —

Anthropogenic heat output QF Yes No —
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outside of urban areas is also available at 30 m resolution across
the Australian continent (not used). Accuracy of land cover
classification is greater than 90% (Geoscape Surface Cover
v1.6, 2020). Using the 2 m urban data for two Australian
cities, Sydney and Melbourne, we resample the ten Geoscape
surface classes into six primary categories and two secondary
categories (Table 3) at 100 m resolution. Cloud and shadow
categories are not retained but are used to rescale other
fractions so that primary and secondary categories each sum
to 1 within grids.

2.2.2 Morphology Data
Three-dimensional morphology data are derived from the
datasets of buildings (Geoscape Buildings v2.0, 2020) and trees
(Geoscape Trees v1.6, 2020). The buildings data consist of
geolocated outlines of buildings within Australia with area
greater than 9 m2 (approximately 15 million buildings), along
with associated building metadata such as roof height. Trees data
are raster-based with canopy height at 2 m resolution. Buildings
and Trees datasets were collected through remote sensing
(predominantly between 2017 and 2019) and processed
through automated and manual processes using satellite-
derived Digital Surface Model (DSM) or Digital Elevation
Model (DEM) and aerial-derived stereo digitisation
information. Vertical accuracy is approximately 0.1 m for
aerial and 1 m for satellite derived building and tree heights.

Horizontal accuracy is approximately 0.2 m for aerial and 2.5 m
for satellite derived positioning (Geoscape Buildings v2.0, 2020;
Geoscape Trees v1.6, 2020).

With these datasets we derive a range of gridded
morphological statistics that are commonly used in urban
modelling and observational studies (source code available in
Supplementary Material). First, we calculate each building’s
external wall area by multiplying building perimeter with
building height (defined here as the average of building roof
and eave heights), and each building’s frontal area is calculated by
averaging the cross-sectional area of a building in two cardinal
directions. These building-specific parameters are then used to
calculate gridded statistics.

The gridded mean, maximum and standard deviations of
building height (Havg,Hmax, Hstd) are calculated, with
building footprint area used to weight Havg so that buildings
with larger plan area have greater influence on grid height
statistics. Wall area density (λw) is calculated by summing the
building wall area within a grid and divided by the grid plan area.
Frontal area density (λf) is calculated by summing building
frontal areas and dividing by grid plan area (Grimmond and
Oke, 1999).

For gridded values, the centroid of a building is used to assign
the grid in which the building parameters will be placed. Trees are
treated differently, as the underlying canopy height data are as
rasterised canopy height at 2 m resolution. Tree-related

FIGURE 2 | Local Climate Zone map of greater Sydney, Australia (B) obtained using local training areas and LCZ Generator tool (Demuzere et al., 2021) shown
together with the histogram distribution of LCZ classes across the area (A).
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parameters mean height (HTave) and standard deviation of
height (HTstd) are therefore derived from any part of a tree
which falls within a 100 m grid.

Some urban models, such as TARGET (Broadbent et al., 2019)
or UT&C (Meili et al., 2020), use inputs such as canyon aspect
ratio (h/w) or sky view factor (ψ) for configuration. Although
difficult to define for typical real-world urban areas (Masson et al.,
2020), these parameters can easily derived from established
parameters if the simplified geometric assumptions inherent in
many urban models are used. For example, for a repeating two-

dimensional street canyon geometry, canyon aspect ratio is
(Masson et al., 2020):

h/w � λw

2(1 − λp), (1)

where λp is the plan area density. Similarly, sky view factor can be
calculated as (Masson et al., 2020):

ψ �
���������
(h/w)2 + 1

√
− h/w. (2)

FIGURE 3 | Same as Figure 2 for greater Melbourne, Australia.

TABLE 3 | Surface cover categories for the original Geoscape data and the derived dataset.

Geoscape surface cover
classes

Derived dataset

Dataset primary classes Dataset secondary classes

Buildings Building_fraction Total_built
Road and Path Roadpath_fraction Total_built
Built-up Areas Roadpath_fraction Total_built
Trees Tree_fraction Total_pervious
Grass Lowveg_fraction Total_pervious
Unspecified Vegetation Lowveg_fraction Total_pervious
Bare Earth Bareearth_fraction Total_pervious
Water Water_fraction Total_pervious
Swimming Pool Water_fraction Total_pervious
Cloud (Used to rescale other fractions) (Used to rescale other fractions)
Shadow (Used to rescale other fractions) (Used to rescale other fractions)
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In this dataset h/w and ψ are calculated in this way, enabling
their use as inputs for urban models which use infinite canyon
geometry assumptions. For models relying on different geometric
assumptions,Havg, λp and λw should be used, as these parameters
relate directly to their real world analogues (Masson et al., 2020).

To calculate momentum fluxes and wind profiles, some
models require aerodynamic roughness lengths (z0) and/or
zero-plane displacement height (zd). Many practitioners have
derived empirical relations for these aerodynamic
characteristics based on morphological inputs (Grimmond
and Oke, 1999). Two methods commonly used in models
are Macdonald et al. (1998) and Kanda et al. (2013).
Calculations proposed by Macdonald et al. (indicated by
subscript mac) are derived from wind tunnel studies using a
matrix of bluff bodies with constant height and spacing. Kanda
et al. (indicated by subscript kan) incorporated data from
computational fluid dynamic simulations in domains with
more realistic city geometry, and accounts for building
height variability as well as average and maximum heights.

Using Macdonald et al. (1998), the zero-plane displacement
height zd,mac and roughness length z0,mac are

zd,mac � [1 + A−λp(λp − 1)]Havg (3)

z0,mac � [(1 − zd,mac

Havg
) exp[ − {0.5βCD

κ2
(1 − zd,mac

Havg
)λf}−0.5]

×]Havg

(4)
where A � 4.43, β � 1.0 (for staggered arrays), CD � 1.2 (drag
coefficient), κ � 0.4 (von Karman constant).

Using Kanda et al. (2013), the zero-plane displacement height
zd,kan and roughness length z0,kan are

zd,kan � [c0X2 + (a0λb0p − c0)X]Hmax, (5)
z0,kan � (b1Y2 + c1Y + a1)z0,mac, (6)

where a1 � 0.71, b1 � 20.21, c1 � −0.77, a0 � 1.29, b0 � 0.36,
c0 � −0.17, and

X � Hstd +Havg

Hmax
, 0≤X≤ 1.0, (7)

Y � λpHstd

Havg
, Y≥ 0. (8)

Macdonald and Kanda derivations of zd and z0 are derived for
each grid.

FIGURE 4 | A sample of Geoscape data at original building level as well as processed data at 30 m, 100 m, and 300 m resolutions for sky view factor (SVF). Other
variables shown in Supplementary Material.
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2.2.3 Processing and Resolution
We produce output at three resolutions (30, 100, and 300 m) to
obtain gridded maps of city-descriptive parameters listed in

Table 2. Figure 4 shows how different resolutions impact
calculations of gridded sky view factor from the high-
resolution building height data for a freely available sample

FIGURE 5 | Select derived parameters for the Sydney region at 300 m resolution. Equivalent for Melbourne in Supplementary Material.
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of the Sydney data (https://geoscape.com.au/get-sample/).
Figure 5 shows spatial maps of Sydney at 100 m resolution
for a selection of the derived parameters. Our source code for
producing outputs are included in Supplementary Material.
We also make openly available a 300 m resolution derived
dataset for the Greater Sydney region (Lipson et al., 2022), with
outputs available in NETCDF and TIFF formats.

Surface cover fractions are calculated by summing all 2 m
land cover categorical cells within each 30, 100 or 300 m grid,
and dividing by the total cell instances within the larger grid.
Gridded morphology characteristics are calculated by

averaging (or finding the maximum and minimum) values
for individual buildings where their footprint centroid falls
within a grid.

When processing Geoscape data, the grid resolution has a
critical impact on the calculated morphology parameters
(Figure 4). While higher resolution may be desirable for
some use cases (e.g., micro climate modelling), high
resolution may not be appropriate for parameters intended
to represent neighbourhood-scale characteristics. For
example, canyon height-to-width ratio (h/w) and sky view
factor (ψ) (Eqs 1, 2) have less coverage at the highest

FIGURE 6 | The range of building surface fraction or plan area density (λp) as suggested by Stewart and Oke (2012) per LCZ (yellow boxes), compared with the
range obtained from building-resolving surface data (Geoscape) for greater Sydney (A) and Melbourne (B). The coloured boxplots are obtained from Geoscape data at
100 m resolution and overlaid with individual datapoints found per LCZ in each region. The percentage of LCZ per region is noted on top of graph. White circles and
yellow lines show the mean value for Geoscape and LCZ categories, respectively.
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resolutions (30 m) because they are undefined where building
fraction covers the entire grid cell (Figure 4). Where a building
footprint falls across multiple grid cells, our algorithm places
the calculated parameters for building footprint and wall area
in the grid cell that holds the centroid of building. This
assumption makes it feasible to efficiently derive maps
across large geographical areas, but leads to greater errors
at higher resolution. This is because the morphology
characteristics of a large building are assigned to a single
grid cell, leading to underestimation or undefined
morphology parameters in adjacent grids at high resolutions.

One alternative method is to divide each building that falls
within multiple grids into smaller buildings with shared walls.
This solution, however, increases the computational cost by

more than 250 times in our small-scale tests, which meant it was
not feasible to implement across a large geographic area such as
Sydney. This solution also leads to overestimation of external
wall area properties and associated parameters such as λw, λf,
h/w and ψ, so was not further utilised in this study. Another
alternative is to use building footprints to define amorphous
polygons around each building block, then calculate average λf
for each polygon through a series of intersecting lines (Simón-
Moral et al., 2020). This method however does not overcome the
problems associated with dividing properties of larger blocks
into multiple grid cells except through computationally
expensive intersection methods.

The most appropriate output resolution will depend on the
use case and available computational resources. Stewart and

FIGURE 7 | Same as Fig.6 for pervious fraction (including vegetation and water cover).
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Oke (2012) define the intended scale of LCZs as spanning
hundreds of metres to several kilometres in horizontal scale.
For our comparison between Geoscape and LCZ outputs we
used 100 m resolution to align with the native resolution of
the LCZ generator output (Demuzere et al., 2021). Additional
plots of parameter/resolution sensitivity (as in Figure 4) and
for Melbourne outputs (as in Figure 5) are available in
Supplementary Material (Supplementary Figures S2–S5)
showing gridded building footprint fractions, pervious
fractions, mean building heights, and canyon aspect ratios
calculated from the high-resolution building footprint and
building height data.

2.2.4 Comparison of LCZ With Derived Morphology
Maps
Fine-grained data on urban form and fabric can inform numerical
climate models which rely on categorical urban classifications.
Through the WUDAPT project, several mesoscale climate
models—including Weather Research Forecasting (WRF)—are
now able to incorporate LCZ maps at 100–1,000m resolutions
(e.g., Brousse et al., 2016). Typically, the dominant LCZ type
within a model grid is used to determine model parameters. More
realistic inter-grid variability may be achieved by interpolating LCZ
parameter values from higher-resolution maps to the model grid
(Zonato et al., 2020). In either case, providing locally appropriate

FIGURE 8 | Same as Figure 6 for height of roughness element (geometric average of building heights (LCZs 1–10) and tree/plant heights (LCZs A–F)
corresponding to Stewart and Oke (2012). Note- roughness height for LCZ 1 compact high-rise is given in Stewart and Oke (2012) as >25 m.
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parameter values for each LCZ class has the potential to improve
model performance compared with using generic LCZ characteristics.

To find locally appropriate LCZ characteristics, the
coordinates of Geoscape-derived data are matched with
LCZ maps at 100 m resolution. The Geoscape dataset is
then grouped based on the corresponding grid’s LCZ
categorization. Results are shown with a boxplot
visualization, indicating mean and median values as well as
data frequency distribution in each LCZ. The recommended
parameter range and mean value for each LCZ class (Stewart
and Oke, 2012) is also shown. This comparison focuses on six
out of seven geometric and surface cover parameters defined
for LCZs, covering pervious and impervious surface fraction,
plan area density, sky view factor and height of roughness

elements. Terrain roughness class is not included as it is not
available through the Geoscape dataset.

3 RESULTS

Figures 6–10 compare the recommended parameter ranges
defined by Stewart and Oke (2012) for each LCZ class with
local values obtained from the Geoscape surface cover, building
and tree data for greater Sydney and Melbourne.

For plan area density (Figure 6), the recommended LCZ range
by Stewart and Oke (2012) shows reasonable agreement with the
bottom-up data, although local values for both Sydney and
Melbourne are generally lower. The difference is greatest in

FIGURE 9 | Same as Figure 6 for canopy aspect (heigh-to-width) ratio.
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compact mid-rise (LCZ2), compact low-rise (LCZ3), large low-
rise (LCZ8) and sparsely-built (LCZ9). The lower than
recommended plan area density is seen consistently in both
cities. This indicates that, although the WUDAPT instructions
to derive LCZ classes were followed (including training data
provided by local experts), differences with the original LCZ
definitions can occur. The significant number of outliers in
Figure 6 (and Figures 7–10) indicate the large variability of
morphology characteristics within an LCZ class, as well as
possible misclassification from the LCZ process.

Comparing the pervious fraction (Figure 7), the locally
derived values are higher than recommended LCZ ranges in
almost all built-up densities, except heavy industry. This
difference is seen in both cities. Overall, this indicates that
Australian cities have a higher percentage of vegetation and

water even in compact neighbourhoods compared with LCZ-
based definitions. Greater disparity occurs in categories for which
there are few identified cells within the domain, for example
LCZ1 (Compact high-rise) and LCZ4 (Open high-rise). For the
natural land covers, good agreement is seen between both
datasets.

Figure 8 compares the height of roughness elements in both
datasets, as defined by Stewart and Oke (2012) as the geometric
average of building heights in urban LCZ (LCZ 1-10) and tree/
plant height for natural LCZs (LCZ A-F). The mean roughness
height is significantly lower than the recommended range for the
high-rise LCZ categories (LCZ 1 and LCZ3), particularly in
Melbourne. This is likely because of different notions of what
comprises a compact or open high-rise neighbourhood in
Australian cities, and because compact and open high-rise

FIGURE 10 | Same as Figure 6 for sky view factor.
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TABLE 4 | City-descriptive parameters for Melbourne and Sydney for built-up local climate zones (LCZ 1-10). Mean values are calculated with gridded morphology and surface cover obtained from building-resolving 3D
dataset (Geoscape) for each LCZ within each city’s map.

LCZ 1 LCZ 2 LCZ 3 LCZ 4 LCZ 5 LCZ 6 LCZ 7 LCZ 8 LCZ 9 LCZ 10

SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL

Mean building height (m) 40.06 22.91 11.61 12.18 6.15 6.96 21.12 8.76 8.38 5.88 6.24 8.80 8.61 4.54 6.74 9.06 9.31
Max building height (m) 54.97 29.90 16.43 16.18 8.46 9.32 27.89 11.56 11.20 8.10 8.55 10.55 9.75 5.86 8.47 10.78 11.11
Standard deviation of building height (m) 18.13 8.81 3.95 4.01 1.73 1.88 8.61 2.66 2.49 1.66 1.85 2.55 2.10 1.48 2.34 2.49 2.80
Wall area density (-) 2.49 1.26 0.82 0.92 0.45 0.60 0.91 0.59 0.62 0.34 0.43 0.46 0.46 0.08 0.19 0.47 0.40
Frontal area density (-) 0.67 0.37 0.24 0.25 0.13 0.17 0.26 0.16 0.17 0.10 0.12 0.13 0.12 0.02 0.05 0.13 0.11
Mean tree height (m) 15.50 8.55 9.30 7.26 6.83 5.31 11.09 6.67 6.75 7.49 6.22 7.89 6.33 8.20 9.13 7.92 5.98
Standard deviation of tree height (m) 6.72 4.02 4.04 2.77 3.30 2.06 4.49 3.08 3.09 3.98 2.89 3.23 2.19 4.08 4.26 3.30 2.20
Plan area density (-) 0.48 0.36 0.37 0.44 0.32 0.37 0.35 0.31 0.34 0.24 0.27 0.28 0.30 0.04 0.07 0.34 0.19
Tree fraction (-) 0.04 0.07 0.16 0.05 0.14 0.08 0.11 0.18 0.19 0.25 0.18 0.07 0.03 0.26 0.22 0.09 0.04
Low vegetation fraction (-) 0.02 0.10 0.08 0.06 0.18 0.16 0.08 0.19 0.16 0.25 0.30 0.13 0.19 0.55 0.55 0.13 0.14
Water fraction (-) 0.07 0.06 0.02 0.01 0.01 0.00 0.01 0.02 0.00 0.01 0.00 0.05 0.00 0.01 0.01 0.02 0.08
Bare earth fraction (-) 0.05 0.05 0.05 0.04 0.06 0.08 0.05 0.03 0.03 0.05 0.04 0.15 0.14 0.09 0.09 0.09 0.14
Impervious fraction (-) Stewart and Oke, (2012) 0.35 0.37 0.32 0.40 0.29 0.31 0.39 0.27 0.27 0.21 0.20 0.32 0.34 0.05 0.07 0.34 0.41
Total built fraction (-) 0.83 0.73 0.69 0.83 0.60 0.68 0.74 0.58 0.61 0.44 0.47 0.60 0.64 0.09 0.14 0.67 0.60
Total pervious fraction (-) 0.17 0.27 0.31 0.17 0.40 0.32 0.26 0.42 0.39 0.56 0.53 0.40 0.36 0.91 0.86 0.33 0.40
Canopy aspect ratio (-) 4.56 1.72 0.77 1.20 0.38 0.56 0.78 0.49 0.53 0.25 0.34 1.05 0.76 0.05 0.13 0.61 0.38
Sky view factor (-) 0.28 0.52 0.57 0.51 0.71 0.62 0.55 0.66 0.63 0.79 0.73 0.71 0.70 0.95 0.89 0.70 0.77
Mean Roughness Height (m) Stewart and Oke,
(2012)

40.06 22.91 11.61 12.18 6.15 6.96 21.12 8.76 8.38 5.88 6.24 8.80 8.61 4.54 6.74 9.06 9.31

Displacement height (m) Macdonald et al. (1998) 32.21 16.25 7.21 8.50 3.54 4.37 12.31 4.82 4.97 2.72 3.22 5.27 5.33 0.81 1.67 5.48 4.24
Roughness length (m) Macdonald et al. (1998) 2.52 1.76 0.84 0.61 0.30 0.29 1.98 0.63 0.46 0.31 0.29 0.40 0.29 0.14 0.32 0.43 0.62
Displacement height (m) Kanda et al. (2013) 60.96 28.34 13.61 15.12 6.82 7.97 25.08 9.37 9.29 5.79 6.61 9.61 9.04 3.06 5.28 9.60 8.95
Roughness length (m) Kanda et al. (2013) 3.77 2.22 0.79 0.65 0.25 0.24 1.95 0.49 0.37 0.24 0.24 0.37 0.25 0.13 0.29 0.37 0.45
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neighbourhoods in Australian cities are less homogenous,
i.e., high-rise buildings are surrounded by a range of different
buildings with variable heights. This heterogeneity in the grids
classified as “high-rise” consequently reduces themean roughness
height. The difference between the two maps is less pronounced
in mid-rise LCZs, while LCZs with low building heights (such as
compact/open/large low rise, sparsely built, and heavy industry)
closely follow the recommended LCZ ranges. For natural land
cover, when roughness height is calculated based on tree height
(Stewart and Oke 2012), the bottom-up approach gives results
within the recommended range for trees, but overestimates
roughness element height in LCZs with low vegetation or no
vegetation. This again could be caused by real urban
heterogeneous surfaces including a scattering of higher
roughness elements.

Two morphological parameters are also compared: Canopy
aspect ratio (Figure 9) and sky view factor (Figure 10). These
calculations are based on the assumption of a repeating, two-
dimensional canyon geometry (Section 2.2) and depend on the
calculated plan area and wall density (Masson et al., 2020) (λp
and λw, respectively). These assumptions and resultant
parameters do not account for vegetation. Accordingly, the
comparison between these datasets are focused on built-up
LCZs. In both Sydney and Melbourne, canopy aspect ratio in
the majority of built-up LCZs is lower than the recommended
range. This is because of the generally lower plan area density
of locally defined categories (Figure 6), and because vegetation
is not accounted for in our calculation of sky view (Eq. 2).

Although these results highlight some differences with
recommended LCZ parameter values, the outputs provide
valuable input data for urban climate models. The defined

LCZ maps, when used to configure a model in Sydney or
Melbourne, can now be informed with accurate local
parameter values for each class. As such, we provide tables
of urban LCZs (LCZ1-10; Table 4) and natural LCZs (LCZA-
G; Table 5) for both Sydney and Melbourne for use in future
modelling exercises. Mean values are calculated by comparing
LCZ maps with 100 m morphology and surface cover data
derived from Geoscape datasets. These provide a more
accurate representation of local surface cover and
morphology than the mid-point of the recommended LCZ
ranges from Stewart and Oke (2012).

4 DISCUSSION

Numerical urban analysis has been experiencing two critical
transformations in the last decade. First, new datasets are
being generated using novel methods describing urban form,
fabric, and function at higher resolutions than previously
achieved (Mills et al., 2021). Second, the growth of computing
power—roughly doubling every 2 years (Leiserson et al., 2020)—
has enabled more sophisticated models to resolve urban processes
at higher resolutions. Nonetheless, many urban modelling studies
have been unable to represent true intra-urban variabilities
because they rely on class-based approaches to describe urban
surface parameters.

In this paper, we presented a methodology to derive city-
descriptive data for urban climate models using sub-metre
resolution datasets which resolve individual urban elements.
We have produced new gridded datasets which do not rely on
classes. In addition, we have been able to complement established

TABLE 5 | City-descriptive parameters for Melbourne and Sydney for natural local climate zones (LCZ A-G). Mean values are calculated with gridded morphology and
surface cover obtained from building-resolving 3D dataset (Geoscape) for each LCZ within each city’s map.

LCZ A LCZ B LCZ C LCZ D LCZ E LCZ F LCZ G

SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL

Mean building height (m) 6.29 8.97 3.71 5.71 4.24 4.89 11.68 4.56 7.74 8.15 6.17
Max building height (m) 8.86 11.45 5.82 6.39 5.67 5.31 12.26 5.56 8.59 9.67 6.63
Standard deviation of building height (m) 2.46 3.96 1.67 1.79 1.53 1.45 3.40 1.34 2.06 2.60 1.18
Wall area density (-) 0.14 0.14 0.05 0.09 0.07 0.06 0.42 0.09 0.30 0.13 0.09
Frontal area density (-) 0.04 0.04 0.01 0.02 0.02 0.02 0.12 0.03 0.08 0.04 0.03
Mean tree height (m) 6.92 7.97 8.22 8.39 7.80 7.69 5.94 7.48 6.25 9.61 6.64
Standard deviation of tree height (m) 3.45 4.09 4.03 3.58 3.49 2.86 2.13 3.00 2.09 3.61 2.19
Plan area density (-) 0.01 0.01 0.01 0.02 0.01 0.01 0.07 0.01 0.05 0.00 0.00
Tree fraction (-) 0.72 0.62 0.29 0.16 0.11 0.04 0.01 0.03 0.02 0.02 0.01
Low vegetation fraction (-) 0.22 0.33 0.60 0.66 0.70 0.78 0.07 0.32 0.28 0.01 0.03
Water fraction (-) 0.02 0.01 0.02 0.02 0.06 0.03 0.30 0.17 0.07 0.96 0.90
Bare earth fraction (-) 0.02 0.01 0.06 0.10 0.09 0.12 0.15 0.40 0.47 0.01 0.04
Impervious fraction (-) Stewart and Oke, (2012) 0.01 0.01 0.02 0.05 0.03 0.03 0.40 0.06 0.11 0.01 0.01
Total built fraction (-) 0.02 0.03 0.02 0.06 0.04 0.04 0.47 0.07 0.16 0.01 0.02
Total pervious fraction (-) 0.98 0.97 0.98 0.94 0.96 0.96 0.53 0.93 0.84 0.99 0.98
Canopy aspect ratio (-) 0.09 0.08 0.04 0.05 0.04 0.04 8.87 0.06 0.36 0.08 0.06
Sky view factor (-) 0.92 0.93 0.97 0.95 0.96 0.97 0.81 0.95 0.81 0.93 0.95
Mean Roughness Height (m) Stewart and Oke, (2012) 6.92 7.97 8.22 8.39 7.80 7.69 11.68 4.56 7.74 9.61 6.64
Displacement height (m) Macdonald et al. (1998) 1.28 1.27 0.57 0.79 0.70 0.57 5.27 0.87 3.48 1.35 1.17
Roughness length (m) Macdonald et al. (1998) 0.37 0.56 0.14 0.18 0.15 0.11 0.86 0.17 0.31 0.53 0.33
Displacement height (m) Kanda et al. (2013) 4.98 6.12 2.91 3.26 2.97 2.63 9.21 3.12 7.16 5.14 2.87
Roughness length (m) Kanda et al. (2013) 0.36 0.51 0.16 0.18 0.17 0.12 0.52 0.16 0.29 0.53 0.13
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methods by updating default class-based parameters with those
derived from local characteristics.

The code and examples for processing data layers are provided
as Supplementary Material, enabling future city-descriptive
maps to be developed for other regions using Geoscape data,
as well as informing other studies with similar building-resolving
datasets. The derived land cover and morphology dataset for the
Greater Sydney region at 300 m resolution is made openly
available (Lipson et al. 2022).

All building-resolving data contain errors which depend on the
collection and processing methods. The base Geoscape data used
here has a vertical accuracy of ±0.1 m for aerial and ±1m for satellite
derived building and tree heights (Geoscape Buildings v2.0, 2020;
Geoscape Trees v1.6, 2020). The horizontal accuracy is ±0.2 m for
aerial and ±2.5 m for satellite derived building positioning (although
consistent translational errors minimise errors in the derived
morphology characteristics). In comparison with top-down
methods, the mid-range building height values for LCZs can
differ with the Geoscape-derived values by dozens of metres
(Figure 8), well outside the range of Geoscape errors. Top-down
methods remain valuable where building-resolving data is
unavailable.

The strength of the methodology described here is
manifold. First, the building resolving data used is derived
in a consistent manner at continental scales. Such large-scale
and consistent datasets reduce uncertainties associated with
class-based approaches which rely on ad-hoc human training
and machine learning. Ad-hoc or inconsistent training data
can lead to incorrect classification (Bechtel et al., 2017; Stewart,
2018), while machine learning inherently obscures the
algorithm’s decision-making processes, making replication
or adaptation difficult. Second, class-based approaches can
omit some parameters required by numerical modelling
systems. Our bottom-up method provides additional
parameters for defining the form of urban areas and
surrounds that are important for quantify the impact of
mitigation strategies using modelling approaches
(Krayenhoff et al., 2021). Lastly, the traditional class-based
approach is limited by the fidelity of class system (i.e., the
number of defined classes) while the bottom-up approach
described here capture the unique characteristics of a city’s
fabric and form by detailing variability at the grid scale. This is
a methodological difference; instead of defining more
subclasses at increasingly high fidelity and defining their
recommended parameters, the properties of urban
morphology can be captured from the building scale and
applied at the desired resolution directly, enabling a more
accurate characterization of real urban form in urban climate
models.

The methods detailed here provide a useful approach for
obtaining critical city-descriptive parameters for climate
models, but several limitations persist. First, common
geometric assumption used to calculate some morphology
parameters (such as canopy height to width ratio and sky view
factor) fall short in representing realistic urban
configurations (as discussed in Section 2.2.3). Second, a
method for resampling categorical class-based maps (the

LCZ system) to different resolutions is not well-established
in the literature, limiting the comparison of values at different
resolutions. Thirdly, the data for large datasets may be
remotely sensed and incorporated over time, and so should
be updated regularly to account for rapid urbanization
processes and changes in urban land cover and use.
Furthermore, a key challenge in implementing this
methodology relate to the availability of high-resolution
datasets that resolve individual buildings and trees.
Consistent and complete global high-resolution datasets
are not yet publicly available. These challenges are likely to
decrease as more data becomes available, though being
significantly affected by different local data policy and
resources (Mills et al., 2021). Finally, we still have limited
available information on urban fabric and function, even at
local scales. A description of the spatial distribution of
materiality, for instance, is hard to achieve and hard to
implement in models in a realistic way. These issues
require more detailed attention in the future.
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