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 a b s t r a c t

A range of factors influences cyclists’ route choices, yet infrastructure design often fails to account 
for the diverse preferences and needs of different groups. This study examines cycling route choice 
preferences using revealed preference GPS data from Melbourne, Australia. Path Size Logit (PSL) 
and Mixed Path Size Logit models are estimated to capture path correlation due to overlapping 
routes and taste heterogeneity in route choice preferences among cyclist groups, segmented by 
age, gender, e-bike use, and Geller typology. Using a hybrid generalized Breadth-First Search on 
Link Elimination (BFS-LE) approach, the study enhances the quality and diversity of the gen-
erated choice set. Results indicate significant taste heterogeneity in route choices, with distinct 
preferences across cyclist segments. Risk-averse cyclists, particularly women and the “interested 
but concerned” group, showed a strong preference for protected bike lanes and off-road paths. 
In contrast, more confident cyclists, such as “enthused and confident,” exhibited greater flexibil-
ity and were less sensitive to infrastructure types, slopes, and turns. Traditional bike riders were 
found to be more sensitive to infrastructure variability compared to e-bike users. Findings also 
revealed that cyclists, on average, perceived a 1% increase in the proportion of a route on an off-
road bike path as equivalent to a reduction of 80m in trip length, though this effect varied across 
individuals. Similarly, a 1% increase in the proportion of a route on a protected bike lane was, on 
average, equivalent to a reduction of 61m, while each additional turn was perceived, on average, 
as adding 121m, highlighting the variability in how route complexity influences cyclists’ choices. 
Overall, the study offers valuable insights for urban planners and policymakers, emphasizing the 
need for inclusive cycling infrastructure that accommodates the diverse preferences of different 
cyclist groups to encourage broader participation.
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1.  Introduction

Cycling is widely recognized as an essential mode of transportation for building sustainable cities, offering significant environ-
mental, health, and social benefits (Garrard et al., 2012; Götschi et al., 2016; Del Rosario et al., 2024). It reduces traffic congestion, 
lowers air pollution and carbon emissions, and promotes physical well-being among individuals. As cities around the world increase 
their investments in cycling infrastructure, understanding cyclists’ route choices has become crucial for planning and designing safe, 
equitable, and efficient active transportation networks. While GPS-based cycling route choice modeling has advanced significantly 
(Łukawska, 2024), variations in findings across regions-due to differences in infrastructure, traffic conditions, culture, and safety 
perceptions-highlight the need for more localized studies. Additionally, there remains a limited understanding of taste heterogeneity, 
referring to variations in preferences, across different cyclist groups segmented by age, gender, cycling experience, and e-bike use. 
Furthermore, cycling route choice models are valuable for estimating link-level cycling volumes when integrated with cycling demand 
models. These models effectively capture the complexities associated with cycling route choices (Ryu et al., 2019; Bhowmick et al., 
2022; Meister et al., 2024), unlike oversimplified, deterministic, and non-representative route assignment strategies (e.g. shortest 
distance path) that are prevalent in the literature (Wallentin and Loidl, 2015). Addressing these gaps is crucial for developing more 
targeted urban planning strategies that cater to the diverse needs of cyclists.

Recent studies leveraging GPS-based revealed preference (RP) data have offered valuable insights into cyclist behavior across 
different contexts (Łukawska et al., 2023; Łukawska, 2024; Cubells et al., 2023b; Sobhani et al., 2019; Dane et al., 2020). More 
specifically, Meister et al. (2023) showed that route preferences were shaped by factors such as bicycle infrastructure quality, rider 
demographic characteristics, and travel purpose. However, these studies often face limitations, including narrow geographical scope, 
small sample sizes, sampling bias that over-represents frequent and confident cyclists, and difficulties in generalizing findings to 
the wider population. Additionally, challenges in generating high-quality choice sets and segmenting users by demographic and 
behavioral factors have persisted, limiting the accuracy and transferability of results. Prato et al. (2018) developed a bicycle route 
choice model based on GPS-tracked trips in Copenhagen, aiming to integrate cycling considerations into transportation planning. The 
study highlighted cyclists’ diverse preferences for various route features, underscoring the value of detailed cyclist behavior data for 
sustainable transport planning.

This study addresses these gaps by presenting one of the most extensive datasets on cycling route choice to date, based on 19,782 
journeys recorded from 673 cyclists in Greater Melbourne, Australia (Bhowmick et al., 2025). The dataset, comprising 35.6 million 
GPS data points collected over seven months, offers a unique opportunity to explore route choice behavior at a granular level. In 
addition to examining traditional factors such as cycling infrastructure and traffic speed, we incorporate behavioral and demographic 
variables, including gender, age, the Geller typology (a classification system based on individuals’ comfort and willingness to cycle 
under different conditions), and e-bike usage, as well as a traffic stress indicator that integrates bicycle infrastructure type, road 
hierarchy, traffic volume, and speed limit into a single Level of Traffic Stress (LTS) metric. This enables a deeper understanding of 
variations and complexities in route choice preferences.

A key component of this study is the exploration of taste heterogeneity in cyclists’ route choice preferences, which refers to vari-
ations in individual preferences that influence route selection behavior. Using the well-established mixed logit modeling framework 
with a path size component, we measure the presence of unobserved heterogeneity, capturing differences in individual preferences 
that are not fully explained by observable characteristics alone. This approach provides a more accurate representation of cyclists’ 
route selection behavior. Additionally, the exogenous segmentation analysis in the study builds upon the mixed logit findings by 
examining variation in route choice preferences across predefined cyclist segments, offering a more detailed understanding of how 
demographic and behavioral factors influence choices.

In cycling route choice modeling, generating choice sets is a critical step to ensure that the modeled alternatives reflect realistic and 
diverse route options available to cyclists (Bovy, 2009; Ben-Akiva et al., 1984; Broach et al., 2010; Rieser-Schüssler et al., 2013; Hess 
et al., 2015; Tahlyan and Pinjari, 2020). Cycling is strongly determined by infrastructure and individual preferences, necessitating a 
more sophisticated approach to choice set generation. Previous studies have utilized various methods to generate choice sets, such 
as labeling approaches (Ben-Akiva et al., 1984; Broach et al., 2010) and Breadth-First Search on Link Elimination (BFS-LE) (Rieser-
Schüssler et al., 2013; Hess et al., 2015; Tahlyan and Pinjari, 2020), which is often computed based solely on distance. However, 
these standard approaches often fail to adequately capture the complexity and diversity of cyclists’ preferences, particularly in terms 
of infrastructure use and spatial variation.

A data-driven path identification approach, known as DDPI, was introduced by Ton et al. (2018) that defines choice sets using 
observed GPS routes to capture more realistic choices for model estimation. They found that while DDPI effectively represents actual 
behavior and provides valuable insights without additional network data, it is less effective for predictive purposes due to limitations 
with out-of-sample data. The BFS-LE approach, on the other hand, produces a choice set with less spatial diversity than labeling 
approaches but results in the highest percentage of separate bike paths and the fewest intersections in the choice set. This study 
advances the BFS-LE method by introducing a generalized cost function that accounts for bicycle infrastructure, slope, and distance 
to better capture cyclists’ perceived costs, thereby improving the diversity and realism of generated choice sets.

One of the contributions of the study is the development of a hybrid choice set generation process that combines BFS-LE with 
a generalized cost function and the Google Directions API. This generalized hybrid approach improves the quality and diversity of 
the generated choice sets, addressing limitations in previous studies that relied on a single method for generating alternatives. By 
incorporating the proposed approach, we ensure a comprehensive set of realistic route alternatives, reflecting diverse infrastructure 
conditions and route attributes, while minimizing false positives and negatives in the choice set.
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A core feature of this study is the segmentation of the population into distinct subgroups based on demographic and behavioral 
factors, such as age, gender, Geller typology (which categorizes cyclists into four types: strong and fearless, enthused and confident, 
interested but concerned, and no way no how), and whether the cyclist is riding an e-bike or a traditional bike. This distinction 
between e-bike users and traditional bike users is particularly important due to the unique characteristics and advantages of e-bikes. 
For instance, e-bikes have the potential to overcome topographical challenges, making routes with steeper slopes more accessible, 
and they may also appeal to a broader range of users, including those who might otherwise be deterred by physical exertion. This 
exogenous segmentation enables the estimation of separate route choice models for each population segment, providing an in-depth 
understanding of how different groups interact with the built environment. We then conduct a comparative analysis that highlights 
variations in route choice preferences across these groups.

This approach is particularly significant because it moves beyond the limitations of homogenous choice models that assume 
homogeneity across all cyclists. Homogenous choice models often mask important behavioral differences, which can lead to inaccurate 
or generalized conclusions about cycling behavior. By segmenting the population, we identify latent behavioral patterns specific to 
each group, revealing, for example, how factors such as traffic stress, cycling infrastructure, road type, or environmental features 
impact women differently than men, or how older cyclists’ route preferences diverge from younger cyclists. The analysis also enables 
us to explore how e-bike users, who may experience cycling differently due to factors like energy consumption and effort, make route 
choices compared to non-e-bike users. For example, modeling results suggest that younger cyclists prioritize flatter and more direct 
routes, while older cyclists may prefer routes with lower traffic stress. Similarly, e-bike users are found to be less averse to steep 
gradients than traditional cyclists, given the assistive nature of their bikes.

As the first large-scale study of this kind in Australia, our research provides new empirical evidence on cycling route choice 
behavior. The findings offer actionable insights for policymakers, urban planners, and transport authorities, helping them design 
more inclusive cycling infrastructure. This research also contributes to the global discourse on sustainable mobility by addressing key 
methodological challenges in GPS-based route choice modeling. The study makes four main contributions: (1) introducing a hybrid 
choice set generation approach that leverages BFS-LE; (2) enhancing the BFS-LE cost calculation by incorporating trip distance, slope, 
and bicycle infrastructure; (3) estimating path size logit and mixed logit models with a path size component that use LTS as a proxy 
for traffic characteristics; and (4) capturing variability in cyclists’ route preferences and choices through taste heterogeneity analysis 
and exogenous segmentation.

2.  Literature review

The literature on bicycle route choice preferences has expanded rapidly over the past decade, with several studies utilizing GPS-
based revealed preference (RP) data to analyze cycling behavior. However, differences in study scope, dataset size, and the inclusion 
of key demographic and behavioral factors have led to varied findings across regions. In Table 1, we summarize several key studies 
in this domain, comparing them based on dataset size, the number of participants, and the inclusion of socio-demographic factors 
such as gender, age, and the use of e-bikes. Many earlier studies, such as Broach et al. (2012) in Portland, Oregon and Hood et al. 
(2011) in San Francisco, California relied on relatively small sample sizes and did not include critical demographic variables like age 
or e-bike usage. More recent studies, such as Meister et al. (2023) in Zurich and Dane et al. (2020) in the Noord-Brabant region of 
The Netherlands, have begun to include gender and e-bike segmentation, but still, the scope remains limited.

Building on this, Łukawska (2024) categorized the factors influencing bicycle route choices into three main groups: network, 
contextual, and individual factors. Network factors-such as trip length, slope, built environment, motorized traffic volume, speed 

Table 1 
Summary of GPS-based cycling route choice studies including dataset size, number of participants, and considered cyclist characteristics.
Study Location Number of trips 

collected
Number of trips 
for modelling

Number of 
cyclists

 Gender  Age  Geller Type  E-bike

Broach et al. (2012) Portland, 
Oregon

1449 164  7  7  7  7

Ghanayim and 
Bekhor (2018)

Tel Aviv, Israel 618 545 221  7  7  7  7

Hood et al. (2011) San Francisco, 
California, USA

7096 2777 366  7  7  7  7

Ton et al. (2018) Amsterdam, The 
Netherlands

3045 2819 -  7  7  7  7

Dane et al. (2020) Noord-Brabant, 
The Netherlands

17,626 - 742  3  3  7  3

Sobhani et al. (2019) Toronto, Canada 5123 500 -  7  7  7  7
Cubells et al. 
(2023b)

Barcelona, Spain - 911 89  3  3  7  7

Łukawska et al. 
(2023)

Copenhagen, 
Denmark

365,813 159,451 8555  7  7  7  7

Meister et al. (2023) Zurich, 
Switzerland

5000 4432 100  3  3  7  3

This study Melbourne, 
Australia

19,782 12,224 646  3  3  3  3
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limits, turns, and land use-have been the focus of many recent studies due to their measurability through GPS data. However, some 
studies extend beyond these network factors by incorporating contextual factors, including trip purpose, time of day, and weather 
conditions, which add further complexity to route choices (Hood et al., 2011; Prato et al., 2018; Sobhani et al., 2019). For instance, 
utilitarian trips that prioritize minimizing time and distance exhibit distinct patterns compared to recreational trips, which often 
favor more scenic, longer routes (Dill and Gliebe, 2008; Bernardi et al., 2018). Likewise, commute trips tend to be more sensitive to 
distance while being less influenced by infrastructure improvements (Broach et al., 2012).

In addition to route length, two other key factors influencing cyclists’ decisions are bicycle infrastructure (Fitch and Handy, 2020; 
Fosgerau et al., 2023; Łukawska et al., 2023; Pettit et al., 2024) and slope (Broach et al., 2012; Lin and Wei, 2018; Ryu et al., 2021; 
Meister et al., 2023). Cyclists generally avoid hilly routes, particularly those with steep slopes, and are often willing to accept detours 
if the alternative routes offer better cycling facilities. The presence and quality of bicycle infrastructure significantly impact ridership, 
with better infrastructure encouraging more frequent cycling (Pucher and Buehler, 2017; Arellana et al., 2020; Fosgerau et al., 2023).

Several studies have incorporated cyclists’ socio-demographic characteristics, such as gender, age, and income, into analyses 
(Monsere et al., 2014; Misra and Watkins, 2018; Fitch and Handy, 2020; Meister et al., 2023). Cyclists using e-bikes tend to be less 
sensitive to slopes and often undertake longer trips compared to those using conventional bikes (Dane et al., 2020; Meister et al., 
2023). In contrast, e-scooter riders are more likely to take longer detours than cyclists (Cubells et al., 2023a).

Regular commuters may be less inclined to use bike lanes or paths compared to recreational cyclists, as suggested by Arellana 
et al. (2020). For utilitarian trips, some studies have found that cyclists may be less willing to deviate from their route to access off-
street paths, instead preferring on-street facilities (Larsen and El-Geneidy, 2011). Time constraints, particularly during commuting 
to work, appear to play a critical role in shaping route choices. During peak hours, Łukawska et al. (2023) observed that commuters 
are less likely to deviate from the shortest path compared to other utilitarian trips or off-peak travel. Additionally, the routine nature 
of commuting might heighten cyclists’ awareness of time and distance variations between routes. Familiarity with regular routes 
could also allow commuters to better manage delays and address safety concerns as they arise. Interestingly, Akar and Clifton (2009) 
and Misra and Watkins (2018) found that experienced cyclists may prefer on-street infrastructure over off-street paths, suggesting a 
potential divergence in preferences based on experience and cycling purpose.

This study significantly expands upon these previous works by integrating a more comprehensive demographic segmentation 
approach, capturing cyclists’ behavior across characteristics such as age, gender, Geller typology, and e-bike use. This approach 
allows for a detailed examination of how different population subgroups interact with various built environment factors, such as 
traffic stress, infrastructure quality, and road characteristics. By using one of the largest datasets to date, collected in Melbourne, 
Australia, this research provides more robust and in-depth insights into how these factors influence cycling route choices considering 
taste heterogeneity.

3.  Data

We collected GPS data from a diverse group of 673 cyclists across Greater Melbourne, documenting 19,782 cycling journeys, 
translating to 35.6 million GPS data points (Bhowmick et al., 2025). The data collection took place over seven months, from January 
2022 to August 2022. During this period, participants recorded smartphone GPS data, including location coordinates, timestamps, 
and speeds, for approximately two months. Prior to collecting GPS data, we conducted a survey to gather socio-demographic infor-
mation such as age, gender, income, occupation, employment status, primary language, bike ownership, and bike type. Additionally, 
participants were classified into one of the four Geller typologies based on their stated comfort levels while riding in specific types 
of infrastructure scenarios. These scenario questions were derived from the ‘Four Types of Cyclists’ tool (Pearson et al., 2022; Dill 
and McNeil, 2013) with appropriate alterations made for the Australian context. Our data collection approach paired a smartphone 
app with a Bluetooth beacon attached to participants’ bikes, ensuring accurate recording of all biking trips while reducing self-
reporting bias and privacy concerns, and minimizing participant dropouts. We developed a sampling framework to ensure collecting 
data from a representative sample of the underlying adult bike-riding population of Greater Melbourne, enabling an accurate assess-
ment of representativeness. Our study sample closely mirrored the spatial and demographic distribution of the overall bike-riding 
population. For further details, please refer to Bhowmick et al. (2025). The observed raw cyclists’ trajectories are illustrated in
Fig. 1(a).

Links or street segments of the underlying bikeable network were classified into different infrastructure categories. Initially, the 
raw network from OpenStreetMap was spatially merged with publicly available and proprietary datasets, such as motor vehicle 
volume, slope, and posted speed limits. The network was then classified based on (a) the type of bicycle infrastructure installed on 
the link, (b) road hierarchy, (c) Bicycling Level of Traffic Stress (LTS)-which combines information on bike infrastructure type, road 
hierarchy, motor vehicle volume, and posted speed limit-and (d) the combination of bike infrastructure and road class.

We obtained Light Detection and Ranging (LiDAR)-derived Digital Elevation Model (DEM) data at 10m resolution from the 
VicMap Elevation LiDAR DEMs Collection (Water and Planning, 2021). This dataset covers approximately 60% of the state’s land 
area and provides over 99% coverage of populated areas, with data collected between 2007 and 2023 within the state of Victoria 
(Vicmap Spatial Services Branch, 2022). Researchers use various approaches to incorporate slope into bicycle route choice models, 
including classifying slopes into distinct categories such as flat and steep (Broach et al., 2012; Łukawska et al., 2023; Meister et al., 
2023), focusing solely on uphill gradients (Zimmermann et al., 2017; Cubells et al., 2023a), or using average slope (Hood et al., 2011; 
Cho and Shin, 2022). A road segment with a very steep uphill gradient is a strong deterrent, often leading cyclists to detour around 
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Fig. 1. An overview of the input data used in this study: (a) observed cycling trajectories with a zoomed-in view, (b) cycling infrastructure classes 
at the link level, and (c) the level of traffic stress (LTS) at the link level, ranging from LTS 1 (low stress) to LTS 4 (high stress), used to represent the 
comfort and safety of cycling conditions across the network..

the hill (Menghini et al., 2010; Broach et al., 2012; Meister et al., 2023). Since cyclists are particularly sensitive to extreme slopes, 
we adopt the maximum slope value, similar to Menghini et al. (2010).

We also obtained Point of Interest (POI) data from OpenStreetMap (OSM) using the Pandana Python library (Foti et al., 2012). 
A POI denotes a location tagged with descriptive features, which can refer to a specific point or area. POIs are categorized into 
various groups, such as residential, education, healthcare, market, transportation, and financial services (Wibowo et al., 2021), or 
into four categories: economic, educational, government, and health (Zhuwaki and Coetzee, 2021). Each POI encountered along a 
path represents an amenity, such as a café, restaurant, post office, or store, typically located at ground level, which tends to attract 
more pedestrian traffic and potentially cause crowdedness for cyclists. While pedestrians often prefer routes with numerous ground-
floor amenities like shops, parks, cafés, and restaurants (Sevtsuk et al., 2021), some past studies suggest that cyclists generally avoid 
densely populated areas with a high concentration of shops and eateries (Park and Akar, 2019; Desjardins et al., 2022; Cubells et al., 
2023a). The OSM dataset includes various nodes, such as road intersections, junctions, and traffic lights, which may not be pertinent 
to our study. To extract relevant POIs from the OSM, we define each POI as a single coordinate tagged with its amenity type and 
name. All types of POIs are treated equally within the scope of this research. See Table 2 for the description of the route attributes 
considered in this study.
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Table 2 
Attribute description.
 Attribute Description

 Length Route distance or length in meter
 Turns The number of turns along the route
 Maximum gradient The maximum change in elevation over distance among multiple segments on the 

route
 Average gradient The weighted average change in elevation over distance
 Prop. of Arterial roads – Painted bike lane Proportion of route with Arterial roads – Painted bike lane
 Prop. of Arterial roads – Mixed traffic Proportion of route with Arterial roads – Mixed traffic
 Prop. of Local roads – Mixed traffic or sharrow Proportion of route with Local roads – Mixed traffic or sharrow
 Prop. of Collector roads – Mixed traffic Proportion of route with Collector roads – Mixed traffic
 Prop. of Protected bike lane Proportion of route with Protected bike lane
 Prop. of Off-road bike path Proportion of route with Off-road bike path
 Length of LTS 1 Route distance or length in meter with the Level of Traffic Stress Class 1
 Length of LTS 2 Route distance or length in meter with the Level of Traffic Stress Class 2
 Length of LTS 3 Route distance or length in meter with the Level of Traffic Stress Class 3
 Length of LTS 4 Route distance or length in meter with the Level of Traffic Stress Class 4
 POIs The number of points of interest from OSM along the route. Each POI along a path 

represents one amenity (e.g. a cafe, restaurant, post office, or storefront) on the 
ground floor that cyclists might find attractive.

 Path size The degree of similarity between alternatives within the choice set. Refer to 
Equation 8.

Note: 1 The calculation is a weighted average using link lengths as weights across multiple segments on the route.

4.  Methodology

4.1.  Data processing

Because raw GPS traces often deviate from actual streets due to signal interference from buildings, trees, or urban canyons, we 
applied a map-matching procedure to align the trajectories with the underlying bicycle network. Using the OSMnx Python package 
(Boeing, 2017), we extracted the bicycling network from OpenStreetMap as of April 30th, 2022, including all streets and paths 
accessible to cyclists while excluding freeways and pedestrian-only footpaths. The resulting network contained approximately 785,648 
directed links and 339,277 nodes. We then used the Leuven.MapMatching Python package (Newson and Krumm, 2009), which 
implements a probabilistic algorithm to associate each GPS trace with the most likely route on the network. To improve computational 
efficiency without compromising accuracy, the GPS data were downsampled from 1-second to 15-second intervals, following the 
method detailed in Bhowmick et al. (2025). A maximum allowable distance of 500 metres between a GPS point and a road segment 
was applied to improve completeness for trips with erratic traces. For the final matched dataset, the mean distance between GPS points 
and matched links was 18 metres (minimum: 0m; maximum: 500m; standard deviation: 45m). In total, 19,782 trips were collected, of 
which over 98% were successfully matched to the network; unmatched or poorly matched trips were excluded from further analysis. 
To further assess map-matching quality, we computed the maximum distance between each GPS point and the matched network link 
per trip. Most trips had small deviations, with about 19,309 trips (97.6%) exceeding 10m, 12,520 trips (63.3%) exceeding 50m, 
and 4267 trips (21.6%) exceeding 200m. Fig. 2 provides an overview of the data processing workflow. We generated choice sets and 
calculated route attributes, resulting in an additional 11% data loss. To ensure that only utilitarian and well-represented trips were 
used in the modeling process, we applied three criteria, leading to a 30% data reduction, including the observed distance 𝐿𝑛 < 30
km; the detour factor 𝐷𝐹𝑛 < 3; and the ratio of the average distance in the choice set to the observed distance 𝐷𝐷𝑛 < 1.3 for every trip 
𝑛 in the data. See Appendix A for the sensitivity analysis of the distance difference threshold and its effect on the model outcomes. 
Note that 𝐷𝐹𝑛 was computed using the beeline distance as a proxy for the shortest path. While using actual network distance could 
improve precision in areas with physical barriers (e.g., lakes), it is unlikely to significantly affect trip classification outcomes. More 
details are discussed later in Section 4.3. Finally, we randomly split the trips into a 90% training set and a 10% testing set.

4.2.  Choice set generation

Route choice estimation using revealed preference (RP) data involves identifying the route actually taken by the cyclist (the ob-
served or chosen route) along with a set of plausible alternative routes that may have been considered but ultimately not selected. 
RP refers to real-world choices observed from GPS data, as opposed to stated preference (SP), which captures hypothetical choices 
made in response to survey scenarios. The presence of alternatives allows a choice model to evaluate whether and which particular 
route attributes are systematically related to a higher likelihood of preference. The set of alternatives plays a key role in determining 
the estimated coefficients. Generating this set of alternative routes presents several challenges. The size and complexity of the choice 
set can significantly increase the computational task. Additionally, the lack of existing observed bicycle routes necessitates the de-
velopment of new choice set generation techniques. Common algorithms based on travel time and street hierarchy are not directly 
applicable, as bicycle travel times are not affected by road speed limits, congestion, and functional class in the same ways as auto 
travel times (Broach et al., 2012). Furthermore, cycling route choice is influenced by multiple factors, which are not limited to travel 
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Fig. 2. Data processing flow of the original cycling data including map matching, choice set generation, exclusion of non-utilitarian trips and 
dividing the data into training vs testing sets.

time, travel distance, or road hierarchy alone, and therefore needs careful consideration when generating appropriate choice sets. 
Many of the alternatives could overlap with the actual route or each other, thus not constituting independent choices, which would 
violate the independence of irrelevant alternatives (IIA) property in decision theory. However, in practice, a relatively small number 
of alternatives (e.g., 1-5) is typically used in route choice models, with alternatives chosen to offer variation in estimated route at-
tributes. Several approaches have been developed for choice set generation, including k-shortest path (Bovy, 2009), doubly stochastic 
shortest path (Bovy and Fiorenzo-Catalano, 2007; Hood et al., 2011), Double Stochastic Generation Function (DSGF) (Halldórsdóttir 
et al., 2014; Koch et al., 2019), labeling (Ben-Akiva et al., 1984; Broach et al., 2010), BFS-LE (Rieser-Schüssler et al., 2013; Hess 
et al., 2015; Tahlyan and Pinjari, 2020), and data-driven approaches (Ton et al., 2017; Lu et al., 2018).

Generating a choice set based on the k-shortest path method is easy to implement but is unlikely to capture all observed routes 
(Wang et al., 2023). The BFS-LE approach provides a set of shortest routes with less diversity, while the labeling approach offers more 
diverse routes that better mimic observed behavior in terms of spatial and behavioral patterns, although BFS-LE produces a larger 
number of alternatives (Ton et al., 2018). Koch et al. (2019) introduced the concept of route complexity to create more diverse choice 
sets by counting the number of locations where cyclists deviate from the shortest paths. They found that route complexity generated 
by BFS-LE is significantly affected by network density, while the DSGF method is less influenced by this factor (Koch et al., 2019). 
DSGF draws random costs and parameters from probability distributions, which adds heterogeneity to the network. However, BFS-LE 
requires significantly less computation time compared to DSGF (Halldórsdóttir et al., 2014; Koch et al., 2019).

The choice set algorithm inherently produces two types of errors: false negatives, when the algorithm fails to reproduce the 
chosen alternatives, and false positives, when alternatives that were not considered by the individual are included. In practice, when 
building a route choice model, a false negative can be entirely mitigated by adding the observed route as one of the alternatives 
in the choice set. The consequence of a false positive error is not limited to increased computational burden; including extremely 
poor alternatives may also affect model estimation by distorting the likelihood function value, potentially leading to convergence 
on suboptimal parameter estimates (Ton et al., 2018). A larger number of alternatives reduces false negatives due to the higher 
likelihood of matching the observed route but increases false positives because irrelevant alternatives are more likely to be included 
in the choice set. This study addresses false negatives by including the observed route when absent from the generated choice set, 
while also reducing false positives by incorporating a generalized cost function that accounts for bicycle infrastructure, slope, and 
distance as follows:

𝑐𝑎 = 𝑥𝐷𝑎 (1 − 𝛾𝑠𝑒𝑝𝑥
𝑠𝑒𝑝
𝑎 − 𝛾𝑝𝑛𝑡𝑥

𝑝𝑛𝑡
𝑎 + 𝛾𝑠𝑙𝑜𝑝𝑒𝑥

𝑠𝑙𝑜𝑝𝑒
𝑎 ) (1)

In this formulation, 𝑐𝑎 denotes the perceived cost of link 𝑎, and 𝑥𝐷𝑎  is the actual distance of the link. The variables 𝑥𝑠𝑒𝑝𝑎  and 𝑥𝑝𝑛𝑡𝑎
represent the proportion of the link with physically separated and painted bike lanes, respectively (both ranging from 0 to 1). The 
variable 𝑥𝑠𝑙𝑜𝑝𝑒𝑎  denotes the average slope of the link, calculated as the rise-over-run ratio (i.e., elevation gain divided by horizontal 
distance), and is a continuous variable typically ranging from 0 to 0.4 in our dataset, based on urban terrain. The slope term enters the 
equation with a positive sign to reflect the assumption that steeper gradients increase perceived cycling distance and, consequently, 
perceived cost. This is consistent with the idea that cyclists are more likely to avoid steep routes, all else being equal. The calibrated 
parameters obtained through grid search are 𝛾𝑠𝑒𝑝 = 0.785, 𝛾𝑝𝑛𝑡 = 0.860, and 𝛾𝑠𝑙𝑜𝑝𝑒 = 0.067. This formulation assumes that both the 
presence of cycling infrastructure and topographic slope influence how cyclists perceive distance, which in turn affects route choice. 
The grid search procedure optimized these parameters to maximize alignment between modeled and observed routes, effectively 
estimating how each feature distorts perceived distance relative to actual distance.

We utilize two methods for generating our choice set: Breadth-First Search on Link Elimination (BFS-LE) and the Google Direc-
tions API. BFS-LE involves iterating through the minimum cost path (MCP) search by gradually eliminating links from the MCP, 
starting at the origin and progressing toward the destination. This method ensures route uniqueness, defined as a lower degree 
of overlap among alternatives rather than complete dissimilarity, by applying a similarity constraint (Cascetta et al., 1996). Two 
routes are considered unique if they meet a minimum threshold of dissimilarity. We generate up to five alternatives based on 
trip length only and five additional alternatives based on trip length, slope, and cycling infrastructure using the cost function de-
scribed earlier. We find that the cost function, which incorporates multiple route attributes, significantly impacts the diversity of 
the generated choice sets. Conversely, the Google Directions API provides alternative routes specifically designed for bicycle travel
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(Loidl and Hochmair, 2018; Schirck-Matthews et al., 2023). In our hybrid method, up to three routes from the Google API are included 
in the final choice set, alongside those generated using the BFS-LE approach. Overall for each trip, we generate up to 13 alternative 
routes. The origin-destination pairs are derived from the collected GPS data. See Fig. 3 for an illustration of several sampled observed 
and generated alternative routes.

4.3.  Choice set evaluation

Two of the measures used to assess the performance of a choice set generation procedure are the coverage and consistency indices 
(Prato and Bekhor, 2007). Coverage is defined as the percentage of observations for which an algorithm generates a route that satisfies 
a particular threshold for the overlap measure and can be formulated as follows.

max
𝑟

∑

𝑡∈𝑇
𝐼(𝑂𝑡,𝑟 ≥ 𝛿) (2)

where 𝐼(.) denotes the coverage function which equals 1 if its argument is true and 0 otherwise. 𝛿 denotes the overlap threshold 
which is commonly used at 80% (Prato and Bekhor, 2007; Halldórsdóttir et al., 2014; Ghanayim and Bekhor, 2018). 𝑇  denotes all 
trips.

𝑂𝑡,𝑟 denotes the overlap measure, as determined by the choice set generation algorithm 𝑟, between the generated choice set and 
the observed trip route 𝑡.

𝑂𝑡,𝑟 =
𝐿𝑡,𝑟

𝐿𝑡
(3)

where 𝐿𝑡 denotes the length of the observed route for trip 𝑡 and 𝐿𝑡,𝑟 denotes the overlapping length between the generated route 
and the observed route for trip 𝑡 by algorithm 𝑟. Ideally, a choice set generation method would perfectly reproduce the observed 
behavior by replicating each route link by link, resulting in 100% coverage for a 100% overlap threshold. However, actual choice 
set generation methods only partially replicate the observed behavior and generate varying numbers of routes. The consistency index 
measures the behavioral consistency of these methods by accounting for the total overlap across all observations. The consistency 
index of algorithm 𝑟 can be formulated as follows.

𝐶𝐼𝑟 =
∑

𝑡∈𝑇 𝑂𝑚𝑎𝑥
𝑡,𝑟

|𝑇 |𝑂𝑚𝑎𝑥 (4)

where 𝑂max
𝑡,𝑟  denotes the maximum overlap measure from the generated route by algorithm 𝑟 for the observed choice set of trip 𝑡. 

This refers to a single route among multiple generated routes that has the maximum overlap with the observed route on trip 𝑡. 𝑂max

denotes 100% overlap over all the observations for the ideal algorithm. 𝑇  denotes all trips.
To ensure that all trips considered are utilitarian bicycle trips (riding a bicycle where the origin or destination serves a utility 

for the person making the trip such as commute, shopping, picking up children, etc.) and that the choice set contains realistic route 
alternatives, three criteria were used to filter trips for estimating the route choice model. To ensure that all trips considered are 
utilitarian bicycle trips and that the choice set contains realistic route alternatives, the previously introduced criteria were applied to 
filter trips for estimating the route choice model. An extensive sensitivity analysis was conducted on these criteria to strike a balance 
between retaining a larger number of trips and ensuring that the choice model outcomes remained plausible. For instance, the distance 
parameter in a route choice model is expected to be positive, otherwise this would imply that cyclists prefer longer routes purely for 
the sake of distance-a behavior inconsistent with utilitarian trips. First, the trip length 𝐿𝑛 had to be less than 30 km. It is uncommon 
for utilitarian bike trips to exceed 30 km (Lißner and Huber, 2021), so this threshold ensured that we captured most or all utilitarian 
bike trips while filtering out recreational trips, which are often longer. The second criterion was that the detour factor 𝐷𝐹𝑡 had to 
be less than 3. The detour factor, defined as the actual trip length (network distance between the origin and destination covered by 
the cyclist) divided by the beeline distance (Euclidean distance between the origin and destination), is critical for identifying leisure 
trips (Lißner and Huber, 2021) and is formulated as follows.

𝐷𝐹𝑡 =
𝐿𝑡
𝐿𝑒𝑢𝑐
𝑡

(5)

where 𝐿𝑒𝑢𝑐
𝑡  denotes the Euclidean  distance between the origin and destination of the trip 𝑡.

This is because utilitarian bike trips typically do not involve unreasonable detours, which are more common in recreational bike 
trips. The final criterion involves dividing the observed distance by the average distance of the choice set. This criterion is formulated 
as follows.

𝐷𝐷𝑡 =
𝐿𝑡

∑𝐴
𝑎 𝐿𝑡,𝑎∕|𝐴𝑡|

(6)

where |𝐴𝑡| denotes the number of all generated routes or a choice set size for the trip 𝑡.
The distance difference threshold was set to less than 1.3. This ensures that the generated choice set routes are realistic alternatives 

to the observed route. These thresholds were empirically derived after thoroughly investigating the GPS data. With the three criteria 
in place-a trip length threshold of 30 km, a detour factor threshold of 3, and an average distance difference threshold of 1.3-our final 
dataset comprises 12,224 trips. The dataset achieves a coverage measure of 30% at the 80% overlap threshold and a consistency 
index of 0.52, as shown in Table 3. The generated choice set performed adequately, including up to 13 alternatives per trip. While this 
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Table 3 
Comparison of coverage measures and consistency indices to evaluate the quality of choice set generation methods proposed in past 
studies and this study. The table highlights the ability of each method to capture observed choices at varying overlap thresholds 
(100%, 90%, 80%, and 70%) and assesses the consistency of the generated sets with observed data.

Methods
Percentage coverage at
different overlap thresholds

 Consistency

 100%  90%  80%  70%  Index
 BFS-LE in this study before filtering with 17,495 OD pairs  4.39  11.25  25.89  48.96  0.47
 BFS-LE in this study before filtering with 12,224 OD pairs  6.10  12.74  30.37  57.97  0.53
 Link elimination on the road network from Prato and Bekhor (2007)  58.47  58.47  69.92  81.78  0.872
 An algorithm on the road network from Broach et al. (2010)  22.5  29.4  42.3  54.6
 BFS-LE on the road network with three cost attributes from Halldórsdóttir et al. (2014)  67.9  74.8  80.1  84.8  0.895
 An algorithm on the bicycle network from Ghanayim and Bekhor (2018)  73.5  77.5  85.0  89.5
 BFS-LE on bicycle network from Ton et al. (2018)  0.9  1.9  3.3  6.2  0.270
 An algorithm on the bicycle network from Łukawska et al. (2023)  21  38  56  70
 BFS-LE on bicycle network from Meister et al. (2023)  9  -  -  44  0.63

Fig. 3. Examples of observed and generated alternative cycling routes. An orange solid line with an arrow represents the observed trajectory. Dashed 
lines with various colors represent five alternative routes generated from BFS-LE algorithm (’BFS’). Dotted lines with various colors represent three 
alternative routes from Google Direction API (’GG’). (a) Sample trip 1 (b) Sample trip 2 (c) Sample trip 3.

is smaller than in some other studies, such as Łukawska et al. (2023), which generated up to 31 routes per trip, the difference primarily 
reflects variations in modeling choices, particularly in trip filtering criteria and the number of alternatives deemed meaningful for 
inclusion. For instance, Łukawska et al. (2023) applied stricter filters by excluding trips shorter than 500m and using a detour factor 
threshold of 𝜋2 . A larger choice set is not inherently better; rather, it depends on the context, data characteristics, and the intended 
trade-off between computational efficiency and behavioural realism. Similarly, Halldórsdóttir et al. (2014) used a larger choice set 
with up to 20 routes per trip.

4.4.  Descriptive analysis

The descriptive statistics of the observed chosen routes are presented in Table 4. These statistics are compared between the 
observed routes and the generated alternatives in the choice set. A description of all attributes is provided in Table 2. The proportions 
of different types of bicycle infrastructure are calculated as the percentage of the route’s total distance that occurs on a specific type 
of infrastructure. The length of each Level of Traffic Stress (LTS) category is determined based on the distance traveled within that 
particular LTS. Fig. 4 illustrates that the observed routes and choice sets have similar distributions across most route attributes.

Further analysis indicates that men’s average cycling distance is longer, at 6.10 km, compared to women’s average of 4.8 km. In a 
previous study, the average distance for chosen e-bike routes was higher, with a mean of 3.5 km compared to 2.7 km for traditional 
bikes (Meister et al., 2023). However, in this study, we found no significant difference between the average distances for e-bike and 
traditional bike routes, with both having a mean of 5.6 km. Cyclists classified as “Interested but concerned” tend to take slightly 
shorter trips, with a mean distance of 5.5 km, while the “Enthused and confident” or “Strong and fearless” groups average 6 km.

Meister et al. (2023) found that the average slope of the routes taken by e-bikes was steeper, at 0.05%, compared to 0.03% for 
traditional bikes. In contrast, our study did not find a significant difference in the mean slope for e-bikes (0.031%) compared to 
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Table 4 
Descriptive statistics of attributes across 12,224 cycling trips. The mean, median, and maximum values are 
reported for the observed routes and the alternatives.
 Total number of trips  12,224
 Total number of cyclists  646

Attribute
 Observed  Alternatives in the choice set
 Mean  Median  Max  Mean  Median  Max

 Distance (km)  5.58  3.36  29.87  5.23  3.21  61.08
 Prop. of Arterial roads- Painted bike lane (%)  4.74  0.73  79.32  6.92  2.17  78.70
 Prop. of Arterial roads- Mixed traffic (%)  11.81  7.07  100  12.55  7.93  90.40
 Prop. of Local roads- Mixed traffic or sharrow (%)  42.24  37.54  100  42.28  37.78  100
 Prop. of Collector roads - Mixed traffic (%)  9.52  5.17  100  7.92  4.46  92.15
 Prop. of Protected bike lane (%)  0.88  0  64.61  0.83  0  59.83
 Prop. of Off-road bike path (%)  20.23  11.85  100  16.17  10.04  100
 Distance on LTS1 (km)  1.77  0.49  23.75  1.25  0.43  30.95
 Distance on LTS2 (km)  2.06  1.43  16.86  2.12  1.49  16.80
 Distance on LTS3 (km)  0.85  0.47  9.80  0.91  0.49  14.81
 Distance on LTS4 (km)  0.91  0.39  26.49  0.95  0.40  31.87
 Max Slope (%)  0.03  0.02  0.93  0.06  0.04  6.44
 POI (#)  39.29  15  778  52.31  17  747
 Turns (#)  19.09  13  153  22.00  15  232
 Path Size  0.37  0.35  0.99  0.35  0.32  0.99

traditional bikes (0.032%). This difference may partly reflect the underlying topography, as Zurich-where the Meister et al. (2023) 
study was conducted-is notably hillier than Melbourne, with more pronounced elevation changes. Additionally, we observed that the 
“Interested but concerned” group tends to avoid routes with higher LTS levels, with mean distances on LTS 3 at 0.83 km and LTS 4 
at 0.85 km. Meanwhile, the “Strong and fearless” group had mean distances of 1.19 km on LTS 3 and 1.67 km on LTS 4.

4.5.  Random utility route choice model formulation

The second step in our route choice analysis involves estimating utility function coefficients using the Path Size Logit (PSL) and 
Mixed Logit models, both of which incorporate a path size attribute. The PSL model is an extension of the standard multinomial logit 
model, designed to address the potential violation of the independence of irrelevant alternatives (IIA) assumption when routes in the 
choice set overlap. In route choice contexts, overlapping alternatives, where multiple routes share common segments, can lead to 
correlation among utilities and thus invalidate the IIA property. The path size variable accounts for this by down-weighting routes 
that heavily overlap with others, reducing their influence in the model. While some overlap between alternatives is unavoidable and 
even realistic in urban cycling networks, the inclusion of the path size attribute ensures that such overlap is explicitly accounted for 
in the estimation. The utility of each route is then modelled as a function of its attributes, including distance, bike infrastructure, 
traffic density, maximum slope, points of interest, and number of turns.

The Mixed Logit is known by many names, e.g., Hybrid Logit, or Kernel Logit, or Random Parameter Logit, and consists of a probit-
like component that captures the interdependencies among the alternatives and an identically distributed Gumbel error component 
(Ben-Akiva and Bolduc, 1996; Bekhor et al., 2002; Hensher and Greene, 2003; Sener et al., 2009). The Mixed Logit with a path 
size attribute is also an extension of the multinomial logit model that accounts for unobserved heterogeneity in preferences across 
individuals and corrects for overlapping routes by incorporating the path size attribute (Broach et al., 2012; Chen et al., 2018; Meister 
et al., 2023). Unlike the PSL model, which assumes fixed preferences, the Mixed Logit allows for random variation in the coefficients 
of the utility function, enabling a more flexible representation of individual route choice behavior. This model considers the same 
set of route attributes while introducing random parameters to capture variations in sensitivity to these attributes. By including the 
path size attribute, the Mixed Logit model addresses potential biases due to route overlap, ensuring a more robust estimation of route 
choice preferences.

The lack of theoretical guidance for the C-Logit (CL) model (Cascetta et al., 1996) led Ben-Akiva and Bierlaire (1999) to the 
proposal of the PSL model. The PSL approach is conceptually similar to the CL model, where a correction for overlapping routes is 
achieved by adding an attribute to the deterministic part of the utility (Bovy et al., 2008; Duncan et al., 2020). In the route choice 
context, we assume that an overlapping route may not be perceived as a distinct alternative, as a route may contain links shared by 
several routes. Consequently, the size of a route with one or more shared links may be less than one. Accordingly, we formulate the 
utility function for the PSL model as follows.

𝑈𝑖,𝑛,𝑡 = 𝛽𝐷𝑋
𝐷
𝑖,𝑛,𝑡 +

∑

𝑘∈𝐾𝑖𝑛𝑓

(𝛽𝑖𝑛𝑓 ,𝑘𝑋
𝑖𝑛𝑓 ,𝑘
𝑖,𝑛,𝑡 ) +

∑

𝑠∈𝑆𝐿𝑇𝑆

(𝛽𝐿𝑇𝑆,𝑠𝑋
𝐿𝑇𝑆,𝑠
𝑖,𝑛,𝑡 )

+ 𝛽𝑠𝑙𝑜𝑝𝑒𝑋
𝑠𝑙𝑜𝑝𝑒
𝑖,𝑛,𝑡 + 𝛽𝑃𝑂𝐼𝑋

𝑃𝑂𝐼
𝑖,𝑛,𝑡 + 𝛽𝑡𝑢𝑟𝑛𝑋

𝑡𝑢𝑟𝑛
𝑖,𝑛,𝑡 + 𝛽𝑃𝑆 𝑙𝑛(𝑃𝑆𝑖,𝑛,𝑡) + 𝜖𝑖,𝑛,𝑡 (7)

where 𝑖 denotes the route, 𝑡 denotes the trip, and 𝑛 the cyclist. 𝛽𝐷 denotes the route distance coefficient, and 𝑋𝐷
𝑖,𝑛,𝑡 represents the 

route distance of alternative 𝑖 for trip 𝑡 of cyclist 𝑛. 𝛽𝑖𝑛𝑓 ,𝑘 denotes the coefficient for infrastructure class 𝑘, and 𝑋𝑖𝑛𝑓 ,𝑘
𝑖,𝑛,𝑡  represents the 

Transportation Research Part A 201 (2025) 104679 

10 



T. Lilasathapornkit et al.

Fig. 4. Distribution of choice set route attributes, including the observed route: (a) Distance, (b) Proportion of arterial roads with painted bike 
lanes (%), (c) Proportion of arterial roads with mixed traffic (%), (d) Proportion of local roads with mixed traffic or sharrows (%), (e) Proportion 
of collector roads with mixed traffic (%), (f) Proportion of protected bike lanes (%), (g) Proportion of off-road bike paths (%), (h) Distance on LTS 
1 (km), (i) Distance on LTS 2 (km), (j) Distance on LTS 3 (km), (k) Distance on LTS 4 (km), (l) Maximum slope (%), (m) Number of POIs, and (n) 
Number of turns. black bar charts represent the observed route, while orange bar charts represent the generated choice set. Where the observed 
value falls within a bin already occupied by alternatives, the orange and black bars overlap, resulting in a brown appearance..
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proportion of route 𝑖 for trip 𝑡 of cyclist 𝑛 on infrastructure class 𝑘 in percentage. 𝐾𝑖𝑛𝑓  consists of six infrastructure classes: arterial 
roads with painted bike lanes, arterial roads with mixed traffic, local roads with mixed traffic or sharrows, collector roads with 
mixed traffic, protected bike lanes, and off-road bike paths. 𝛽𝐿𝑇𝑆,𝑠 denotes the coefficient for LTS level 𝑠, and 𝑋𝐿𝑇𝑆,𝑠

𝑖,𝑛,𝑡  represents the 
proportion of route 𝑖 for trip 𝑡 of cyclist 𝑛 on LTS level 𝑠 in unit of distance. 𝑆𝐿𝑇𝑆 consists of four levels described in Section 3. See 
Appendix B for a detailed discussion of how using proportion-based versus distance-based parameters influences the model estimates 
and their interpretation. 𝛽𝑠𝑙𝑜𝑝𝑒 denotes the coefficient for maximum slope, and 𝑋𝑠𝑙𝑜𝑝𝑒

𝑖,𝑛,𝑡  represents the maximum slope of route 𝑖 for trip 
𝑡 of cyclist 𝑛. 𝛽𝑃𝑂𝐼  denotes the coefficient for points of interest (POIs), and 𝑋𝑃𝑂𝐼

𝑖,𝑛,𝑡  represents the number of POIs along route 𝑖 for trip 
𝑡 of cyclist 𝑛. 𝛽𝑡𝑢𝑟𝑛 denotes the coefficient for turns, and 𝑋𝑡𝑢𝑟𝑛

𝑖,𝑛,𝑡  represents the number of turns along route 𝑖 for trip 𝑡 of cyclist 𝑛. 𝜖𝑖,𝑛,𝑡
denotes an error term with extreme-value-distributed variables for route 𝑖 in the choice set 𝐶𝑛,𝑡 associated with trip 𝑡 of cyclist 𝑛. 𝛽𝑃𝑆
denotes the path size scaling coefficient, and the overlapping path size can be defined as follows.

𝑃𝑆𝑖,𝑛,𝑡 =
∑

𝑎∈𝐴

𝑙𝑎
𝐿𝑖

1
∑

𝑗∈𝐶𝑛,𝑡
𝛿𝑎𝑗

(8)

where 𝑃𝑆𝑖,𝑛,𝑡 denotes the Path Size attribute of route 𝑖 of cyclist 𝑛 making trip 𝑡, 𝑙𝑎 denotes the length of link 𝑎, 𝐴 denotes the set of 
all links in the network, and 𝐿𝑖 is the length of route 𝑖, 𝜇 denotes a scale factor. 𝐶𝑛,𝑡 denotes the choice set associated with trip 𝑡 of 
cyclist 𝑛. 𝛿𝑎𝑗 denotes the link-path incidence dummy which equals 1 if link 𝑎 is on a route/path 𝑗 otherwise equals to 0.

The utility function is specified slightly differently for the Mixed Logit model, as follows.
𝑈𝑖,𝑛,𝑡 = −𝜆𝐷𝑋𝐷

𝑖,𝑛,𝑡 +
∑

𝑘∈𝐾𝑖𝑛𝑓

(𝜆𝑖𝑛𝑓 ,𝑘𝑋
𝑖𝑛𝑓 ,𝑘
𝑖,𝑛,𝑡 ) +

∑

𝑠∈𝑆𝐿𝑇𝑆

(𝜆𝐿𝑇𝑆,𝑠𝑋
𝐿𝑇𝑆,𝑠
𝑖,𝑛,𝑡 )

− 𝜆𝑠𝑙𝑜𝑝𝑒𝑋
𝑠𝑙𝑜𝑝𝑒
𝑖,𝑛,𝑡 − 𝜆𝑃𝑂𝐼𝑋

𝑃𝑂𝐼
𝑖,𝑛,𝑡 − 𝜆𝑡𝑢𝑟𝑛𝑋

𝑡𝑢𝑟𝑛
𝑖,𝑛,𝑡 − 𝛽𝑃𝑆 ln(𝑃𝑆𝑖,𝑛,𝑡) + 𝜖𝑖,𝑛,𝑡 (9)

𝜆𝑝 = exp(𝛽𝑝 + 𝛽𝑠𝑡𝑑𝑝 𝜂𝑝) (10)

where 𝜆𝑝 denotes a log-normally distributed scale coefficient for parameter 𝑝 to account for heterogeneity, while 𝜂𝑝 denotes a normally 
distributed random component. 𝛽𝑝 represents the coefficient for parameter 𝑝, and 𝛽𝑠𝑡𝑑𝑝  denotes the scale coefficient for the random 
component. In the Mixed Logit utility function, the signs of the 𝜆 values need to be pre-specified. This is achieved by assessing the 
signs of the coefficients estimated from the PSL model. Additionally, note that the 𝜆 values for the infrastructure class and LTS are 
presented in a summarized form in the formula for brevity. Each 𝜆, depending on the infrastructure class and LTS level, can have either 
a positive or negative sign that must be determined a prior. Note that the error components in the mixed PSL model are specified at 
the trip level to account for unobserved heterogeneity arising from trip-specific factors. We then estimate the probability of route 𝑖
being selected from a choice set as follows.

𝑃 (𝑖 ∣ 𝐶𝑛,𝑡) =
exp(𝑈𝑖,𝑛,𝑡)

∑

𝑗∈𝐶𝑛,𝑡
exp(𝑈𝑗,𝑛,𝑡)

(11)

For the Mixed PSL model, the mean (𝛽𝑝) and standard deviation (𝛽𝑠𝑡𝑑𝑝 ) of the normal distribution for parameter 𝑝 must be trans-
formed to a lognormally distributed variable 𝑋 = exp(𝑌 ). If 𝑌 ∼ 𝑁(𝜇, 𝜎), the expectation and standard deviation of the lognormal 
distribution can be expressed as follows (Limpert et al., 2001; Casella and Berger, 2002).

𝐸(𝑋) = exp
(

𝜇 + 𝜎2

2
)

(12)

𝜎2(𝑋) = exp(𝜎2 − 1) exp(2𝜇 + 𝜎2) (13)

where 𝜇 denotes the mean of the normally distributed parameter, and 𝜎 denotes its standard deviation, as defined earlier in Eq. 10. 
To clarify the distinction in the formulation between the Logit and Mixed Logit models, Eq. 11 uses the utility function from Eq. 7 
for the Logit model, while it uses the utility function from Eq. 9 for the Mixed Logit model.

5.  Model estimation results

We present the results of the estimated general PSL and Mixed PSL models based on 12,224 trips made by 646 cyclists in Ta-
ble C1. Negative coefficients represent disutility, meaning cyclists are less likely to choose routes with such attributes, while positive 
coefficients indicate higher utility and preference. To make the findings more interpretable, we translate coefficients into distance 
equivalents, reflecting how specific route attributes affect cyclists’ perceived route length, as shown in Table 6.

The PSL model highlights the strong influence of distance on route choice, as cyclists generally prefer shorter routes. However, 
the presence of cycling infrastructure can compensate for longer distances. For example, each 1% increase in the proportion of off-
road bike paths reduces the perceived distance by approximately 80m, reflecting cyclists’ strong preference for dedicated cycling 
infrastructure. Similarly, a 1% increase in protected bike lanes corresponds to a reduction of 61m in perceived distance. In contrast, 
arterial roads with painted bike lanes add disutility, with each 1% increase equivalent to increasing the route length by about 18m, 
reinforcing the finding that painted lanes on high-traffic roads do not provide adequate comfort or safety for cyclists. These results 
align with previous studies, such as Beck et al. (2023) and Meister et al. (2023), which similarly highlight the preference for separated 
infrastructure over painted lanes or shared roads. Route complexity, measured by the number of turns, significantly reduces utility. 
Each additional turn adds an equivalent of 121m to the perceived route distance, indicating that cyclists prefer more direct routes 
with fewer interruptions. This finding is consistent with Broach et al. (2012), where additional turns were also shown to increase 
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perceived effort. Gradient also plays a major role, as steep slopes are a strong deterrent. The maximum slope coefficient indicates 
that cyclists perceive uphill segments as significantly increasing route disutility, emphasizing the importance of flat or gently sloping 
routes. Routes with low traffic stress are strongly preferred. Lower stress environments, represented by Level of Traffic Stress (LTS) 1 
and 2, enhance route attractiveness, while high-stress routes (LTS 3 and 4) reduce utility. A kilometer on an LTS 1 route, for instance, 
is perceived as much shorter than one on a higher-stress route, reinforcing the value of calm and cyclist-friendly environments for 
encouraging cycling.

The results align closely with prior studies on cyclist behavior. For example, Broach et al. (2012) found that bike paths reduce 
perceived distance by approximately 16%, while Meister et al. (2023) reported that separated paths equate to a 36% reduction 
in perceived distance. Our findings were consistent with these prior studies, showing that cyclists perceive off-road bike paths and 
protected lanes as major contributors to reduced effort, while turns and steep gradients remain substantial deterrents. Similarly, Fitch 
and Handy (2020) estimated that increasing the proportion of bicycle infrastructure along a route from 0% to 30% is equivalent to 
reducing the trip distance by 20% for bicycle lanes and 22% for off-street bike paths.

The estimated coefficient for the path size term is negative, implying a positive contribution to utility and a preference for 
overlapping routes. While this may seem counterintuitive, similar findings have been reported in the literature. Frejinger and Bierlaire 
(2007) suggest that overlapping routes may offer behavioral benefits such as flexibility and the possibility of switching routes. A 
similar interpretation was proposed by Hoogendoorn-Lanser et al. (2005) in the context of multimodal route choice. The result may 
also reflect the composition of the choice set, where many observed routes share segments with other alternatives. 

A commonly used measure for evaluating the performance of discrete choice models is first-preference recovery (FPR) (Hauser, 
1978; Bass et al., 2011; Łukawska et al., 2023). FPR determines the percentage of instances where the chosen route is also the route 
with the highest modeled utility. For perfect overlap, the chosen route and the route with the highest probability should be identical, 
resulting in a 100% overlap. FPR is defined as the ratio of the probability of the chosen route to the probability of the route with the 
highest utility. The FPR is formulated as follows.

𝐹𝑃𝑅 =

∑

𝐶𝑛,𝑡∈𝑇

∑

𝑖∈𝐶𝑛,𝑡 𝑃 (𝑖|𝐶𝑛,𝑡)𝛿𝑖
max𝑖∈𝐶𝑛,𝑡 𝑃 (𝑖|𝐶𝑛,𝑡)

|𝑇 |
(14)

where 𝛿𝑖 equals 1 for the chosen route and 0 otherwise. 𝑃 (𝑖|𝐶𝑛,𝑡) denotes the probability of route 𝑖 in the choice set 𝐶𝑛,𝑡 for cyclist 
𝑛 and trip 𝑡. 𝑇  denotes all trips. The FPR value for 1223 trips from the test set is  75.24%, indicating that the estimated PSL model 
performs well. For comparison, previous studies reported FPR values of 15% (Hood et al., 2011), 21.1% (Ton et al., 2018), 88% 
(Sobhani et al., 2019), and 44.24% (Łukawska et al., 2023).

Next, we discuss the Mixed PSL model estimation results, where log-normal distributions are assumed for the scale parameters, 
incorporating random components to account for cyclists’ taste heterogeneity-that is, variation in how different individuals value 
route attributes. Unlike standard logit models that estimate a single fixed coefficient for each attribute, the Mixed PSL model estimates 
both the mean and standard deviation of each coefficient, capturing unobserved heterogeneity in preferences across the population. 
A significant standard deviation indicates that cyclists vary meaningfully in their sensitivity to that attribute.

The inclusion of these random components enhances model performance, as shown by improvements in the final log-likelihood 
and Akaike Information Criterion (AIC). While the PSL model estimates presented in Table C1 offer insights into whether cyclists 
perceive specific attributes positively or negatively on average, the coefficients estimated in the Mixed PSL model cannot be directly 
compared or interpreted in the same way. To make meaningful comparisons, the Mixed PSL model coefficients are transformed to 
the same scale as the distance equivalent. This transformation uses the mean and standard deviation of their respective distributions, 
as shown later in Table 6. By aligning coefficients to the distance scale, the model allows for the estimation of the distribution of 
the distance parameter, enabling an analysis of preference heterogeneity around the mean distance attribute. To further explore 
systematic heterogeneity, differences in preferences that can be linked to observable characteristics such as gender, age, or cycling 
confidence, we also estimate separate PSL models for each subgroup in Section 6. This two-tiered approach provides deeper insight 
into both random and structured variations in cyclists’ preferences.

Note that in the mixed PSL model, the distance term is incorporated through a fixed negative transformation, as shown in Eq. 9, 
ensuring that its effect on utility is always negative by design. This means the sign of the estimated coefficient does not reflect the 
direction of the utility impact in the same way as in the standard PSL models. While Table 5. presents coefficients from all models 
side by side for consistency, care should be taken when interpreting the sign of distance-related variables in the mixed PSL model. 
See Appendix C for a direct comparison of the General PSL and Mixed PSL model coefficients, using Eq. 12.

Overall, the Mixed Logit model estimates provide empirical evidence of taste heterogeneity among cyclists. The significance of 
several standard deviation coefficients indicates that preferences for specific attributes, such as infrastructure classes and slope, vary 
widely across individual cyclists. While the coefficients themselves cannot be directly interpreted, their significance demonstrates 
the existence of individual-level differences in how cyclists perceive and prioritize these attributes. For instance, the variation in 
preferences for bicycle infrastructure highlights that some cyclists strongly prefer or avoid certain classes of infrastructure, while 
others may have more moderate or divergent preferences. Similarly, the heterogeneity in sensitivity to slope suggests that cyclists 
exhibit different levels of tolerance to steepness. The model results do not indicate significant taste heterogeneity for distance and LTS, 
as the standard deviation coefficients for these attributes were not statistically significant. This suggests that cyclists generally exhibit 
consistent preferences for distance and LTS, with limited variation across individuals. While these attributes remain critical factors 
in route choice, the lack of significant heterogeneity implies that their influence is relatively uniform within the sampled population. 
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Table 5 
Cycling route choice model estimation results (N=11,001): General PSL and Mixed PSL models.

Attribute
 Multinomial Logit  Path Size Logit (PSL)  Mixed PSL
𝛽  t-value 𝛽  t-value 𝛽  t-value

 Distance (km) −0.16 −20.70** −1.67 −4.53**  0.15 −2.50*
 Distance stdv (km) −0.12 −1.95*
 Prop. of Arterial roads– Painted bikelane −2.77 −8.54**  1.54  14.75**
 Prop. of Arterial roads– Mixed traffic  2.07  8.73** −6.38 −9.25**
 Prop. of Local roads– Mixed traffic or sharrow  3.83  22.50**  1.21  17.90**
 Prop. of Collector roads – Mixed traffic  6.03  26.90**  1.35  17.93**
 Prop. of Protected bikelane  2.35  3.60**  0.90  5.98**
 Prop. of Off-road bike path  5.04  22.19**  1.18  12.91**
 Infrastructure stdv  1.46  18.39**
 Distance on LTS1 (km)  1.83  4.94**  0.42  141.96**
 Distance on LTS2 (km)  1.94  5.32**  0.39  161.18**
 Distance on LTS3 (km)  1.51  4.12**  0.01  94.31**
 Distance on LTS4 (km)  8e-4  2.08* −16.05 −26.31**
 LTS stdv (km)  0.01  0.23
 Max Slope (%) −1.66 −12.92**  1.32  151.35**
 Max Slope stdv (%)  2.21  30.92**
 POI (1000s) −6.83 −15.22**  1.83  13.37**
 POI stdv (1000s)  1.07  9.19**
 Turns (100s) −7.76 −34.54**  2.33  53.33**
 Turns stdv (100s) −0.80 −14.29**
 Path Size −1.65 −15.19**  3.89  20.91**
 Rho-squared-bar  0.007  0.23  0.31
 Final log-likelihood −25,429 −19,658 −17,698
 Akaike Information Criterion  50,859  39,345  35,437

Note: ** indicates significant values at the 1% level (** p < 0.01). * indicates significant values at the 10% level 
(* p < 0.1).

However, the observed taste heterogeneity for other attributes highlights the importance of considering individual differences when 
analyzing route choice behavior, as further explored through exogenous segmentation models described in the next section.

6.  Exogenous segmentation models

In this section, we explore heterogeneity in cyclist preferences by estimating exogenous models across subgroups defined by 
gender, age group, Geller typology, and bicycle type (traditional vs. e-bike). Key factors such as maximum slope, number of turns, 
and types of cycling infrastructure often have varying impacts across these groups, while Level of Traffic Stress (LTS) shows relatively 
marginal effects, consistent with the results from the general Mixed PSL model.

To enable direct comparison of model coefficients across groups, we present distance equivalence values in Table 6 (and illustrated 
later in Fig. 6). These values represent the amount of route length (in meters) required for a given attribute to have the same utility 
impact as one meter of travel distance in the general model. Positive values indicate stronger preference for the attribute within the 
subgroup, while negative values suggest a tendency to avoid it.

The values and standard deviations reported in the Mixed PSL model demonstrate substantial heterogeneity in cyclists’ sensitivity 
to route attributes. For instance, the coefficient for off-road bike paths is -80 (significant at the 1% level), indicating a strong overall 
preference, while the associated standard deviation of +65 suggests wide variability across user groups. Table 6 expresses these 
effects in terms of equivalent distance: for female cyclists, a 1% increase in the proportion of off-road paths is valued similarly to a 
17-meter reduction in route length. For male cyclists, the equivalent is even greater (31m) indicating stronger preference for off-road 
infrastructure.

6.1.  Gender

We first examine the effect of gender by segmenting the sampled population into men (67%) and women (33%) subgroups, as 
illustrated in Fig. 5(a). The estimated PSL models for both groups are summarized in Table 7, with the equivalent distances provided 
in Table 6 and illustrated in Fig. 6(a).

The analysis highlights several gender differences in route preferences among cyclists. Women cyclists exhibit greater avoidance 
of arterial roads with painted bike lanes (+18m) compared to men cyclists (+10m), suggesting differing levels of comfort with 
this type of infrastructure. Local roads in mixed traffic or sharrows are preferred by both genders, with women showing a weaker 
preference (-15m) compared to men (-25m). Similarly, both women (-21m) and men (-41m) show a preference for collector roads 
in mixed traffic, with men demonstrating a stronger preference.

Protected bike lanes are preferred by both genders, with men exhibiting a stronger preference (-20m) compared to women (-3m). 
Off-road bike paths are also preferred by both groups, though men’s preference is greater (-31m) than women’s (-17m). Both genders 
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Fig. 5. Demographic segmentation across 646 participating cyclists based on (a) Gender (b) Age group (c) Geller typology (d) Bicycle type.

show a consistent preference for low-stress environments (LTS-1 and LTS-2) and avoidance of high-stress environments (LTS-4), with 
women demonstrating slightly stronger avoidance of LTS-4 routes compared to men.

In terms of route characteristics, men exhibit higher sensitivity to routes with a greater number of turns (+56m) compared to 
women (+23m). Women also show greater avoidance of steep slopes (+12.2m) compared to men (+6.8m). Both genders exhibit 
similar avoidance of routes with a higher density of POIs, with women reporting +3.1m and men +3.3m.

6.2.  Age groups

We next explore the effect of age by segmenting the sampled population into three age groups: 18–34 years old (19%), 35–54 
years old (52%), and 55+ years old (29%) as shown in Fig. 5(b). The estimated PSL models for the three population segments are 
shown in Table 8, and the equivalent to distance measurements are shown in Table 6 and illustrated in Fig. 6(b).

The analysis reveals distinct route preferences across age groups, with significant variations in how cyclists respond to distance, 
slope, and infrastructure characteristics. For the youngest group (18-34 years), the distance attribute was found to be positive but not 
statistically significant. In contrast, both the middle-aged (35-54 years) and older (55+ years) groups show significant sensitivity to 
distance, indicating a stronger preference for shorter, more direct routes.

Sensitivity to slopes shows a counter-intuitive pattern. The middle-aged group exhibits greater avoidance of slopes (+9.2m) 
compared to the older group (+4.4m). This suggests differences in how these groups navigate sloped routes, with middle-aged 
cyclists showing a stronger aversion to steep inclines.

Avoidance of arterial roads with painted bike lanes decreases with age. Younger cyclists (18-34 years) show the highest avoidance 
(+17m), followed by the middle-aged group (+15m) and the older group (+5m). For protected bike lanes, middle-aged cyclists 
show a clear preference (−14m), while older cyclists exhibit a non-significant positive response (+9m).

Off-road bike paths are strongly preferred by both the middle-aged (−24m) and older (-20m) groups, with the middle-aged 
group showing a slightly stronger preference. For routes with a higher number of POIs, middle-aged cyclists (+3.3m) exhibit higher 
sensitivity compared to the older group (+2.7m). Both groups show an aversion to routes with frequent turns, with older cyclists 
showing greater sensitivity (+36m) compared to the middle-aged group (+29m).
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Table 6 
Comparison of the equivalent distance metrics [m] estimated from the PSL route choice models across different sub-groups by gender, age group, 
Geller typology, and bicycle type, against the equivalent distance metrics estimated from the general Mixed PSL model.
Variable (unit)  General  Gender  Age groups  Geller Typology  Bicycle Type

 (Mixed PSL)  Male  Female  35–54  55+  Enthused. OR Strong.  Inter. concerned  Traditional  E-bike
Distance mean (m)  +1*  +1**  +1**  +1**  +1**  +1**  +1**  +1**  +1**
Distance stdv (m)  +0.12*
Prop. of Arterial roads– 
Painted bikelane

 +115  +10**  +18**  +15**  +5**  +4*  +20**  +17**  +5**

Prop. of Arterial roads– 
Mixed traffic

 0** −20** −4** −7** −12** −2 −16** −13** −2**

Prop. of Local roads– 
Mixed traffic or sharrow

−83** −25** −15** −18** −18** −8** −28** −25** −4**

Prop. of Collector roads – 
Mixed traffic

−96** −41** −21** −27** −23** −18** −41** −39** −7**

Prop. of Protected 
bikelane

−61** −20** −3* −14**  +9  +18* −21** −14**  0

Prop. of Off-road bike 
path

−80** −31** −17** −24** −20** −5** −38** −33** −4**

Infrastructure stdv  +65
Distance on LTS 1 (m) −1.3** −1.1** −1.1** −1.0** −1.1** −1.1** −1.1** −1.1** −1.1**
Distance on LTS 2 (m) −1.3** −1.2** −1.1** −1.1** −1.2** −1.1** −1.2** −1.2** −1.0**
Distance on LTS 3 (m) −0.9** −0.9** −1.0** −1.0** −0.9** −0.9** −0.9** −0.9** −1.0**
Distance on LTS 4 (m)  0**  0*  0  0**  0*  0**  0  0*  0**
Distance on LTS stdv  0
Max Slope mean (1000 s 
of %)

 +37**  +6.8**  +12.2**  +9.2**  +4.4**  +7.4**  +10.6**  +10.3**  +2.8**

Max Slope std (1000 s of 
%)

 +420**

POI mean (#)  +9.4**  +3.3**  +3.1**  +3.3**  +2.7**  +1.2**  +5.1**  +4.9** −0.1**
POI stdv (#)  +13.7**
Turns mean (#)  +121**  +56**  +23**  +29**  +36**  +21**  +53**  +52**  +8**
Turns stdv (#)  +114**

Note: ** indicates significant values at the 1% level (** p < 0.01). * indicates significant values at the 10% level (* p < 0.1).

6.3.  Geller typology

We further explore cyclists’ behavior inspired by Geller’s typology by dividing the sampled population into different groups, as 
shown in Fig. 5(c). Due to sample size limitations, we were only able to classify cyclists into two groups: “Enthused and Confident” 
or “Strong and Fearless”, and “Interested but Concerned”. The estimated PSL models for both groups are presented in Table 9, and 
the equivalent distance metrics are shown in Table 6 and illustrated in Fig. 6(c).

The analysis reveals clear differences in route preferences between the Interested but Concerned group and the Enthused and 
Confident or Strong and Fearless group. The Interested but Concerned cyclists show a strong preference for off-road bike paths (-
38m) and protected bike lanes (-21m), indicating high value placed on physically separated infrastructure. In contrast, the Enthused 
and Confident or Strong and Fearless cyclists exhibit a weaker preference for off-road bike paths (-5m) and even avoidance of 
protected bike lanes (+18m). This reversal in sign underscores a fundamental difference in how infrastructure is perceived among 
different cyclists. While more cautious riders seek the comfort and safety of segregation, more confident cyclists may view protected 
lanes as limiting their speed or route flexibility.

Sensitivity to slopes differs between the groups. The Interested but Concerned group shows higher sensitivity to slopes (+10.6m) 
compared to the Enthused and Confident or Strong and Fearless group (+7.4m). Similarly, the Interested but Concerned group 
demonstrates greater sensitivity to turns (+53m) than the Enthused and Confident or Strong and Fearless group (+21m).

Routes with higher numbers of POIs also reveal differing preferences. The Enthused and Confident or Strong and Fearless cyclists 
exhibit stronger avoidance of POI-dense areas (+5.1m) compared to the Interested but Concerned group (+1.2m).

Overall, the Interested but Concerned group exhibits stronger preferences for segregated infrastructure and lower complexity in 
routes, while the Enthused and Confident or Strong and Fearless group shows more tolerance for challenging conditions and less 
reliance on dedicated cycling facilities.

6.4.  Electric bicycle

In this section, we further explore the behaviour of cyclists by segmenting the sampled population into traditional bike riders 
(90%) and e-bike riders (10%) as shown in Fig. 5(d). The estimated PSL models for both groups are summarized in Table 10 and the 
equivalent to distance measurements are shown in Table 6 and illustrated in Fig. 6(d).

The analysis reveals clear differences in sensitivity to route characteristics between traditional bike riders and e-bike riders. 
Traditional bike riders exhibit significantly higher sensitivity to steep slopes (+10.3m) compared to e-bike riders (+2.8m). Similarly, 
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Fig. 6. Visual comparison of the equivalent distance metrics [m] based on (a) Gender, (b) Age group, (c) Geller typology, and (d) Bicycle type. 
Negative values indicate a reduction in perceived route distance, while positive values indicate an increase in perceived route distance.

traditional bike riders are more affected by frequent turns (+52m) than e-bike riders (+8m). Routes with a higher density of POIs 
also show greater avoidance among traditional bike riders (+4.9m), whereas e-bike riders exhibit minimal sensitivity to these areas 
(−0.1m).
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Table 7 
Cycling route choice PSL model estimation results: Exogenous segmentation by gender.

Attribute
 Male  Female
𝛽  t-value 𝛽  t-value

 Distance (km) −1.53 −3.48** −2.75 −2.93**
 Prop. of Arterial roads- Painted bikelane −1.60 −3.86** −4.97 −9.38**
 Prop. of Arterial roads- Mixed traffic  3.00  10.48**  1.01  2.20*
 Prop. of Local roads- Mixed traffic or sharrow  3.77  17.24**  4.24  15.31**
 Prop. of Collector roads - Mixed traffic  6.29  22.53**  5.80  14.92**
 Prop. of Protected bikelane  3.03  3.25**  0.92  0.92
 Prop. of Off-road bike path  4.78  17.00**  4.76  11.09**
 Distance on LTS 1 (km)  1.72  3.89**  3.10  3.25**
 Distance on LTS 2 (km)  1.78  4.07**  3.08  3.28**
 Distance on LTS 3 (km)  1.37  3.12**  2.63  2.81**
 Distance on LTS 4 (km)  0.0  1.49  0.0  1.71
 Max Slope (%) −1.04 −8.76** −3.36 −10.93**
 POI (#) −5.04 −9.92** −8.50 −10.08**
 Turns (#) −8.62 −29.65** −6.25 −16.78**
 Path Size −1.56 −11.91** −2.21 −10.74**

 Rho-squared-bar  0.217  0.293
 Final log-likelihood −12,400 −6,613
 Akaike Information Criterion  24,829  13,257
 Number of trips  6,861  3,980

Note: ** indicates significant values at the 1% level (** p < 0.01). * indicates significant values 
at the 10% level (* p < 0.1).

Table 8 
Cycling route choice PSL model estimation results: Exogenous segmentation by age.

Attribute
 18–34 years old  35–54 years old  55+ years old
𝛽  t-value 𝛽  t-value 𝛽  t-value

 Distance (km)  0.33  0.48 −2.20 −4.83** −2.85 −2.93**
 Prop. of Arterial roads- Painted bikelane −3.58 −4.27** −3.21 −7.73** −1.34 −1.96**
 Prop. of Arterial roads- Mixed traffic  1.91  3.78**  1.50  4.39**  3.42  7.48**
 Prop. of Local roads- Mixed traffic or sharrow  1.30  3.46**  3.92  16.79**  5.11  14.67**
 Prop. of Collector roads - Mixed traffic  5.79  11.33**  5.92  19.21**  6.59  14.97**
 Prop. of Protected bikelane  2.99  2.61**  3.07  3.66** −2.66 −1.92*
 Prop. of Off-road bike path  2.98  5.54**  5.24  16.51**  5.81  13.86**
 Distance on LTS 1 (km) −0.19 −0.29  2.28  4.95**  3.20  3.27**
 Distance on LTS 2 (km) −0.29 −0.44  2.43  5.35**  3.40  3.48**
 Distance on LTS 3 (km) −0.57 −0.83  2.11  4.64**  2.62  2.71**
 Distance on LTS 4 (km)  0.0 −2.18*  0.0  2.93**  0.0  2.02*
 Max Slope (%) −1.54 −4.63** −2.03 −9.27** −1.25 −8.58**
 POI (1000 s of #) −5.99 −6.77** −7.16 −12.29** −7.70 −6.03**
 Turns (100 s of #) −8.27 −14.43** −6.48 −22.49** −10.12 −21.20**
 Path Size −1.95 −7.30** −1.78 −11.88** −1.56 −7.95**

 Rho-squared-bar  0.217  0.221  0.283
 Final log-likelihood −3,325 −10,748 −5,392
 Akaike Information Criterion  6,680  21,526  10,814
 Number of trips  1,823  5,921  3,257

Note: ** indicates significant values at the 1% level (** p < 0.01). * indicates significant values at the 10% 
level (* p < 0.1).

In terms of infrastructure preferences, distinct differences emerge between e-bike and traditional bike riders, reflecting their 
varying dependencies on route characteristics and infrastructure quality. Traditional bike riders display a stronger preference for 
off-road bike paths (−33m) compared to e-bike riders (−4m), highlighting the greater reliance of traditional bike riders on dedicated 
cycling infrastructure for comfort and safety.

Traditional bike riders also exhibit a clear preference for protected bike lanes (−14m), whereas e-bike riders demonstrate no 
statistically significant preference for this type of infrastructure.

Both groups strongly avoid arterial roads with painted bike lanes, though traditional bike riders show a higher sensitivity (+17m) 
compared to e-bike riders (+5m). This shared aversion highlights the inadequacy of painted bike lanes on high-traffic roads in 
providing sufficient safety and comfort for cyclists.

For local roads with mixed traffic or sharrows, traditional bike riders perceive a stronger benefit (−25m) compared to e-bike riders 
(−4m). Similarly, collector roads with mixed traffic are associated with a greater perceived reduction in distance for traditional bike 

Transportation Research Part A 201 (2025) 104679 

18 



T. Lilasathapornkit et al.

Table 9 
Cycling route choice PSL model estimation results: Exogenous segmentation by Geller typology.

Attribute

Enthused and confident
OR strong and fearless

Interested
but concerned

𝛽  t-value 𝛽  t-value
 Distance (km) −3.22 −3.33** −1.48 −3.85**
 Prop. of Arterial roads- Painted bikelane −1.41 −1.92* −2.94 −8.12**
 Prop. of Arterial roads- Mixed traffic  0.55  1.06  2.43  9.02**
 Prop. of Local roads- Mixed traffic or sharrow  2.68  6.72**  4.10  21.60**
 Prop. of Collector roads - Mixed traffic  5.90  11.27**  6.10  24.54**
 Prop. of Protected bikelane −5.93 −2.12*  3.12  4.61**
 Prop. of Off-road bike path  1.67  3.02**  5.65  22.35**
 Distance on LTS 1 (km)  3.55  3.63**  1.61  4.16**
 Distance on LTS 2 (km)  3.48  3.63**  1.75  4.58**
 Distance on LTS 3 (km)  2.87  3.00**  1.35  3.53**
 Distance on LTS 4 (km)  0.0  2.77**  0.0  1.27
 Max Slope (%) −2.38 −5.46** −1.57 −11.87**
 POI (1000 s of #) −3.95 −4.08** −7.53 −14.62**
 Turns (100 s of #) −6.83 −12.03* −7.85 −32.02**
 Path Size −2.07 −7.45** −1.57 −13.21**

 Rho-squared-bar  0.200  0.242
 Final log-likelihood −3,372 −16,160
 Akaike Information Criterion  6,775  32,349
 Number of trips  1,840  9,154

Note: ** indicates significant values at the 1% level (** p < 0.01). * indicates significant values at 
the 10% level (* p < 0.1).

Table 10 
Cycling route choice PSL model estimation results: Exogenous segmentation by bicycle type.

Attribute
 Traditional bike  Electric bike
𝛽  t-value 𝛽  t-value

 Distance (km) −1.50 −4.03** −10.86 −4.43**
 Prop. of Arterial roads- Painted bikelane −2.62 −7.74** −5.51 −4.34**
 Prop. of Arterial roads- Mixed traffic  2.02  8.09**  2.00  2.55**
 Prop. of Local roads- Mixed traffic or sharrow  3.70  20.52**  4.82  9.20**
 Prop. of Collector roads - Mixed traffic  5.88  24.88**  7.15  9.83**
 Prop. of Protected bikelane  2.17  3.10** −0.25 −0.13
 Prop. of Off-road bike path  4.94  20.99**  4.65  4.82**
 Distance on LTS 1 (km)  1.65  4.40**  11.55  4.55**
 Distance on LTS 2 (km)  1.78  4.80**  11.25  4.58**
 Distance on LTS 3 (km)  1.35  3.64**  10.60  4.36**
 Distance on LTS 4 (km)  0.0  1.62  0.01  4.16**
 Max Slope (%) −1.54 −11.95** −3.03 −5.80**
 POI (1000 s of #) −7.36 −15.50**  1.06  0.72
 Turns (100 s of #) −7.73 −33.02** −8.55 −10.56**
 Path Size −1.70 −15.06** −1.86 −4.37**

 Rho-squared-bar  0.225  0.318
 Final log-likelihood −18,042 −1,543
 Akaike Information Criterion  36,114  3,117
 Number of trips  10,023  978

Note: ** indicates significant values at the 1% level (** p < 0.01). * indicates significant values 
at the 10% level (* p < 0.1).

riders (−39m) compared to e-bike riders (−7m). These results indicate that while both groups value lower-stress mixed-traffic roads, 
traditional bike riders derive substantially greater utility from these environments.

7.  Discussion

This study offers critical empirical insights into the factors influencing cyclists’ route choices, revealing both expected patterns 
and new dynamics across gender, age, Geller typology, and bike types. The study provides evidence for the existence of significant 
taste heterogeneity in cycling route choice preferences. These findings have important implications for sustainable urban planning, 
particularly in designing infrastructure that caters to the diverse needs of cyclists and encourages greater uptake. A key finding is 
that perceptions of safety, as reflected in infrastructure choices, play a significant role in shaping cyclists’ behavior.
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The study reveals that arterial roads with painted bike lanes are more strongly avoided by cyclists than arterial roads with 
mixed traffic, a finding that may seem counterintuitive but likely reflects concerns over safety consistent with a few past studies in 
the literature (Beck et al., 2016, 2019). Painted lanes, while technically designated as cycling infrastructure, do not offer physical 
separation and often place riders close to fast-moving vehicles. As a result, cyclists may avoid these segments more than arterial roads 
with no marked infrastructure, which may be more prevalent or offer greater continuity. The preference for local roads with mixed 
traffic or sharrows further underscores the value cyclists place on lower-traffic environments over infrastructure that offers little or 
no perceived protection.

An interesting observation emerging from the analysis is that infrastructure-related attributes exhibit substantial heterogeneity 
across user groups, as seen in the high standard deviations in the Mixed PSL model. In contrast, LTS attributes show comparatively 
little variation in preference. This suggests that cyclists respond more strongly to specific physical design elements (e.g., protected 
vs. painted lanes) than to generalized stress levels, emphasizing the importance of visible, high-quality infrastructure in shaping 
behavior.

7.1.  Gender-based route preferences

Building on the results presented in Section 6.1, we interpret gendered route preferences through the lens of safety perception, 
physical exertion, and infrastructure availability. Women’s stronger avoidance of painted bike lanes, for instance, aligns with previous 
studies suggesting heightened sensitivity to traffic proximity and concerns about inadequate protection (Aldred et al., 2017; Pearson 
et al., 2023).

While both genders show a preference for protected bike lanes and off-road paths, men exhibit a stronger preference for these 
facilities. At first glance, this may seem counter-intuitive, but it could reflect differences in route planning strategies. For instance, 
men may be more willing to detour from the shortest path to access higher-quality infrastructure, or may have greater flexibility in 
destination or time constraints. On the other hand, women’s weaker preferences could be shaped by the availability and connectivity 
of these facilities. If off-road paths or protected bike lanes do not connect to commonly accessed destinations, their practical value, 
and thus their influence on route choice, may be limited.

Gender differences also emerge in sensitivity to slope and route complexity. Women demonstrate stronger avoidance of steep 
slopes, likely reflecting a greater emphasis on comfort and accessibility. Interestingly, men are more sensitive to the number of turns, 
suggesting a preference for more direct and efficient routes, while women may prioritize other aspects such as perceived safety, even 
if it means navigating a less direct path (Aldred et al., 2017).

Although both groups tend to avoid routes with high POI densities, the small difference in sensitivity may reflect slightly different 
route priorities, efficiency for men and safety or predictability for women (Pearson et al., 2023). These differences suggest that gender 
plays a meaningful role in shaping how cyclists weigh trade-offs between comfort, safety, directness, and infrastructure availability.

7.2.  Age-based route preferences

Age-related differences in route preferences, as presented in Section 6.2, suggest the influence of physical capacity, infrastructure 
familiarity, and safety perceptions. While younger cyclists may prioritize flexibility and exploration, older cyclists tend to prefer 
routes with fewer turns and lower gradients, reflecting concerns over exertion and stability. Results suggest that infrastructure design 
that minimizes physical demands is particularly important for aging populations.

Younger cyclists show limited sensitivity to distance and slope, suggesting that physical demands and route directness may be 
less critical for this group. This could reflect a greater physical capacity or a more recreational or exploratory cycling pattern. In 
contrast, middle-aged and older cyclists demonstrate stronger preferences for shorter, flatter, and more direct routes, highlighting 
the importance of minimizing physical strain in supporting cycling uptake among these groups. Interestingly, middle-aged cyclists 
exhibit stronger slope aversion than older cyclists, despite having greater physical capacity. This may reflect different motivations-
middle-aged individuals may cycle for mixed utilitarian purposes (e.g., mixing commuting and recreation), placing higher value on 
energy efficiency and convenience, while older cyclists may prioritize other factors such as safety or familiarity, even if routes are 
not physically optimal.

Differences in infrastructure preferences also emerge. Middle-aged cyclists show a clear preference for protected bike lanes, while 
older cyclists do not respond significantly to this feature. This could indicate that older riders tend to avoid high-traffic routes 
altogether rather than rely on infrastructure for protection. Both groups show strong preferences for off-road bike paths, reinforcing 
the importance of safe, low-traffic environments for older populations.

Reactions to POI-dense areas also vary slightly. Middle-aged cyclists tend to avoid these routes more, possibly to maintain unin-
terrupted movement or reduce interaction with pedestrians. Older cyclists appear more tolerant of such environments, which may 
offer familiarity, access to amenities, or perceived safety due to slower surrounding traffic.

Finally, both middle-aged and older cyclists avoid routes with frequent turns, though older cyclists show greater sensitivity. This 
likely reflects physical and cognitive effort required to navigate complex routes, emphasizing the value of direct, low-turn designs in 
infrastructure aimed at aging populations.
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7.3.  Route preferences based on cyclist comfort and confidence

The Geller typology results, as presented in Section 6.3, reinforce the role of cyclist confidence in shaping infrastructure prefer-
ences. “Interested but Concerned” riders tend to avoid complex or unprotected environments and seek clearly delineated infrastruc-
ture. In contrast, “Enthused and Confident” or “Strong and Fearless” cyclists show a greater tolerance for risk, often prioritizing speed 
and directness over physical separation.

These behavioural differences reflect broader trends noted in earlier studies (Pearson et al., 2022; Dill and McNeil, 2013; Hosford 
et al., 2020), which show that Interested but Concerned cyclists are more cautious and require infrastructure that minimizes perceived 
risk. Their preference for off-road paths and protected bike lanes, as well as their higher sensitivity to slopes and route complexity, 
suggests a need for environments that feel safe and predictable.

In contrast, confident cyclists appear less reliant on segregated infrastructure and more accepting of challenging conditions. Their 
avoidance of protected bike lanes and POI-dense areas may reflect a desire to maintain higher speeds and avoid disruptions. These 
findings support the idea that some forms of infrastructure, while intended to improve safety, may be perceived as constraining by 
more experienced riders. This contrast highlights the importance of inclusive infrastructure planning. Designing networks that provide 
both safe, low-stress routes and flexible, direct connections is key to accommodating the needs of a diverse cycling population.

7.4.  Route preferences for traditional bike versus e-bikes

Comparing traditional and e-bike users highlights how motor assistance influences infrastructure reliance and physical sensitivity. 
As shown in Section 6.4, traditional cyclists are more affected by features such as steep slopes, frequent turns, and high POI density, 
reflecting the greater physical demands of non-motorized cycling. Without motor support, interruptions and inclines present greater 
effort and can act as deterrents.

E-bike riders, on the other hand, navigate a broader range of environments with greater ease, likely due to smoother acceleration, 
reduced fatigue, and the ability to maintain consistent speed in more complex conditions. This helps explain their lower sensitivity 
to route complexity and reduced reliance on segregated infrastructure. These distinctions have implications for infrastructure design. 
While both groups benefit from safe, connected cycling networks, traditional bike riders rely more critically on physically separated 
or low-stress environments for comfort and usability.

Some of these differences should be interpreted with caution. The relatively small sample size of e-bike users may limit the general-
izability of these findings. Furthermore, if e-bike riders disproportionately travel in areas with limited or disconnected infrastructure, 
their observed behavior may reflect contextual constraints rather than inherent preferences. Future work should investigate the role 
of spatial infrastructure distribution in shaping route choice and validate these findings across more diverse populations.

8.  Conclusion

This study provides a comprehensive analysis of cyclist route choice behavior, utilizing large-scale RP data from Melbourne to 
explore taste heterogeneity through PSL and mixed PSL models and segmentation analyses across various demographic and typological 
groups. By integrating detailed route characteristics and cyclist attributes, the study sheds light on how infrastructure and route 
features influence decisions, offering critical insights into the diverse preferences of urban cyclists.

The results show a strong and significant presence of taste heterogeneity, and the segmentation analysis reveals some of these 
differences. A major finding is the consistent preference for segregated infrastructure, such as protected bike lanes and off-road paths, 
across all cyclist groups. While the level of reliance on such infrastructure varies, these facilities consistently emerge as critical for 
promoting safety, comfort, and accessibility. Women, older cyclists, and the “Interested but Concerned” group exhibit particularly 
strong preferences for segregated infrastructure, emphasizing its role in encouraging cycling participation among risk-averse groups. 
In contrast, confident cyclists and e-bike riders display greater adaptability, prioritizing route efficiency over infrastructure quality.

The implications for policy and planning underscore the need for inclusive infrastructure design that accommodates diverse user 
groups. Expanding the network of protected bike lanes and off-road paths can address the safety concerns of risk-averse cyclists, while 
also supporting confident cyclists through direct routes.

Despite the consistent findings, this study has some limitations. The small sample size of e-bike riders and the under-representation 
of certain groups constrain the generalizability of some results. Additionally, the availability of infrastructure in the RP data can limit 
the accuracy of the route choice models in capturing some of the true preferences. For example, suppose certain groups, such as female 
riders, predominantly travel in areas with limited separated bike infrastructure. In that case, their preferences may be underestimated 
due to the lack of exposure to those options in the RP data. Future research should address these gaps by expanding the data, 
incorporating dynamic factors like traffic interactions, and integrating contextual data such as trip purposes or local infrastructure 
quality. Conducting a combined revealed preference and stated preference analysis could offer valuable insights into the preferences 
of groups not represented in RP data, such as people not currently riding, and help evaluate potential responses to infrastructure 
variations. Longitudinal studies examining how cyclists’ preferences evolve with infrastructure changes would provide deeper insights 
into the effectiveness of investments and behavioral shifts over time. This approach could help refine infrastructure planning and 
support the role of cycling as a sustainable and equitable mode of transportation in urban networks.

Our findings also draw attention to the influence of model specification choices. Whether route attributes are expressed in absolute 
terms (e.g., distance) or relative measures (e.g., proportions) can alter the strength and even the direction of parameter estimates. 
See Appendix B, Tables B.1 and B.2. This sensitivity points to complex interdependencies between route features, suggesting that 
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preferences cannot always be cleanly separated across alternative formulations. Exploring these dynamics in greater depth represents 
an important direction for future research.
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Appendix A.  Sensitivity analysis of distance difference threshold

This section presents the results of a sensitivity analysis conducted to support the empirical derivation of the criteria used to retain 
utilitarian trips in the model. The analysis aimed to identify distance difference (𝐷𝐷𝑛) thresholds that preserve a large portion of the 
dataset while ensuring the model’s behavior remains consistent with theoretical expectations, specifically, that the estimated distance 
coefficient (𝛽𝐷) remains negative, reflecting a preference for shorter routes.

Table A.1 shows model estimation results across different values of 𝐷𝐷𝑛. When 𝐷𝐷𝑛 exceeds 1.2, 𝛽𝐷 becomes positive, indicating 
an implausible preference for longer routes. Based on this, a threshold below 1.2 was selected to ensure realistic model outcomes and 
retain the behavioural validity of the utility function.

Table A.1 
Logit model outputs for different distance difference thresholds applied during trip filtering.

Variable
𝐷𝐷𝑛 = 0.7 𝐷𝐷𝑛 = 1.0 𝐷𝐷𝑛 = 1.2 𝐷𝐷𝑛 = 1.4

𝛽  p-value 𝛽  p-value 𝛽  p-value 𝛽  p-value
 Distance (km) −7.48  0 −0.053  0  0.045  0  0.150  0
 Infrastructure𝑎  0.129  0.11  0.188  0  0.112  0  0.090  0
 Speed limit𝑏 (km/h)  6E−4  0.97 −0.032  0 −0.061  0 −0.066  0
 AADT  1.9E-4  0.003 −5E-5  6E-5 −1.4E-4  0 −1.5E-4  0
 POI (#/m) −19.8  0.07  0.814  0.68  0.12  0.94 −1.344  0.35
 Final Log Likelihood −331 −10,612 −18,771 −20,881
 Akaike Information Criterion  672  21,236  37,553  41,773
 Number of trips  450  6,511  11,446  12,899

a Infrastructure was classified into nine ordinal categories based on facility quality, with higher values representing 
better infrastructure (e.g., protected bike lanes, off-road paths), and lower values representing minimal or no 
cycling facilities (e.g., mixed traffic).
b Average speed limit for motor vehicles along the route.
Note: Assumes 𝐿𝑛 = 30 km and 𝐷𝐹𝑡 = 3.

Appendix B.  Comparison between proportion and distance-based variables

This section presents a comparison between models using proportion-based and distance-based route variables. While proportion-
based specifications allow relative comparisons along the route (e.g., percentage of a specific facility), they result in utility coefficients 
with mixed units (e.g., 1% increase = X meters). In contrast, distance-based specifications yield coefficients with consistent units 
and potentially more interpretable marginal effects.
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Table B.1 
Logit model estimates comparing proportion-based and distance-based representations of 
LTS.

Variable
 LTS Dist. only  Dist. + LTS Dist.  Dist. + LTS Prop.
𝛽  p-value 𝛽  p-value 𝛽  p-value

 Distance (km) −2.33  0 −0.4  0
 Distance of LTS1 (km) −0.26  0  2.08  3.1E-15
 Distance of LTS2 (km) −0.56  0  1.77  1.1E-11
 Distance of LTS3 (km) −0.79  0  1.53  4.5E-09
 Distance of LTS4 (km) −1.07  0  1.26  0
 Prop. of LTS1  3.55  0.22
 Prop. of LTS2  0.69  0.81
 Prop. of LTS3 −0.06  0.98
 Prop. of LTS4 −2.24  0.44
 Final Log Likelihood −26,015 −25,973 −25,469
 Akaike Information Criterion  52,038  51,956  52,948
 Number of trips  12,224  12,224  12,224

Table B.2 
Logit model estimates comparing proportion-based and distance-based representations of cycling infrastructure.

Variable
 Dist. Infra. only  Dist. + Dist. Infra  Dist. + Prop. Infra
𝛽  p-value 𝛽  p-value 𝛽  p-value

 Distance (km) −1.09  0.09 −0.3  0
 Distance of Arterial roads - Painted bikelane (km) −1.3  0 −0.21  0.75
 Distance of Arterial roads - Mixed traffic (km) −1.12  0 −0.04  0.95
 Distance of Other (km) −1  0  0.09  0.89
 Distance of Collector roads - Painted bikelane (km) −0.91  0  0.18  0.78
 Distance of Local road - Painted bikelane (km) −0.98  0  0.11  0.86
 Distance of Local roads - Mixed traffic or sharrow (km) −0.11  0  0.98  0.12
 Distance of Collector roads - Mixed traffic (km)  0.31  0  0.78  0.22
 Distance of Protected bikelane (km)  0.27  0  1.36  0.03
 Distance of Off-road bike path (km) −0.13  0  0.96  0.13
 Prop. of Arterial roads - Painted bikelane −4.37  9.4E-06
 Prop. of Arterial roads - Mixed traffic −2.77  0.01
 Prop. of Other −2.29  0.05
 Prop. of Collector roads - Painted bikelane −1.7  0.12
 Prop. of Local road - Painted bikelane −0.72  0.52
 Prop. of Local roads - Mixed traffic or sharrow  1.88  0.09
 Prop. of Collector roads - Mixed traffic  2.41  0.03
 Prop. of Protected bikelane  3.76  2.1E-03
 Prop. of Off-road bike path  3.8  5.4E-04
 Final Log Likelihood −24,791 −24,791 −25,459
 Akaike Information Criterion  49,601  49,602  50,938
 Number of trips  12,224  12,224  12,224

Table B.1 compares model results for different representations of Level of Traffic Stress (LTS) variables. The model using propor-
tions of LTS types yielded statistically insignificant coefficients, whereas the model with LTS distances performed better. Table B.2 
compares model results for bicycle infrastructure types. In this case, the model using distance variables produced mostly insignificant 
coefficients, while the model with proportion variables performed better in terms of statistical significance and interpretability. 

Appendix C.  Direct comparison of PSL versus Mixed PSL

Table C1 below shows a direct comparison of parameters from PSL and mixed PSL using Eq. 12.
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Table C1 
Cycling route choice model estimation results (N=11,001): Direct comparison between the General PSL and Mixed PSL 
models.

Attribute
 Path Size Logit  Mixed Logit
𝛽  t-value 𝛽  t-value 𝑒𝑥𝑝(𝛽𝑝 + 0.5(𝛽𝑠𝑡𝑑𝑝 )2)  sign

 Distance (km) −1.67 −4.53**  0.15 −2.509* −1.17  negative
 Distance st.dev (1000s) −0.12 −1.95*
 Prop. of Arterial roads- Painted bikelane −2.77 −8.54**  1.54  14.75** −13.54  negative
 Prop. of Arterial roads- Mixed traffic  2.07  8.73** −6.38 −9.25**  0.00  positive
 Prop. of Local roads- Mixed traffic or sharrow  3.83  22.50**  1.21  17.90**  9.74  positive
 Prop. of Collector roads - Mixed traffic  6.03  26.90**  1.35  17.93**  11.20  positive
 Prop. of Protected bikelane  2.35  3.60**  0.90  5.98**  7.14  positive
 Prop. of Off-road bike path  5.04  22.19**  1.18  12.91**  9.45  positive
 Infrastructure st.dev  1.46  18.39**
 Distance on LTS1 (km)  1.83  4.94**  0.42  141.96**  1.52  positive
 Distance on LTS2 (km)  1.94  5.32**  0.39  161.18**  1.48  positive
 Distance on LTS3 (km)  1.51  4.12**  0.01  94.31**  1.01  positive
 Distance on LTS4 (km)  8e-4  2.08* −16.05 −26.31**  0.00  positive
 LTS st.dev (1000s)  0.01  0.23
 Max Slope (%) −1.66 −12.92**  1.32  151.35** −43.04  negative
 Max Slope st.dev  2.21  30.92**
 POI (1000s) −6.83 −15.22**  1.83  13.37** −11.05  negative
 POI st.dev  1.07  9.19**
 Turns (100s) −7.76 −34.54**  2.33  53.33** −14.15  negative
 Turns st.dev (10s) −0.80 −14.29**
 Path Size −1.65 −15.19**  3.89  20.91** −3.89  negative
 Rho-squared-bar  0.23  0.31
 Final log-likelihood −19,658 −17,698
 Akaike Information Criterion  39,345  35,437

Note: ** indicates significant values at the 1% level (** p < 0.01). * indicates significant values at the 10% level (* p <
0.1).
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