Introducing the TUF-3D/MAESPA urban micro-climate model

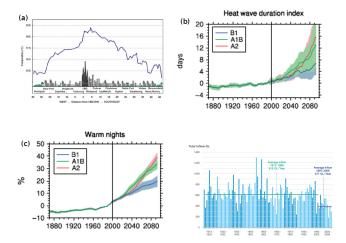
Kerry Nice¹

 ¹CRC for Water Sensitive Cities,
 ¹School of Geography and Environmental Science, Monash University 28 November 2013
 8th International Water Sensitive Urban Design Conference

🗸 MONASH University

Kerry Nice Introducing the TUF-3D/MAESPA urban micro-climate m

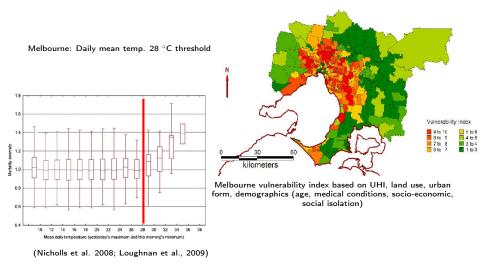
Work made possible through assistance of:


- Nigel Tapper (Supervisor)
- Jason Beringer (Supervisor)
- Andrew Coutts (Supervisor)
- Scott Krayenhoff (TUF-3D model)
- Remko Duursma (MAESPA model)

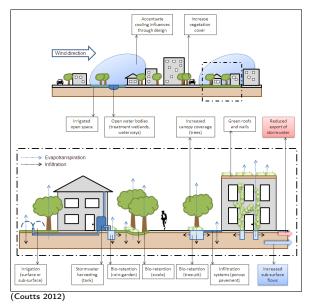
2 Searching for a model for WSUD

Enhancing TUF-3D to make it suitable to model WSUD at a micro-scale

Urban heat, climate trends, water supply


Urban heat island effects; predicted increasing extremes for Australia; Melbourne's water supply (Coutts et al. 2010; Alexander & Arblaster 2009; Melbourne Water 2008)

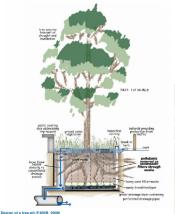
Increasingly vulnerable Australian demographics


- Population growth In 2007, 21.0 million people 30.9 to 42.5 by 2056
 33.7 and 62.2 by 2101.
- Ageing population Median age, 36.8 years in 2007 38.7 to 40.7 years in 2026 41.9 to 45.2 years in 2056. In 2007, 13% of population 65 years and over 23% to 25% in 2056
- Increased urbanisation In 2007, 64% lived in a capital city. By 2056, increase to 67%.

(http://www.abs.gov.au/Ausstats/abs@.nsf/mf/3222.0)

Melbourne heat index thresholds and spatial vulnerability of high risk populations during hot weather

CRC for Water Sensitive Cities research overview

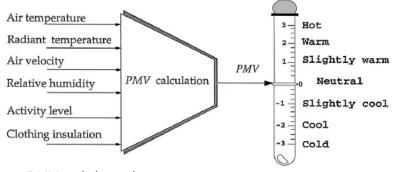

Project B3.1 Green Cities and Microclimate, and B3.2 The Design of the Public Realm to Enhance Urban Microclimate

- Meet challenges of drought & water restrictions, poor vegetation health, strained water supplies, degraded stream health
- Integrating Water Sensitive Urban Design features throughout the urban landscape as a natural cooling mechanism and UHI mitigation strategy
- Increasing vegetation in the landscape AND providing water for vegetation health
- Enhanced infiltration and evapotranspiration

Kerry Nice

Water Sensitive Urban Design (WSUD) as mitigation/adaptation

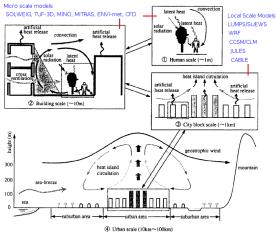
Are there positive climatic impacts on human thermal comfort?



Tree pits and other WSUD features in urban areas. (FAWB 2009; FAWB 2008)

Kerry Nice Introducing the TUF-3D/MAESPA urban micro-climate m

Required inputs to model Human Thermal Comfort (HTC)


Thermal sensation indicator

PMV and thermal sensation (Hamdi et al. 1999)

Modelling WSUD

Observations can only examine what already exists. Modelling is needed to examine a wider range of scenarios, technologies, and climatic benefits at a variety of scales.

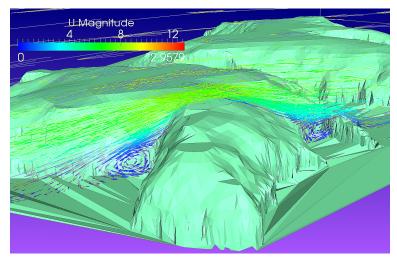
(Adapted from Murakami et al. 1999)

1 Introduction

2 Searching for a model for WSUD

3 Enhancing TUF-3D to make it suitable to model WSUD at a micro-scale

Computatial fluid dynamics (CFD) methods

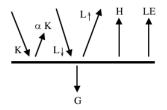


Navier-Stokes Equations 3 - dimensional - unsteady Glenn Research Center

Time : t Pressure: p Heat Flux: a Coordinates: (x,y,z) Density: p Stress: T Reynolds Number: Re Velocity Components: (u,v,w) Total Energy: Et Prandtl Number: Pr $\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial u} + \frac{\partial (\rho v)}{\partial u} + \frac{\partial (\rho w)}{\partial u} = 0$ **Continuity:** X - Momentum: $\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho u^2)}{\partial x} + \frac{\partial(\rho uv)}{\partial y} + \frac{\partial(\rho uv)}{\partial y} + \frac{\partial(\rho uw)}{\partial z} = -\frac{\partial p}{\partial x} + \frac{1}{R_{e_x}} \left[\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} \right]$ **Y** - Momentum: $\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho u v)}{\partial x} + \frac{\partial(\rho v^2)}{\partial y} + \frac{\partial(\rho v w)}{\partial \tau} = -\frac{\partial p}{\partial y} + \frac{1}{R_{\sigma}} \left[\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{yz}}{\partial \tau} \right]$ $\frac{Z - \text{Momentum}}{\partial t} \quad \frac{\partial(\rho_w)}{\partial t} + \frac{\partial(\rho_{ww})}{\partial x} + \frac{\partial(\rho_{ww})}{\partial y} + \frac{\partial(\rho_{ww})}{\partial z} = -\frac{\partial \rho}{\partial z} + \frac{1}{Re_z} \left[\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{xx}}{\partial z} \right]$ Energy: $\frac{\partial(E_T)}{\partial t} + \frac{\partial(uE_T)}{\partial x} + \frac{\partial(vE_T)}{\partial y} + \frac{\partial(vE_T)}{\partial y} = -\frac{\partial(up)}{\partial x} - \frac{\partial(vp)}{\partial y} - \frac{\partial(vp)}{\partial z} - \frac{1}{Re_r P_r} \left[\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} \right]$ $+\frac{1}{Re_{*}}\left[\frac{\partial}{\partial x}(u\,\tau_{xx}+v\,\tau_{xy}+w\,\tau_{xz})+\frac{\partial}{\partial y}(u\,\tau_{xy}+v\,\tau_{yy}+w\,\tau_{yz})+\frac{\partial}{\partial z}(u\,\tau_{xx}+v\,\tau_{yx}+w\,\tau_{zz})\right]$

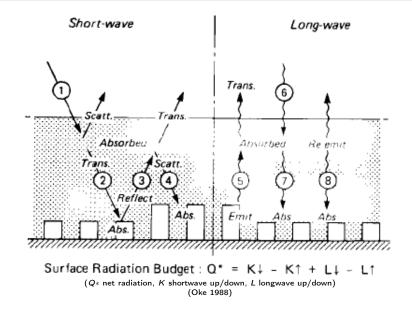
Navier-Stokes Equations, relating the velocity, pressure, temperature, and density of a moving fluid. (Nasa 2013)

CFD methods

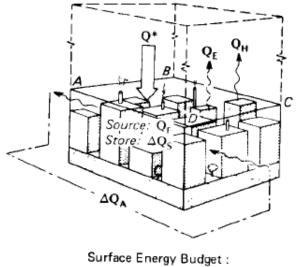

CFD study of Air Flow over Complex Terrain $_{(Fabre \mbox{ et al. 2012})}$

- MIMO (Kunz 2000), MITRAS (Mikroskaliges Chemie, Transport und Strömungsmodell) (Hinneburg et al. 2003), CFD frameworks such as OpenFOAM (OpenFOAM 2011) or STAR-CD (CD-adapco 2011), or ENVI-met (Bruse 1999)
- Very technically challenging to set up and run and extremely computationally intense.
- Originally designed for particle dispersion studies, concern over accuracy of added energy balance components.

Energy balance models partition known quantities of shortwave and longwave radiation into energy balance budget components.

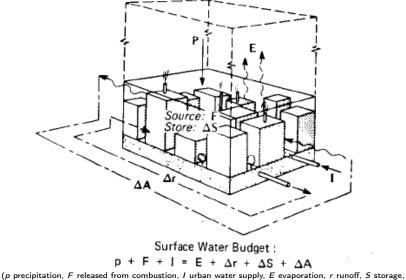

$$(1-\alpha)(Ksf + Kdf) + \varepsilon L \downarrow -L \uparrow -G - H - LE = 0$$

A less intensive approach (compared to CFD), often used by local and micro-scaled models.



Schematic of the energy balance for a surface. The direction of the arrows indicate the direction of positive flux densities. (Harman 2003)

Urban surface radiation budget


Urban surface energy budget

 $Q^* + Q_F = Q_H + Q_E + \Delta Q_S + \Delta Q_A$

(Q* net radiation, Qf anthropogenic heat, Qh sensible heat, Qe latent energy, Qs storage heat, Qa advected heat) (Oke 1988)

Urban surface water budget

A advection) (Oke 1988)

- TUF-3D (Krayenhoff & Voogt 2007) 3D raster model, simulates energy balances, modelling radiation, conduction, and convection in order to predict fluxes of sensible heat, conduction, and radiation fluxes.
- Currently doesn't support vegetation or latent energy fluxes. More detail on these enhancements soon.

2 Searching for a model for WSUD

Enhancing TUF-3D to make it suitable to model WSUD at a micro-scale

TUF-3D model structure

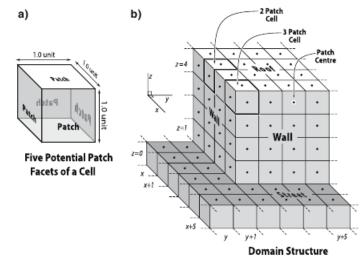


Fig. 1 Basic cubic cell and surface patch structure of TUF-3D

(Krayenhoff & Voogt 2007)

TUF-3D domains

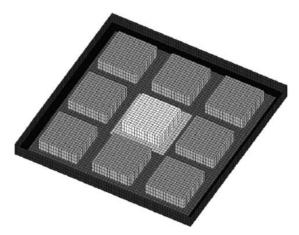
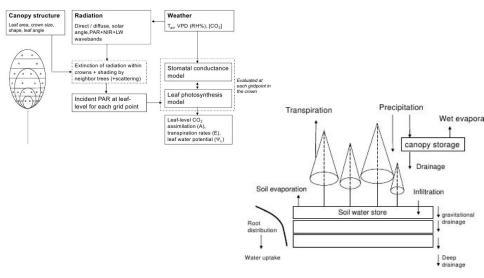
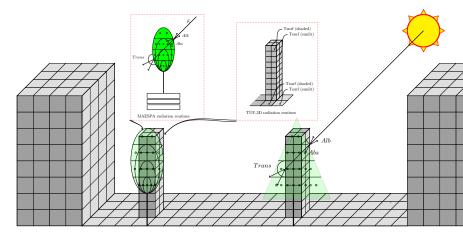
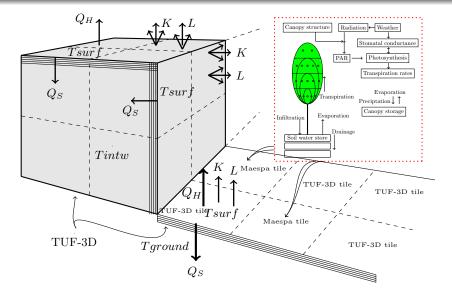



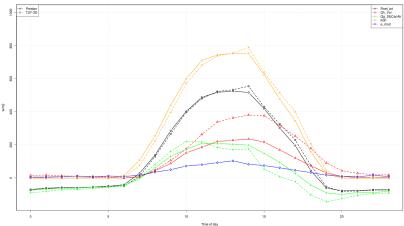
Fig. 2 An example TUF-3D domain with a bounding wall and the sub-domain S_d (chosen to coincide with the central urban unit) in lighter shades


(Krayenhoff & Voogt 2007)

MAESPA tree model


Process and water balance flowcharts (Duursma & Medlyn 2012)

Additions to TUF-3D, modifications to radiation modelling


Integration of MAESPA tree model in the TUF-3D model

Additions to TUF-3D, embedding MAESPA tree model

TUF-3D energy balance modelling with MAESPA tiles

Additions to TUF-3D, increasing accuracy

TUF-3D fluxes (hourly ave) days 32-59 at H/L=0.75,H/L=0.75,H/W=0.6,streetdir=0lambdap=0.198

Unmodified TUF-3D energy balances validated against Preston data set (Coutts 2007). Improvements needed in QH and QE predictions.

- Completion of coding
- Validations
- Running comprehensive set of WSUD scenarios