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VTUE-3D, a tool to model the cooling effects of trees at a

microscale
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Project B3.1 - Cities as Water
Supply Catchments - Green
Cities and Microclimate

The aim of this project is to
identify the climatic advantages
of stormwater harvesting/reuse
and water sensitive urban
design at building to
neighbourhood scales.

To determine the micro-climate
processes and impacts of
decentralised stormwater
harvesting solutions and
technologies at both household
and neighbourhood scales.

To assess the impacts of these
solutions on human thermal
comfort and heat related stress
and mortality.

To provide stormwater
harvesting strategies to improve
the urban climate and benefit
the carbon balance of cities.

To project the likely impact of
climate change on local urban
climate, with and without
stormwater resuse as a
mitigation strategy.

(CRC for Water Sensitive
Cities, 2015)
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VTUE-3D energy balance modelling with MAESPA tiles

@ Modifications to TUF-3D (Krayenhoff and Voogt, 2007) to resolve urban canyon
radiation flux movement using placeholder vegetation structures which
call MAESPA (Duursma and Medlyn, 2012) vegetation absorption, transmission,
and reflection routines.

@ VTUF-3D uses cube shaped structures (as TUF-3D uses to represent
buildings) to represent vegetation. These cubes store the surface
properties and states and interact with the rest of the VTUF-3D domain.

@ The vegetation’s true shape is represented in MAESPA and calls
underlying MAESPA routines to calculate the vegetation's interactions
with the urban canyon and radiation movement.
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Integration of MAESPA tree model into VTUF-3D radiation fluxes routines
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VTUE-3D energy balance modelling with MAESPA tiles

@ Using a novel approach, MAESPA tiles replaces VTUF-3D ground
surfaces with vegetated MAESPA surfaces and use MAESPA's
photosynthesis and water cycle routines to modify VTUF-3D’s energy
balance calculations.

@ Each embedded MAESPA surface calculates a full 3 dimensional tree
(along with associated soil and movement of water within the stand) and
feeds results back to VTUF-3D ground surface energy balances.

VTUF-3D energy balance modelling with vegetation MAESPA tiles
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VTUF-3D process flow

Configuration Generation

Domain creation

¥

Create streets and buildings

Y

Embed vegetation

For each vegetation element

Y

Create MAESFPA configuration
for each element

Generate forcing and
differential shading forcings

- Rumn MAESPA simulation

Y

Create post-processing scripts

Running VTUF-3D  Post-Processing

Generate UTCI and

Load MAESPA data Trmrt files

Initialize domain Generate graphs

and tables
Ilterate over timesteps
A
Calculate radiation transmission /
shading
¥

|terate over all surfaces

Calculate surface energy
balances

Y

Calculate canyon temperatures and
output timestep data

End simulation
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MAESPA tree parameterizations common attributes

Parameter Value
Stomatal conductance Ball-Berry-Opti model (Medlyn
et al., 2011)

Number of layers in the crown | 6
assumed when calculating radi-
ation interception

Number of points per layer 12
Number of zenith angles for | 5
which diffuse transmittances are
calculated

Number of azimuth angles for | 11
which the calculation is done

Kerry Nice A micro-climate examination of the temperature moderati



MAESPA olive tree (Olea europaea) parameterization

Parameter Value | Source

crown radius (m) 25 Coutts (2014)

crown height (m) 3.75 Coutts (2014)

trunk height (m) 1.25 Coutts (2014)

leaf area index (m? m~2) | 2.48 Mariscal et al. (2000)

crown shape round

zpe (m) 4.0 Forcing data height

zpp (m) 2.5 2/3 of crown height (Grimmond and Oke, 1999)
2o pr (M) 0.375 | 1/10 of crown height (Grimmond and Oke, 1999

As all tree parametrizations in VTUF-3D are pluggable, individual
trees are added to a domain using a specific set of configuration
files with many of the physical properties scaled from a base
template. Values adapted from Coutts (2014)
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MAESPA olive tree (Olea europaea) parameterization

Parameter Value(s) Source

Soil reflectance (%PAR, %NIR, and %IR) 0.10, 0.05, 0.05 | Levinson et al. (2007); Oke (1987)
Leaf transmittance (%PAR, %NIR, and %IR) 0.01, 0.28, 0.01 | Baldini et al. (1997)
Leaf reflectance (%PAR, %NIR, and %IR) 0.08, 0.42, 0.05 | Baldini et al. (1997)
Minimum stomatal conductance g0 (mol m—2s~1) 0.03 Coutts (2014)

Slope parameter gl 2.615 Coutts (2014)

# of sides of the leaf with Stomata 1 Fernandez et al. (1997)
Width of leaf (m) 0.0102

CO, compensation point (mol m~2s~1) 55 Coutts (2014)

Max rate electron transport (Jmax) (umol m~2s~T) 112.4 Coutts (2014)

Max rate rubisco activity (VCmax) (umol m2s~T) 81.18 Coutts (2014)

Curvature of the light response curve 0.62 Coutts (2014)

Activation energy of Jmax (KJ mol~T) 35350 Diaz-Espejo et al. (2006)
Deactivation energy of Jmax (J mol~1) 200000 Medlyn et al. (2005)
Entropy term (KJ mol™1) 644.4338 Medlyn et al. (2005)
Quantum yield of electron transport (mol electrons mol~1) | 0.19 Sierra (2012)

Dark respiration (umol m=2s~1) 0.94 Coutts (2014)

Specific leaf area (mmZkg 1) 5.1 Mariscal et al. (2000)
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MAESPA brushbox tree (Lophostemon Confertus)

parameterization

Parameter Value | Source

crown radius (m) 25 Coutts et al. (2016)

crown height (m) 3.75 Coutts et al. (2016)

trunk height (m) 1.25 Coutts et al. (2016)

leaf area index (m? m=2) | 2.0 Wright and Westoby (2000)

crown shape round

zpe (m) 4.0 Forcing data height

zpp (m) 2.5 2/3 of crown height (Grimmond and Oke, 1999)
2 He (M) 0.375 | 1/10 of crown height (Grimmond and Oke, 1999

MAESPA brushbox tree (Lophostemon Confertus) parameterization, tree
dimensions for 5x5m grid (rescale for taller/shorter), values adapted from
Coutts et al. (2016)
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MAESPA brushbox tree (Lophostemon Confertus)

parameterization

Parameter Value(s) Source

Leaf reflectance (%PAR, %NIR, and %IR) 0.04, 0.35, 0.05 | Fung-yan (1999)

Minimum stomatal conductance g0 (mol m~2s™1) 0.01 Coutts et al. (2016)

Slope parameter gl 3.33 Coutts et al. (2016)

# of sides of the leaf with Stomata 1 Beardsell and  Considine
(1987)

Width of leaf (m) 0.05 Coutts et al. (2016)

CO, compensation point (itmol m~2s~1) 53.06 Coutts et al. (2016)

Max rate electron transport (mol m—2s71) 105.76 Coutts et al. (2016)

Max rate rubisco activity (umol m~2s~1) 81.6 Coutts et al. (2016)

Curvature of the light response curve 0.61 Coutts et al. (2016)

Activation energy of Jmax (KJ mol~T) 35350 Bernacchi et al. (2001)

Deactivation energy of Jmax (J mol~T) 200000 Medlyn et al. (2005)

Entropy term (KJ mol™T) 644.4338 Medlyn et al. (2005)

Quantum yield of electron transport (mol electrons mol~1) | 0.06 Coutts et al. (2016)

Dark respiration (umol m~2s~1) 1.29 Coutts et al. (2016)

Specific leaf area (mm?kg 1) 25.3 Wright and Westoby (2000)
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MAESPA grass parameterization

Parameter Value | Source

crown radius (m) 25 Radius of 5x5m grid

crown height (m) 0.2 Simmons et al. (2011)

trunk height (m) 0.01

stem diameter (m) 0.2

leaf area index (m? m=2) | 7.13 ave. from Bijoor et al. (2014)

crown shape box

zpe (M) 4.0 Forcing data height

zpp (m) 0.066 | 2/3 of crown height (Grimmond and Oke, 1999)
2 H (M) 0.02 1/10 of crown height(Grimmond and Oke, 1999)

MAESPA grass layer as a box tree on the ground covering the plot
area
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MAESPA grass parameterization

Parameter Value(s) Source

Soil reflectance (%PAR, %NIR, and %IR) 0.10 0.05 0.05 | Observed, Levinson et al. (2007), Oke (1987)
Leaf transmittance (%PAR, %NIR, and | 0.05 0.45 0.01 C3 grasses, from Katjacnik et al. (2014)
%IR)

Leaf reflectance (%PAR, %NIR, and %IR) | 0.05 0.65 0.08 | C3 grasses, from Katjacnik et al. (2014)
Minimum stomatal conductance g0 (mol | 0.0 De Kauwe et al. (2015)

m2s71)

Slope parameter gl 5.25 C3 grasses, from De Kauwe et al. (2015)

# of sides of the leaf with Stomata 2 Green et al. (1990)

Width of leaf (m) 0.006 Rademacher and Nelson (2001)

CO, compensation point (mol m=2s~1) 57 Brown and Morgan (1980) at 25 degrees
Max rate electron transport (mol m=2s~1) | 80.95 Tall Fescue from Yu et al. (2012)

Max rate rubisco activity (umol m—2s~1) 36.14 Tall Fescue from Yu et al. (2012)

Curvature of the light response curve 0.7 Gilmanov et al. (2007)

Activation energy of Jmax (KJ mol~T) 65300 Bernacchi et al. (2001)

Deactivation energy of Jmax (J molT) 200000 Medlyn et al. (2005)

Entropy term (KJ mol~1) 644.4338 Medlyn et al. (2005)

Quantum yield of electron transport (mol | 0.05 Monson et al. (1982)

electrons mol 1)

Dark respiration (umol m—2s~1) 0.6 Estimated for Tall Fescue from Yu et al. (2012)
Specific leaf area (mmZkg 1) 23.16 Average from Table 1 in Bijoor et al. (2014)

for 3 turfgrasses.

MAESPA grass layer as a box tree on the ground covering the plot

area
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Model testing and validation using Preston dataset

@ Preston - homogeneous, medium density.

@ Data set contains complete flux observations recorded
2003-2004, allowing validation of surface energy balances

@ Modelled area, (500x500m) chosen is representative of overall
area observed by flux tower

Adapted from Google Maps (2015)
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Mix of vegetation types: grass (19.5%), olive and brushbox trees (16.0%).
Medium density area (45.2% buildings). 19.3% impervious surfaces.

Digitization of Preston suburban street, Oakhill Ave. il . . . ]
(1=building heights, 1=vegetation heights) Vegetation heights (0, 5, 10m)
Adapted from Nearmap (2015).
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Model testing and validation using Preston dataset

30 day hourly average flux comparisons to Preston flux observations
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Model testing and validation using Preston dataset

30 day hourly flux comparisons to Preston flux observatlons
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Model testing and validation using City of Melbourne,

George and Gipp St datasets

Shallow urban canyons (ave building heights 7 and 8m, H:W 0.32
and 0.27) with varying canopy cover (45% and 12%)

Validation against 4 and 3 observation stations located on street
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Model testing and validation using City of Melbourne,

George and Gipp St datasets

Bmldmg he|ghts - George St, Gipp St

Vegetation cover - George St, Gipp St



Model testing and validation using City of Melbourne,

George and Gipp St datasets
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Model testing and validation using City of Melbourne,

George and Gipp St datasets

30 day comparison of predicted UTCI to observed - George St
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Model testing and validation using City of Melbourne,

George and Gipp St datasets

George St. Observed Tmrt vs VTUF-3D, 30 day hourly averages, 2012-01-31 to 2012-02-29

8| o VTUF-3D modelled Ty
—o— George St. observed Ty,

T (degrees C)

" Time of day

George St. scenario four observation stations (TRD 2, TRD 3,
TRD 4, and TRD _5) values of Tp,: aggregated into hourly
averages over 30 days compared to modelled points.
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Model testing and validation using City of Melbourne,

George and Gipp St datasets

George/Gipps St. VTUF-3D modelled Tcan and observed air temperatures, hourly averages, 2012-02-01 to 2012-02-29

©— Modelled Tcan George St.
-~ Modelled Tcan Gipps St.
—— Observed Ta TRD2
Observed Ta TRD3
Observed Ta TRD4
Observed Ta TRD5
Observed Ta OPN3

WP x

“#- Observed Ta OPN5
2 > Observed Ta OPN4

temp G

" Time of day

George/Gipps St. modelled T.,, compared to observed T, of
George St. 4 treed canopy stations and Gipps St. 3 open canopy
stations, hourly averages over February 2012 modelled period.
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Model testing and validation using Smith St dataset

Lorikeet Summer Scentsation
Eucalyptus olivacea

. Tolley’s Upright
(Olea europaea)
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Model testing and validation using Smith St dataset

East

Effects of urban canyon shadowing

0 5 10 15 20 2 30 35
X (2.5m grid)

Extraction of modelled Qg values for Smith St. olive trees.
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Smith St observed vs modelled east/west energy fluxes

Smith St. scenario SmithStVal west vs east modelled and observed i transects - February 23, 2012
° A Smith St east modelled transpiration
o—e Smith St west modelled transpiration
A A Smith St east observed transpiration
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VTUF-3D SmithStVal validation showing modelled transpiration
along each west and east tree location for 23 February 2012. Also
shown, observed transpiration values for the same tree location.
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Scenarios using City of Melbourne, George and Gipps St

datasets

Shallow urban canyons (ave building heights 7 and 8m, H:W 0.32
and 0.27) with varying canopy cover (45% and 12%)
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City of Melbourne Gipps St Scenarios-tree configurations

@ 5 scenarios of zero trees, half trees, existing Gipps St tree
canopy cover, double trees, and 4x trees.
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City of Melbourne Gipps St Scenarios-UTCI at 0 meters

e UTCI (averaged at Om height) maximum variations of 1.0°C
between Gipps St. zero tree scenario and double trees.
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City of Melbourne Gipps St Scenarios-UTCI differences

between scenarios

- 23-24 February 2014

City of Melbourne Gipps St scenarios, modelled average street UTCI

02:00:00 08:00:00

utei(ic)

060000 1400.00 20,0000

020000 080000 1400.00 200000 020000
time of day

e UTCI (averaged at Om height) maximum variations of 1.0°C
between Gipps St. zero tree scenario and double trees.
Variation of over 2.5°C UTCI between 0 tree and 4x trees.
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City of Melbourne Gipps St Scenarios-UTCI differences

between scenarios

uTCi(Ic)

0 5 15

Bl KC)
e Differences (at Om height) between Gipps St. existing canopy
and 4x canopy showing localised cooling effects of 4-5°C UTCI
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City of Melbourne Gipps St Scenarios-Canopy temperatures

Modelled T,,, of 4 scenarios over 23-24 February 2014 /
Tcan differences between normal trees and other scenarios

VTUF-3D canopy temperatures for CoM Gipps St scenarios
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Differences between VTUF-3D modelled canopy temperatures (Tcan) for CoM Gipps St scenarios
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Time

Canopy temperature (average air temperature of urban canyon)
differences range from 0.2°C to 0.4°C .
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e Addition of vegetation parameterizations (a variety of common
street trees) adding to existing olive, brushbox, and grass
parameterizations

e Completion of validation scenarios

e Hughesdale
o Other climate zones / winter time

e Adding user friendly graphics interface to VTUF-3D to make it
accessible to a wider user group

@ Sensitivity study building on and adding variations of
validation scenarios to examine impact to human thermal
comfort of placement and quantity of trees in urban areas

@ Research fellowship at University of Melbourne - Walkability,
urban design, and micro-climates
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