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ABSTRACT:  

Background: Given that the majority of the world’s population live in cities, it is essential to 
global health efforts that we design them in ways that both reduce non-communicable 
diseases (NCDs) risk and that facilitate adoption and maintenance of healthy lifestyles. 
Current approaches tend to focus on the relationship between urban design-related factors 
that affect health at the local or neighbourhood level but few studies have explored this 
relationship both within and across entire cities, nor explored the causal pathways between 
urban-designed related factors and NCDs. The aim of this research program is to use 
computer vision, causal inference, and public health modelling methods for understanding 
the causal relationship between urban design and health at the neighbourhood level, and to 
explore intervention approaches at the city scale.  

Methods: Phase 1 will use machine learning and computer vision techniques to analyse 
gridded, local-level aerial images (with an optical resolution of <20cm), of all UK and 
Australian cities with populations over 100,000. It will identify a variety of urban features 
within these images and derive associations between them and NCD incidence and risk 
factors identified through location-based health surveys. Phase 2, using data from 
prospective health cohorts and linked objective built environment data, will apply Bayesian 
networks to investigate the possible causal pathways between built environment, lifestyle 
factors, and NCD incidence. Phase 3 will estimate the health impacts of actionable changes 
in urban design. Using health impact assessment modelling, we will calculate the NCD 
burden that could be prevented if cities were to adopt urban features of healthier 
counterparts. A similar approach will be applied on finer-grained scale within all case study 
cities, enabling assessment of health impacts of changes in individual locations. Phase 4 will 
develop an interactive web-based toolkit to enable urban designers, planners and 
policymakers to inform the decision-making cycle, co-designed with intended users involving 
participatory workshops. 

Discussion: We use state-of-the-art approaches to: (i) generate evidence on the impacts of 
urban planning and design in NCDs and health inequalities in UK and Australian cities, and 
(ii) provide stakeholders with tools for advocacy and designing healthier cities.  

 

Trial registration: Not applicable. 
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INTRODUCTION: 

The world has seen a rapid population increase of 1 billion since 2005 and 2 billion since 
1993 to a current population of 7.3 billion. Most of this growth has been in cities [1]. 
Managing city population growth across high-, middle- and low-income countries is a 
significant global public health challenge. Safe and healthy food, clean water, clean air, safe 
housing, transport, and healthy social relationships are among the most basic of human 
needs. But even in locations of comparatively high economic development, such as the 
United Kingdom (UK) and Australia, large areas exist where urban design contributes to 
increased incidence of known non-communicable diseases (NCDs) associated with risk 
factors such as physical inactivity, air pollution, poor access to public transport, increased 
access to tobacco and alcohol, inequitable access to nutrient-poor foods, and social 
disconnection, leading to adverse health and disease outcomes [e.g. 2-9]. 
 
Many NCDs are associated with factors related to lifestyles that city design and modern 
urban living generates [10]. City design can contribute to the risk of type 2 diabetes mellitus, 
cardiovascular disease, chronic respiratory disease, some cancers, mental illness 
(commonly existing as multi-morbidities due to shared risk factors and interacting biological 
mechanisms [11]), in addition to road injury. Despite their relative wealth, Australia and the 
UK are not immune, having experienced among the greatest global increases in rates of 
overweight and obesity leading to the development of NCDs and metabolic diseases since 
the 1980s [12,13]. The combined effect of air pollution, poor diet, high sugar intake, physical 
inactivity, smoking, and other modifiable lifestyle factors, driven in part by the reinforcing 
influence of low-density, car and fossil-fuel dependent cities, pose serious barriers to 
change. This is in addition to the toll from serious injuries and deaths, especially among 
active transport users namely, pedestrians and cyclists who are otherwise acting healthily 
[14,15]. This highlights the need for urban design to consider the totality of population health 
gains when designing new areas or interventions [16]. For example, urban design-related 
factors such as density, mixed land use, connectivity and destination accessibility affect 
behaviours such as physical activity and travel behaviour including driving, public transport 
usage, walking and cycling [17-25]. These behaviours can contribute to health outcomes 
directly [26-29] and indirectly, from air pollution, noise levels and urban heat islands [30-31]. 
NCDs have complex causal mechanisms characterised by multiple aetiologies and factors, 
and are influenced by an individual’s and their peers’ behaviour along with the external 
urban and socio-economic environment [32-33]. Therefore, a deeper understanding of the 
features of urban design that promote healthy behaviour, and the possible causal pathways, 
can lead us toward a better understanding of principles that could be incorporated into city 
planning for better population health.  

Furthermore, NCDs are socially patterned. A number of Sustainable Development Goals 
(SDGs) set targets that relate to the reduction of health inequalities including health and 
wellbeing for all (SDG 3) and a reduction of inequalities within and between countries (SDG 
10). The interaction between inequalities and NCDs are complex: low socioeconomic status 
increases the risk of NCDs, chronic ill-health and associated costs. The consequent 
limitations in capacity to work can, in turn, reduce household income. Compelling evidence 
from 283 studies supports a positive association between low-income, low socioeconomic 
status, or low educational status and NCDs [34]. Good public health is a key driver in the 
SDGs, and reduction of health inequalities and NCDs should become key in the promotion of 
the overall SDG agenda. A sustained reduction of general inequalities in income status 
within and between countries would enhance worldwide equality in health. Niessen and 
colleagues [34] argue that to end poverty through elimination of its causes, actions to tackle 
NCDs should be included in the development agenda, with a particular focus on mitigating 
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social, health and climate shocks that worsen the already vulnerable socioeconomic 
condition and health status of the poor. This may be partly achievable through better and 
more equitable urban design (SDG 11) [35], using novel, scalable methods that can handle 
the complexities of urban life (i.e., complex interactions between people and places in our 
towns and cities). 
 
New methods in computer vision, artificial intelligence (AI) and complexity science (including 
computational social science) now enable researchers to go beyond what has previously 
been possible in understanding the relationship between urban design and NCDs at scale 
[36]. Researchers and policymakers can avoid inefficient methods of data collection that use 
and rely upon individual city administrative sources, and instead harness consistently 
collected, massive urban datasets on a global-scale using remote sensing such as satellite 
and aerial imagery. These datasets contain millions of images related to urban form from 
cities around the world. Streamlined processes and pipelines that ingest data in the form of 
images, and harness advances in machine learning and computer vision can now be utilised 
to discern (i) individual features that exist within urban areas, (ii) neighbourhood types 
featuring combinations of urban features (iii) global city typologies that group cities according 
to similar urban characteristics [36], and (iv) individual city fingerprints, that create 
comparable fine-scaled, block-level representations of urban morphologies across individual 
cities [37]. Further, these can be linked with processes for producing AI-driven urban design 
solutions using generative adversarial networks, which create images that combine the 
structure of existing low performance (e.g., poorly designed and unhealthy) urban areas with 
the design of high performance areas, enabling new urban futures to be imagined [38,39]. 
These methods enable a virtually limitless representation of cities to be included in analyses, 
supporting a fine-grained analysis of morphological differences at the block or 
neighbourhood level to determine how urban form is associated with population health risks 
and outcomes [40].  
 
While standard research methods using geographic information systems (GISs) and largely 
linear statistical methods have brought great advances in our understanding of the 
intersection between urban design and health, their origins in experimental health research 
sees them better suited to smaller scale interventions, samples, or problems of defined and 
simpler natures [41] than those that arise from more complex interactions between cities, 
people, and health. This research program will therefore exploit more contemporary, 
advanced methods as described above to overcome identified issues that have led 
contemporary city scientists and public health researchers to call for change [10,42-45]. The 
proposed research extends our current approaches by integrating longitudinal data with 
unique spatially derived data enabling, for the first time to explore the complex interactions of 
NCDs at a city-scale. 
 
Objectives of the research program include: 
 

1) Utilising new methods in computer vision and artificial intelligence to explore the 
association between urban design, city types, and NCDs in UK and Australian cities. 

2) Investigate how inter- and intra-city urban design disparities are associated with 
inequalities in incidence and prevalence of NCDs. 

3) Combine large cohort and GIS data to prospectively investigate the possible causal 
pathways between urban design, NCD risk factors, and NCD incidence. 

4) Estimate improvements in the burden of NCDs that could be achieved through 
actionable changes to the built environment at different scales. 

5) Design and develop an accessible, web-based toolkit tailored for use by urban 
designers, planners, policymakers and the broader public. 

 

METHODS AND ANALYSIS: 
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The research program has four phases that aim to: (i) investigate the relationship between 
urban design and NCDs at the: a) neighbourhood level, and b) city level using a combination 
of methods that bring together big data, global image sources, and population-based health 
data; (ii) explore the possible causal pathways between urban design related factors, NCD 
risk factors and NCD incidence; (iii) estimate the potential reduction in NCD prevalence and 
health inequalities of actionable changes in urban form; and (iv) develop an interactive toolkit 
that will support planners and policymakers responsible for delivering future urban form. 
. 
 
Phase 1 – Building the evidence base on the relationship between urban design and NCDs 
 
City-level urban design data derived from small-scale urban imagery, broadly consistent with 
Thompson et al. [36], will be selected for all UK and Australian cities with populations greater 
than 100,000. Areas selected for analysis will be based on agreed urban municipal 
boundaries for each city in Australia and the UK. This will capture approximately 90% of the 
UK and Australian populations.  
 
Local-level image representations of each city will be gathered from a combination of maps, 
street-level, satellite and or aerial imagery where available. These images will be analysed 
for the presence of urban infrastructure and features informed by existing evidence and 
theory such as road networks and road types (e.g., local/ arterial/highway), intersections, rail 
transit networks, cycling networks, blue space, vehicles, people, and designated parks, tree 
canopies, tree types, and greenspace. Ideally, aerial and satellite imagery will have spatial 
resolution of < 25cm > 5cm. For context, at 20cm resolution we can visualise cars, and at 
12.5cm resolution we can visualise individual people in the images. The utility of each 
perspective will be judged in the analytical phase against its association with population 
health outcomes, as well as its ease of integration into a computationally efficient workflow.  
 
Figure 1 shows typical images proposed for our analysis, featuring map abstractions, 
satellite images, street view and sky-view. A grid-based dataset encompassing the entire 
sampling area for each city will be generated. 
 

 

Figure 1. Four sample images featuring abstract maps (A,B), satellite view (C,D), street -
view (E,F), and sky-view (G,H). 
 
 
With the map image database for Australian and UK cities established, computer vision 
algorithms will be applied to the imagery dataset to identify given urban infrastructure 
features present in each image scaled to approximately 30m x 30m. These will include, but 
will not be limited to, footpaths, cycle paths, roads and road types, intersections, parks, 
sporting facilities, industrial complexes, shopping precincts, blue and green space, and other 
features identified through the literature. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2023. ; https://doi.org/10.1101/2023.04.18.23288757doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288757
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

Feature counts in these and surrounding images will then be undertaken using a raw or 
gravity model using the base image as the centroid and calculated for each image tile in 
each dataset with the exception of edge cases where the radius of the captured area around 
the centroid is curtailed. 
 
In addition to features counted within each image and surrounding area, neighbourhoods will 
be classified based on the combination of features they contain and categorised into a total 
of ≥ 3 ≤ 10 groups using factor analysis or k-means clustering techniques.  
 
A second method will also be employed whereby image data from all sampled locations 
across cities will be represented on a 2-dimensional self-organising map based on an 
adaptation of the city ‘fingerprint’ method of Nice and colleagues [37]. This multidimensional 
process will incorporate all available information collected through the feature identification 
methods, above and project each image or neighbourhood onto a standardised 
representation of the entire range of urban form observed in all cities in this research 
program from across the UK, Australia, or both. Following health data collection (see below) 
each position on the grid will also be matched to its performance across health risk and 
outcome measures while also controlling for socio-demographic differences between 
locations. The resulting ‘meta-map’ will provide a fine-grained representation of health risks 
and outcomes associated with unique combinations of observed urban design features, 
which can be matched back to any current or planned real-world location (Figure 2). The 
meta-map will: (i) form the definitive set of associations by which urban design can facilitate 
reductions across NCDs; and (ii) enable comparisons of health impact for populations 
between locations and given desired or planned changes in the characteristics of individual 
locations. 
 

 
 
Figure 2. Representation of the city fingerprint and health impact process taking data from 
individual cities, combining all urban form into an aggregated ‘fingerprint’ map, and 
associating it with health risk and outcome data. 
 
 
City types, health risk identification, and health outcomes 

To investigate the association between city and within-city neighbourhood types and NCD 
risks and outcomes, available data from a range of sources aggregated to individual area 
levels will be utilised (e.g., beginning at the smallest available aggregated data-collection 
level such as Lower Layer Super Output Area (UK) or Statistical Area Level 2 (Australia) to 
calculate  the risk for each NCD category for each city type or area, using the lowest risk 
type as the benchmark and controlling for city and national level confounders (e.g., 
economic indicators such as GDP or income, etc.). For health data, data from similar 
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government sources in respective territories and jurisdictions will be sought (see Table 1 for 
examples). 
 
Road injury data will also be included in our analysis for two reasons. Firstly, road injury 
continues to be a significant global health burden, contributing to over 1.35 million deaths 
and 50 million injuries [46], ranking it as the 8th leading cause of death for people of all ages 
and the leading cause for children and young people aged 5-29 years of age. Secondly, our 
previous work modelling the nexus between urban design and health [16] indicates that 
urban design changes can reduce risk of selected NCDs but increase risk of road injury, 
compromising total health benefit [36]. This highlights complex interactions between urban 
design, NCDs, and road injury. For additional road transport and injury data, we will 
therefore access available geo-located road traffic collision and casualty data from state-
based road transport authorities in Australia (e.g., Victorian Department of Transport) and in 
the UK from the Police Service Northern Ireland and Stats19 [47].  
 

Table 1. Example sources of geo-referenced health data available to the research team for 
analysis and comparison. 
 

Country Source Data available 
UK / AUS Census Socio-demographic factors, health-related behaviour, 

NCD prevalence 
UK / AUS Register of deaths NCD mortality 
UK Northern Ireland Cancer Registry* Cancer incidence, prevalence and mortality 
UK Northern Ireland Cardiovascular 

Disease Database* 
Cardiovascular disease incidence, prevalence and 
mortality 

UK Prescription data Proxy of chronic conditions 
UK UK Household Longitudinal Study Socio-demographic factors, health-related behaviour, 

NCD prevalence and incidence 
UK Continuous Household Survey Socio-demographic factors, health-related behaviour, 

NCD prevalence 
UK Northern Ireland Neighbourhood 

Information Service* 
Socio-demographic factors, health-related behaviour, 
NCD incidence, prevalence and mortality 

UK Health Survey Northern Ireland* Socio-demographic factors, health-related behaviour, 
NCD prevalence 

UK National Diet and Nutrition Survey Health-related behaviour (diet) 
UK Stats19 and Police Service Northern 

Ireland (PSNI) 
Geo-referenced road traffic collisions and casualties  

AUS Victorian Population Health Survey 
(VPHS) 

Socio-demographic factors, health-related behaviour, 
NCD prevalence 

AUS Melbourne Institute – Household, 
Income and Labour Dynamics in 
Australia (HILDA)  

Health care utilisation, incidence and prevalence, 
socio-demographic factors, health-related behaviour, 
NCD prevalence 

AUS South Australian Population Health 
Survey (SAPHS) 

Socio-demographic factors, health measures, health-
related behaviour and risk factors, NCD prevalence 

AUS Sax Institute – 45 and Up Socio-demographic factors, health-related behaviour, 
family histories of illnesses, NCD prevalence, 
medications 

AUS Australian Government Institute of 
Family Studies – Ten to Men and the 
Longitudinal Study of Australian 
Children (LSAC) 

Socio-demographic factors, health-related behaviour, 
NCD prevalence 

AUS Geelong Osteoporosis Study Socio-demographic factors, health measures, health-
related behaviour and risk factors, NCD prevalence, 
medications 

AUS National Health Survey Socio-demographic factors, health measures, health-
related behaviour and risk factors, NCD prevalence, 
medications 
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AUS Tasmanian Population Health 
Survey 

Socio-demographic factors, health-related behaviour, 
NCD prevalence 

* The other home nations in the UK run similar data surveillance systems or surveys. 
 

 

Phase 2 - Investigating possible causal pathways 

We will initially use health and GIS data from the UK Biobank [48], the 45 and Up study [49], 
and similar population health surveys in Australia, to prospectively investigate the possible 
causal pathways between urban design, NCD risk factors, and NCD incidence, and effect 
modifications associated with socio-demographic factors at the individual level. UK Biobank 
is a cohort of ~500,000 adults aged 40-69 years from the general population, recruited 
between 2006 and 2010. It collects a wide range of socio-demographic (e.g., age, sex, 
ethnicity, education, and deprivation index) and health data (e.g., diet, physical activity, 
smoking, alcohol consumption, and NCD incidence) and provides objectively assessed built 
environment metrics from the immediate residential neighbourhood of UK Biobank 
participants, including building typology, destination accessibility, greenness, land use 
density, and street network accessibility [48]. The 45 and Up study data includes information 
from ~250,000 participants from New South Wales, Australia, and will provide information on 
demographic and health-related factors such as body mass index, blood pressure, diet, 
levels of physical activity and physical energy expenditure for participants aged 45 years and 
above. GIS data, geocoded from home addresses, will also be provided by the 45 and Up 
data custodians.  
 
Most statistical methods can only confirm associations between variables rather than 
causation. However, our research aims to explore the causal pathways through which urban 
design can affect NCD risk factors and NCD incidence and prevalence. Therefore, we will 
employ causal inference methods in this Phase.  
 
Bayesian networks will be used to investigate multiple potential causal paths through which 
urban design can affect NCD risk factors and NCD incidence and prevalence. Bayesian 
networks are probabilistic directed acyclic graphs (DAGs) that can be used to obtain the 
statistical dependency structure between specific NCD risk factors and NCD incidence given 
different aspects of the built environment. DAGs first recover an undirected graph (i.e., a 
skeleton of the graph) to capture relationships between variables, while the direction of the 
identified relationships is determined in a subsequent step. DAGs are an established 
approach to investigate statistical dependency structures and have been successfully 
applied in a wide variety of domains, such as inferring gene interactions [50], assessing 
population health risks [51] and investigating tropical cyclone formation [52]. 
 
Also, we will compute changes in the conditional probabilities according to socio-
demographic factors, offering a full and nuanced picture of whether and how social 
disparities moderate the relationship between built environment and NCD prevention. Each 
socio-demographic factor, built environment aspect, NCD risk factor and NCDs will be 
individually represented as a node in the DAGs. The DAGs structure will  take into account 
prior evidence and knowledge (e.g., disallowing an NCD risk factor to be a parent node of 
sex or age), supplemented by applying learning algorithms to the observed data. Local 
conditional distributions will be derived from the data, and parameters will be obtained by 
performing Bayesian parameter estimation. Bootstrap resampling will be applied to reduce 
the impact of locally optimal networks on learning and inference. For purposes of validation, 
we will also utilise k-fold cross-validation [53]. 
 
 
Phase 3 – Estimating health impacts of actionable changes in urban design 
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Building on Phases 1 and 2, this Phase will provide estimates of health impacts achievable 
via actionable changes in urban design. First, we will analyse the potential effects of city-
wide changes in the built environment, benchmarking against healthier nearest-neighbour 
locations within the network graph generated in Phase 1. Second, we will investigate the 
range of urban morphology within each one of the sampled cities to provide a fine-grained 
representation of NCD risks and outcomes associated with unique urban design features, 
which can be used to suggest healthier solutions for existing areas and locations. This entire 
process will also provide a means to estimate potential reductions in within-city health 
inequalities driven by actionable changes in the urban morphology. 
 
At the end of Phases 1 and 2, we will have metrics that allow us to estimate the changes in 
NCDs and other health outcomes (e.g., years of life lost due to premature death (YLL) and 
disability adjusted life-years (DALYs) averted) for a population based on changes to existing 
urban form or benefits associated with planned construction of new areas. As each city and 
geographic area will be identifiable, it will also highlight specific nearest-neighbour locations 
that can be used as feasible real-world examples to plan pathways for change from current 
to desired end-states (e.g., a desire to change from a high pollution, car-oriented urban 
network to the most feasibly achievable low pollution, pedestrian-friendly network). 
Therefore, for each location we can calculate changes in NCDs and health outcomes by 
comparing against: (i) healthier nearest-neighbour locations (assuming the location with the 
healthiest built environment as the benchmark); and (ii) the location with the healthiest built 
environment in the same country. The first approach will allow us to estimate the potential for 
NCD prevention in a realistic, short-term case scenario. The second approach allows 
estimation of the NCD prevention benefits associated with more ambitious but still 
achievable changes. 
 
Complementarily, as in our previous work, generative adversarial networks will be used to 
identify and visualise optimal designs to transition the urban form from ‘unhealthy to healthy’ 
[38] and ‘’unsafe to safe’ cycling [39] with resultant benefits in NCD prevention.  
 
 

Supporting evidence-informed decisions for healthy urban design 

 

Phase 4 - Developing a toolkit for action 

We will develop a web-based tool, called City Vision, in which outputs from Phases 1-3 are 
presented and manipulated in an interactive environment, encouraging exploration of 
findings, new insights, and evidence-informed decisions. The toolkit will be co-designed with 
intended users (e.g., decision-makers and public servants in urban planning and health 
departments, members of the public, NGOs, researchers) to ensure that features required to 
match their tasks and goals are implemented, and that the tool can support their decisions 
and actions for NCD prevention. A usability study will be conducted alongside the tool 
development to identify the tasks and goals of intended users and the features required in 
the tool to match them and examine tool utility. It is anticipated that a group of 10-12 
participants from the UK and Australia (invited from those living and working in the cities in 
Phase 1-3s), representing a variety of potential users, will offer critical insights and feedback 
on the structure, usability, and interface of the platform to meet the requirements of their 
decision-making cycle. Participants will be involved in three main activities: (i) in early stages 
of tool development, a one-day participatory workshop will discuss which features are 
required to meet their tasks and goals; (ii) during tool development, participants will test 
intermediate versions of the tool and provide feedback to improve features and overall 
usability; (iii) after completion of tool development, a second one-day meeting for 
participants to engage with the tool, discuss data gaps and priorities, determine what 
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aspects of the process they found useful (or not) and why, discuss next steps to improve the 
tool and how it can be scaled up and applied to other settings. The research team will 
conduct and record the workshops, documenting decisions and outputs.  
 

DISCUSSION: 

We are living in a new urban age, an age awash with anthropogenic processes that 
influence health risks, but also, with new ways to understand them and potentially intervene. 
It is critical that we improve our understanding of the strengths and weaknesses of existing 
city designs to ensure they are safe, clean, healthy, and sustainable. Cities are dynamic – 
their infrastructure and people change, grow, adapt and develop habits and cultures, healthy 
or otherwise. Technologies advance and decline or are displaced. These technologies (e.g., 
the motor vehicle) create (in)efficiencies, solutions, bottlenecks, demands, and instigate new 
health and social challenges. There is no ideal healthy city that is impervious to change nor 
invulnerable to future, unforeseen, sociotechnical challenges.  

Recent methodological advances in computer vision, AI, causal inference  and complexity 
science as described in this research program offer opportunities to address long-standing 
research questions [42,45,54] about the relationship between urban design and health – and 
perhaps more importantly – what opportunities for positive change exist. We envisage facing 
some practical and technical challenges during the integration of these novel methods. For 
example, results might be influenced by unobserved or related factors such as historic 
patterns of social or urban development, or other conditions not captured by our 
observations but present within the health and imagery datasets. Secondly, there may be 
issues with the supply or harmonisation of datasets provided by different sources across 
countries – particularly in Australia which will require a consolidation and integration of a 
patchwork of health data.  
 
The expected study benefits include: (i) a deeper understanding of how urban design and 
effective urban planning can prevent NCDs; (ii) how future programs and policies may better 
harness the power of the built environment to generate meaningful changes in NCD risk 
factors and consequent NCD incidence; and, (iii) identification of practical pathways for 
change using a nearest-neighbour strategy. Long term, benefits are expected to include the 
development of programs, policies and direct design and planning interventions that utilise 
the urban environment for NCD prevention and reduced risk, leading to better quality of life 
alongside longer life expectancy. Urban design and planning practitioners will benefit from a 
deeper understanding of how urban design and planning can reduce NCD risk factors and 
prevent NCDs in turn.  
 
In summary, the future design of cities will be crucial to reducing the incidence, prevalence, 
and costs associated with NCDs. This study shows a new, replicable, scalable, and highly 
efficient method for understanding the characteristics of urban design with respect to NCDs 
and NCD risk factors. The research program highlights the opportunity for reducing the 
global burden of NCDs by embracing urban designs that emphasise characteristics captured 
within healthier city types. 
 

ETHICS AND DISSEMINATION: 

The study was approved by the University of Melbourne, Human Research Ethics 
Committee (2021-20546-13629-3, approved on the 13/01/2021) and the Medicine, Health 
and Life Sciences Faculty Research Ethics Committee, Queen’s University Belfast (MHLS 
20_85; 02/02/2021).  
 
UK Biobank received ethical approval from the North West Multi-centre Research Ethics 
Committee (REC reference: 11/NW/03820). All participants gave written informed consent 
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before enrolment in the study, which was conducted in accord with the principles of the 
Declaration of Helsinki. 
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