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A B S T R A C T

While numerous thermal comfort models have been developed to predict human thermal comfort 
levels in outdoor areas under varying weather conditions, these indexes are generally designed for 
adults. To assess the suitability of thermal comfort models, the Universal Thermal Climate Index 
and a multiple linear regression (MLR) model based on Predicted Mean Vote factors, to predict 
children’s outdoor thermal sensation votes (TSV), field investigations were conducted in a Harbin 
park across multiple seasons. In addition, two new artificial neural network (ANN) models, with 
single and double hidden layers, were developed and validated to address a wider range of input 
parameters than the traditional models, clothing levels and metabolic rates, as well as accounting 
for a wider range of ages, body weights and heights. The results demonstrated that: 1) the ANN 
models outperformed the traditional models; 2) The two-hidden-layer ANN model slightly out-
performed the one-hidden-layer model; 3) sensitivity analysis identified the top four parameters 
influencing the prediction of children’s TSV in Harbin as mean radiant temperature (0.259), air 
temperature (0.200), globe temperature (0.161), and children’s metabolic rate (0.110). These 
findings will offer valuable insights for optimizing thermal environments in urban parks, reducing 
children’s thermal stress, and advancing intelligent park services.

1. Introduction

Climate change is impacting human health and well-being, with children being particularly vulnerable to its effects (Z. Xu et al., 
2012). As economic and social development progresses, there is a widespread pursuit of more comfortable living conditions, and 
children have the right to enjoy both comfortable indoor and outdoor environments. However, discussions on climate change often 
overlook its impact on children (Currie and Deschênes, 2016). According to the World Health Organization (WHO), children’s health is 
currently facing a range of new threats. Adverse outdoor environments directly or indirectly affect children’s health (WHO, 2020a).

Outdoor spaces are essential for production, construction, exercise, recreation, and socializing, making them closely intertwined 
with daily life. Urban parks, as crucial outdoor spaces for residents, play a significant role in influencing physical and mental health 
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(Dadvand et al., 2016; Javadi and Nasrollahi, 2021; Maas et al., 2009; Seltenrich, 2015; Tyrväinen et al., 2014; Vanaken and 
Danckaerts, 2018; WHO, 2020b). They provide excellent venues for children to participate in outdoor leisure, recreation, and physical 
activities.

Outdoor thermal comfort is the most significant environmental factor influencing citizens’ outdoor activities (Lai et al., 2014a; Qin 
et al., 2021), and a safe and comfortable outdoor thermal environment also helps minimize the environmental health risks faced by 
children (Kennedy et al., 2021). Therefore, understanding the thermal perception and comfort of children holds crucial value for 
enhancing urban outdoor environments (Coccolo et al., 2016). Researchers have established the relationship between the thermal 
environment and thermal perception by using thermal comfort indices such as Predicted Mean Vote (PMV), Physiologically Equivalent 
Temperature (PET), and Universal Thermal Climate Index (UTCI), which are then linked to thermal comfort assessment (Chan and 
Chau, 2019). While thermal perception might not be the ideal concept for gauging satisfaction with the thermal environment, it is 
frequently employed as an indicator for assessing thermal comfort (Shahzad et al., 2018; von Grabe, 2016).

Currently, there are two common methods for predicting outdoor thermal perception. One method involves using empirical 
thermal sensation models, specifically employing multiple linear regression (MLR), where outdoor thermal perception is defined as a 
function of meteorological parameters such as air temperature (Ta), wind speed (V), solar radiation (G), and absolute humidity (Cheng 
et al., 2012; Hadianpour et al., 2018; Lai et al., 2014b; W. Yang et al., 2013; Zhao et al., 2016). This method treats the complex causal 
relationships between thermal perception and its influencing factors as a black box, simplifying the prediction of thermal sensation. 
However, although microclimate parameters indeed significantly influence thermal perception, they can only explain around 50 % of 
the actual variations in respondents’ thermal sensation (Nikolopoulou and Steemers, 2003). The other method involves predicting 
thermal perception through thermal indices. To date, 165 human thermal indices have been developed for assessing thermal comfort 
and heat stress in hot environments (de Freitas and Grigorieva, 2017). PMV, PET, and UTCI are three widely used indices in outdoor 
thermal comfort research. Among them, PMV is based on the steady-state heat balance model proposed by Fanger in the 1970s (Fanger, 
1970). However, while the PMV model is effective for predicting thermal sensation in static and air-conditioned buildings, its per-
formance is poor for naturally ventilated buildings (Chai et al., 2020) and even worse in dynamic outdoor environments. PET and UTCI 
are considered reasonable indicators for predicting outdoor thermal comfort and thermal stress, they have been used by some studies 
as methods to approximate children’s thermal comfort and thermal stress (He et al., 2023; Huang et al., 2021; Lam et al., 2021; Shao 
et al., 2022). However, these indices have certain limitations. While they provide an objective assessment of the thermal environment’s 
impact on the body’s thermal state, they do not account for personal factors such as clothing insulation and activity level, which are 
either excluded or standardized to specific reference values. PET adopts standardized clothing (0.9 clo) and metabolic rate (80 W/m2) 
and is only effective for people aged 20–60 (Höppe, 1999). UTCI sets walking speed at a constant 4 km per hour (1.11 m/s), internal 
heat production at 135 W/m2, and comes with an adaptive clothing model that adjusts to current conditions (Jendritzky et al., 2012). 
Their contribution to understanding and applying thermal stress and comfort in outdoor environments for children should not be 
overlooked in efforts to improve children’s environmental health (Vanos, 2015). Thermal perception is influenced by numerous factors 
such as meteorological conditions, physiological factors, and thermal experiences (Elnabawi et al., 2016; Yin et al., 2012). Empirical 
thermal sensation models and thermal indices, which employ linear regression for prediction, are limited in their ability to fully reveal 
the complex causal relationships between thermal perception and its influencing factors.

To predict human thermal perception and comfort more accurately, machine learning has also been introduced into outdoor 
thermal comfort research. Mladenović et al. (2016) used support vector machines (SVM) to predict the thermal comfort index PET for 
visitors in open urban areas. Similarly, Kariminia et al. (2016) employed extreme learning machines (ELM) to predict the PET thermal 
comfort index of subjects in open areas in Iran. Liu et al. (2020) developed an SVM model to predict thermal comfort status in outdoor 
environments using local skin temperature and heat load as inputs. Eslamirad et al. (2020) proposed a novel method combining urban 
design strategies with supervised machine learning techniques, optimizing green walkways to improve outdoor thermal comfort while 
minimizing errors. Choronopoulos et al. (2012) used artificial neural network (ANN) to predict the temperature-humidity index (THI) 
in a mountainous area of Greece. Based on the factors influencing PMV, Chan and Chau (2019) introduced microclimatic perception, 
environmental characteristic perception, and personal characteristics as additional predictive variables for thermal comfort, signifi-
cantly improving the model’s prediction performance. However, the established models require the input of an individual’s psy-
chological perception before predicting their thermal comfort. This method of predicting one perception using one or multiple 
perceptions impedes the practical application of the model. Therefore, the selection of input variables should be easily obtainable, as if 
the difficulty of obtaining input variables is comparable to or greater than that of output variables, the predictive significance is lost. 
Conducting questionnaire surveys to obtain subjective thermal perception evaluations from children, a distinct demographic from 
other age groups, often proves to be more complex (He et al., 2023). Thus, accurately predicting children’s subjective thermal 
perception based on limited collected data appears particularly crucial. Li et al. (2024) monitored and collected physiological in-
dicators, facial expressions, and subjective thermal evaluations of children in outdoor open spaces. They combined machine learning to 
construct a predictive model for children’s outdoor thermal sensation based on non-intrusive data collection such as facial expressions, 
ear skin temperature, and heart rate. This achievement facilitates real-time monitoring of children’s thermal comfort, ensuring their 
outdoor thermal health and safety. However, this model lacks connections with objective environmental characteristics.

ANN serves as one of the crucial algorithms in machine learning, renowned for their robust information processing capabilities, 
enabling the resolution of complex, mathematically uncertain, stochastic, and nonlinear problems (Basheer and Hajmeer, 2000; 
Graupe, 2013). They have been extensively employed in prediction, decision-making, classification, and control systems (Kalogirou, 
2000). For example, they have been used in fraud detection (Omar et al., 2017), medical diagnosis (Amato et al., 2013), protein 
structure prediction (Hirst and Sternberg, 1992; Wardah et al., 2019), and agriculture (Khairunniza-Bejo et al., 2014; C. Yang et al., 
2000). In architecture, they have optimized building energy use and thermal comfort. Given their adaptability and generalization 

X. He et al.                                                                                                                                                                                                              Urban Climate 60 (2025) 102378 

2 



capabilities, they hold great potential for improving the accuracy of children’s thermal perception predictions and enhancing outdoor 
thermal comfort (Deng and Chen, 2018; Mba et al., 2016; Shan et al., 2020).

In summary, this study aims to develop a comprehensive ANN model that considers traditional PMV factors, as well as additional 
personal characteristics and environmental variables, to predict outdoor thermal perception of children in Harbin, China. By 
comparing the predictive performance of the MLR, the UTCI, and the ANN models, the feasibility and superiority of ANN in predicting 
residents’ outdoor thermal perception will be validated. Furthermore, this study will discuss the potential applications of the con-
structed model in park management, services, and the optimization of child-friendly park spaces, through feature sensitivity analysis 
and other methods. The research findings will provide valuable insights for urban planners and landscape designers regarding the 
development of child-friendly urban parks, contributing to the enhancement of children’s well-being in outdoor thermal 
environments.

2. Methods

2.1. Data collection

The field survey in this study was conducted in Harbin, which is classified as a Dwa climate according to the Köppen-Geiger climate 
classification (Fig. 1) (Beck et al., 2023). Based on meteorological records from 1991 to 2021, we plotted the temperature and humidity 
conditions in Harbin over the years (Fig. 2), which shows that Harbin has very cold winters, hot summers, and a mild but dry transition 
season (China Meteorological Administration (CMA) (2025)). We collected data during the winter, summer, and transitional season on 
the following dates: January 12, 13, 14, 17, 18, and 19, 2022; July 6, 8, 9, 10, 11, and 12, 2022; April 8, and May 1, 2, 6, and 7, 2023. 
Fig. 3 illustrates the site conditions of the field survey and the seasonal Sky View Factors (SVF) at various measurement points. This 
study targeted children aged 4 to 17 years old and collected original data from four open spaces within an urban park in Harbin 
through meteorological data measurements and questionnaire surveys. These four representative spaces composed of plants represent 
open space, semi-enclosed space, enclosed space and covered space. And they are very popular with children. The database composed 
of these data would be utilized for predicting children’s outdoor thermal perception. Considering the daylight duration in Harbin, the 
field survey times during winter were set from 8:30 to 15:30, while during the transitional and summer seasons, it extended from 8:30 
to 16:30. A mobile microclimate station composed of instruments compliant with ISO 7726 was used to monitor the microclimate 
conditions at the survey locations, including Ta, RH, V, G, and black globe temperature (Tg), were monitored using mobile microclimate 
stations. Fisheye photos of different spaces in different seasons were captured using an EOS 5D Mark III camera paired with an EF 8-15 
mm f/4 L USM lens to calculate SVF. Our study employed non-invasive field observations and collected general demographic infor-
mation such as children’s gender, height, weight, age, activity type, and clothing with consent from the children or their guardians. 
Sensitive information such as names, addresses, and contact details were not collected (Appendix Fig. S1). Surveys were conducted 
through questionnaires combined with interviews, with the help of guardians when necessary. Detailed information on the survey 
methods and meteorological instruments can be found in reference (He et al., 2023).

Metabolic rate and clothing insulation are two important factors affecting thermal sensation besides meteorological parameters. 
Havenith (2007) proved that children’s clothing insulation values are like those of adults in the same season, allowing the use of adult 
values for calculating children’s insulation. This study evaluated children’s clothing insulation values based on ISO 9920 (ISO 

Fig. 1. The global maps of the Köppen-Geiger climate classification.
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International Standard 9920, 2007). Fig. 4 lists the clothing items and their insulation values. One Metabolic Equivalent of Task (MET) 
for adults represents the consumption of 3.5 mL of oxygen per kilogram of body weight per minute (i.e., 3.5 mL⋅kg− 1⋅min− 1), or the 
expenditure of 1 kcal of heat per kilogram of body weight per hour (i.e., 1 kcal⋅kg− 1⋅hr− 1). However, due to differences in metabolic 
characteristics, adult MET values may not be directly applicable to children. The basal metabolic rate per unit body weight for children 
and adolescents is higher than that for adults. Therefore, the energy expenditure per kilogram of body weight during physical activity 
is greater for children and adolescents than for adults. To accurately assess children’s MET values, Butte et al. (2018) compiled a 
summary of children and adolescents’ physical activity energy expenditure, presenting MET values for the same physical activity in 
four age groups: 6–9, 10–12, 13–15, and 16–18 years. In this study, the physical activity values for 4- and 5-year-old children were 
approximated using the MET values for 6–9 years (Table 1).

2.2. Development of ANN

2.2.1. Screening of predictor variables
Although the PMV algorithm had been shown to be inadequate in correctly predicting the ASHRAE mean vote, it was clear that the 

six factors influencing PMV do affect thermal sensation (von Grabe, 2016). Therefore, this study used four climatic variables (Ta, V, RH, 
Tmrt) and two personal variables (MET, Icl) as initial input variables affecting thermal sensation. On this basis, the study employed 
Pearson correlation analysis to screen out objective variables significantly correlated with thermal sensation (P < 0.05) as the final 
input variables. The additional input data included other environmental features (SVF, Tg, G) and personal parameters (Height, Weight, 
BMI, Age, Sex, Posture, etc.).

2.2.2. Data preprocessing
This study employed min-max normalization to scale the input and output variables to the range of [− 1,1]. After applying the min- 

max normalization process, each variable lay within the desired value range while maintaining the basic distribution of the corre-
sponding variables. 

x = 2*
x0 − xmin

xmax − xmin
− 1 (1) 

In this context, x0 represents the original data, and x represents the normalized data. Since we used the normalized data for 
training, the predicted values were also based on the normalized data. Therefore, we denormalized the predicted values to obtain the 
actual predictions. The denormalization process was given by: 

Fig. 2. Monthly mean/maximum/minimum air temperature (Ta) and mean relative humidity (RH) in Harbin from 1991 to 2021.
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Fig. 3. Site location and measurement spaces: (a) site location; (b) photos of open spaces; (c) winter’s fisheye photos; (d)spring’s fisheye photos; (e) 
summer’s fisheye photos.
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x0 =
(x + 1)*(xmax − xmin)

2
+ xmin (2) 

By using these formulas, we ensured that the predicted values reflect the actual scale of the data, preserving the interpretability and 
practical utility of the model’s output.

2.2.3. The basic structure of ANN
Common types of neural networks include feedforward neural networks, recurrent neural networks, and graph neural networks. 

Feedforward neural networks can effectively reduce computational complexity and training difficulty while improving generalization 
ability. Therefore, this study adopted a feedforward neural network. A neural network consisted of an input layer, hidden layers, and 
an output layer. A sigmoid function was selected as the transfer function for the hidden layers, and a linear function was chosen for the 
output layer. The Levenberg-Marquardt algorithm was employed for network training. This algorithm was widely used in feedforward 
neural networks due to its speed and accuracy (Buratti et al., 2015; Deng and Chen, 2018).

In this study, after loading the data, the entire dataset was first divided into two parts. The first part, accounting for 80 %, was used 
to design the network, while the second part, comprising 20 %, served as an independent final test dataset (ITD), separate from the 
network design process. The first part of the data was further divided into a training dataset (TD, 60 %), a validation dataset (VD, 20 

Fig. 4. Simplified children’s clothes checklist.

Table 1 
Different types of children’s activities and corresponding MET values.

MET

MET Code Activity Type Specific Activity 4–9 10–12 13–15 16–17

55,340X Sitting Sitting 1.4 1.3 1.3 1.2
70,200X Standing Standing 1.7 1.7 1.7 1.6
80,120X Walking Walking 1.0 mph / 1.6 km/h 2.5 2.6 2.7 2.8
80,180X Walking Walking 2.5 mph / 4.0 km/h 3.3 3.5 3.6 3.7
65,500X Sports Table tennis 4.2 4.2 4.2 4.2
25,140X Cycling Cycling (self-determined speed) 4.6 5.3 5.8 6.4
65,360X Sports Skateboarding (40 slides/min) 4.9 5.0 5.0 5.1
65,320X Sports Roller skating 5.2 5.2 5.3 5.4
60,120X Running Jogging: slow 5.5 5.9 6.3 6.7
10,160X Playing Free play: basketball, jump rope/climbing rope, hula hoop, climbing, ladder, frisbee 5.7 5.9 6.0 6.1
10,100X Playing Ball games: bouncing, soccer, dribbling, reaction ball 6.0 6.2 6.3 6.5
10,440X Playing Tag games 6.1 6.3 6.4 6.6
10,240X Playing Jumping house game 6.3 6.5 6.7 6.8
10,260X Playing Jump rope 6.9 7.1 7.2 7.4
60,100X Running Jogging: fast 7.2 7.9 8.5 8.8
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%), and a test dataset (TestD, 20 %).
A neural network with a single hidden layer can approximate any function (Hecht-Nielsen, 1987; Hecht, 1989). However, more 

hidden layers enhance the neural network’s ability to represent highly nonlinear assumptions. This study developed both single hidden 
layer and double hidden layer ANN models, using the same transfer functions, training methods, data partitioning, and normalization 
techniques. The primary difference between the two models lay in the number of hidden layers and the number of neurons in each 
hidden layer. The single hidden layer ANN model was developed using the Neural Network Toolbox in MATLAB.

Based on these, the study first constructed a single hidden layer ANN model to quickly assess the contribution of predictor variables 
to the model. Subsequently, a double hidden layer ANN model was developed to attempt to further enhance model performance. The 
number of neurons in the hidden layers can significantly impact the quality of the model. Although there was no definitive rule for 
determining the number of neurons in the hidden layers (Pentoś, 2016), their range be approximated using the following formula 
(Maier and Dandy, 2000): 

2 ×
̅̅̅̅̅
Ni

√
+ N0 ≤ Nh ≤ 2 × Ni + 1 (3) 

In this formula, N0 is the number of neurons in the output layer, which was 1 in this study (heat sensation votes), Nh represents the 
possible number of neurons in the hidden layer, and Ni is the number of neurons in the input layer.

There are several methods to enhance the generalization ability of a neural network, such as training multiple times to find the best 
generalization network, averaging the outputs of multiple neural networks, early stopping, and regularization. MATLAB’s default 
method for improving generalization is called early stopping. Building on this, the study trained the network architecture 10 times, and 
the average of the outputs from these 10 networks was used as the final prediction result to avoid instability issues that might arise 
from relying on a single optimal network (Chan and Chau, 2019; de Oña and Garrido, 2014; Pentoś, 2016). This approach helped to 
ensure robustness and accuracy in the model’s predictions, taking advantage of the ensemble of networks to mitigate the impact of any 
individual network’s overfitting or underperformance.

2.3. Performance comparison with traditional models

2.3.1. Predicting thermal perception by UTCI
Compared to other indices, the UTCI better describes the temporal variations in thermal conditions, more accurately representing 

specific climates, weather, and locations. It can be applied across all weather conditions, seasons, and spatial scales (Jendritzky et al., 
2012).

The UTCI value was calculated using meteorological parameters such as Ta, RH, V, and Tmrt, among others, by inputting them into 
RayMan software. Tmrt was calculated using eqs. (4). 

Tmrt =

[
(
Tg + 273

)4
+

1.10 × 108V0.6

εD0.4

(
Tg − Ta

)
]1

4
− 273 (4) 

In Eqs. (2–4), D represents the diameter of the black globe (D = 0.05 m), and Ɛ represents the emissivity coefficient of the black 
globe (Ɛ = 0.95).

Essentially, this method used UTCI to equivalently measure the actual thermal environment people were exposed to and then 
employed a linear regression model to predict their subjective thermal perception. The traditional approach calculates the weighted 
average of thermal sensation vote (TSV) for each 1 ◦C UTCI interval to obtain mean TSV, which is then linearly regressed against UTCI 
(He et al., 2020; He et al., 2023). This method predicts the average TSV for a group of people, lacking consideration for individual 
differences. In this study, linear regression analysis was conducted using SPSS software on individual TSV datasets and their corre-
sponding UTCI datasets. The regression equation is expressed as follows: 

TSV = C + B*UTCI (5) 

2.3.2. Prediction of thermal perception by MLR model
Based on climate data and personal data, thermal perception can be predicted. Salata et al. (2016) proposed the Mediterranean 

Outdoor Comfort Index (MOCI), which uses V, RH, Tmrt, Ta, and clothing insulation values to predict the thermal sensation of Med-
iterranean people. Similarly, Ruiz and Correa (2015) developed the thermal comfort index for arid regions (IZA), which predicts 
population thermal perception using Ta, V, and RH. Lai et al. (2014b) defined thermal sensation using four meteorological parameters 
measured by weather stations: Ta, G, V, and RH. W. Yang et al. (2013) applied multiple linear regression to predict respondents’ 
thermal sensation as a function of four variables: Ta, RH, V, and Tmrt. Cheng et al. (2012) developed a formula to predict thermal 
sensation using linear regression analysis with four independent variables: Ta, V, G intensity, and absolute humidity. Krüger and Rossi 
(2011) expressed thermal sensation as a function of Ta, V, and G. The commonality in these studies is the selection of easily obtainable 
factors that have been empirically verified to significantly impact thermal perception as predictor variables.

Numerous factors influence thermal perception, including Ta, Tmrt, V, RH, metabolic rate, and clothing insulation. These are widely 
recognized as the primary variables affecting thermal sensation (Y. Yang et al., 2024). This study aimed to express the TSV as a function 
of these six factors. Using SPSS, a data analysis software, a multiple linear regression model was constructed to represent this rela-
tionship. The model can be expressed as follows: 
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TSV = b0 + b1Ta + b2Tmrt + b3V + b4RH + b5MET + b6Icl (6) 

2.3.3. Model performance evaluation
This study characterized the model’s performance using methods such as Mean Squared Error (MSE), correlation coefficient (R), 

and coefficient of determination (R2). The optimal network was selected by comparing the MSE of the ANN on an independent test set. 
The MSE of the independent test set was considered the primary evaluation criterion, as better performance on the test set indicated 
superior generalization ability of the model. Furthermore, we employed the Mean Bias Error (MBE), Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), along with its systematic (RMSES) and unsystematic (RMSEU) components to facilitate a comparative 
evaluation of the model performance (Qin et al., 2021).

The predictive performance of the constructed ANN model was examined by comparing it with multiple linear regression models 
and the UTCI-TSV prediction model. The R was used to assess the degree of correlation between the ANN model’s predictions and the 
actual values (TSV values collected during the survey). The R2 represented the proportion of variance explained by the model. The 
formulas for these calculations are as follows: 

MSE =
1
n
∑n

i=1
(ŷi − xi)

2 (7) 

R =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√ (8) 

R2 = 1 −

∑n

i=1
(xi − yi)

2

∑n

i=1
(yi − y)2

(9) 

where xi is the actual value, yi is the predicted value, n is the number of observations, x and y are the mean values of the actual and 
predicted values, respectively.

2.4. Determine the importance order of variables based on sensitivity analysis

Sensitivity analysis is an effective method for determining the importance of variables in an ANN. The Sensitivity Coefficient (SC) is 
the ratio of the change in the output to the change in the input when all other parameters are held constant. There are various methods 
for conducting sensitivity analysis, with the simplest being the method of altering one parameter at a time while keeping all other 
parameters unchanged (Hamby, 1994). The ratio of the output change to the input change before and after the parameter alteration 
can be expressed as follows: 

ΔY = Y(Xi + ΔX) − Y(Xi) (10) 

Table 2 
Descriptive Statistics of the Data.

Parameter types Content Minimum Maximum Mean Standard Deviation

PMV 
parameters

1 Ta (◦C) − 22.4 32.7 8.1 19.6
2 RH (%) 14.3 82.0 48.0 13.3
3 V (m/s) 0.0 2.0 0.9 0.4
4 Tmrt (◦C) − 22.3 74.7 28.9 22.1
5 Icl (clo) 0.17 2.82 1.05 0.72
6 MET 1.2 7.4 4.1 1.9

Environmental 
parameters

7 G (W/m2) 24.0 1047.9 311.7 247.7
8 Tg (◦C) − 21.6 43.9 13.2 19.8
9 SVF 0.356 0.692 0.528 0.136

Personal 
parameters

10 Posture* 0 1 0.92 0.28
11 High (cm) 90.0 188.0 143.5 17.6
12 Weight (kg) 13.0 90.0 37.5 12.5
13 BMI 10.1 33.3 17.8 3.5
14 Age 4.0 17.0 10.1 2.9
15 Sex** 0 1 0.6 0.5

Dependent variable 16 TSV − 4 4 0.54 1.987

* Standing: 1, Sitting: 0.
** Male: 1, Female: 0.
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SC =
ΔY
ΔX

(11) 

The perturbation value ΔX stands for a minor change in the parameter. In this study, we increased each parameter by 1 %, which, 
after normalization, equated to an increase of 0.01. By altering the input parameters by this amount while keeping all other parameters 
constant, we recorded the changes in the output. Then, we calculated the SC for each parameter using the method described. This 
approach was systematically applied to all parameters.

3. Results

3.1. Basic data description

A total of 1616 valid questionnaires were collected during the field survey. Table 2 presents the statistical data of 15 potential 
factors influencing the TSV. These include six factors confirmed by previous studies to influence thermal perception, along with three 
environmental characteristics: G, Tg, and SVF. Additionally, six personal characteristics were recorded: Height, Weight, Sex, Age, Body 
mass index (BMI), and Posture. Interestingly, the minimum recorded Ta was − 22.4 ◦C, while the maximum Ta reached 32.7 ◦C, 
indicating a significant temperature variation between the cold and hot seasons in Harbin. Correspondingly, children’s clothing 
insulation values ranged widely from 0.17 clo to 2.82 clo. The ages of the children ranged from 4 to 17 years, with an average age of 
10.1 years. We conducted a Kruskal-Wallis H test to examine differences in thermal sensation among children of different age groups 
(Appendix Table S1). The results indicate that at the 0.01 significance level, children aged 16–17 exhibited significantly different 
thermal sensations compared to the 4–9 and 10–12 age groups. This difference may be attributed to older children being physio-
logically closer to adults, whose thermal perception has been shown to differ significantly from that of younger children (Mors et al., 
2011). Male children accounted for 60 % of the total participants. Most of the children were standing (92 %), with a few sitting (8 %). 
The activity intensity of children in the park’s open spaces averaged moderate-light intensity at 4.1 MET.

Fig. 5 illustrates the percentage distribution of TSVs across different seasons. In winter, children’s thermal sensations were pri-
marily reported as ‘cold’ (16.1 %), ‘cool’ (22.4 %), ‘slightly cool’ (26.9 %), and ‘neutral’ (24.4 %). In spring, the most frequent TSV was 
‘neutral’ (36.2 %). In summer, the highest percentages were ‘hot’ (32.6 %), followed by ‘very hot’ (19.5 %) and ‘neutral’ (19.5 %). 
Overall, across the three seasons and a total of 1616 observations, the highest overall TSV percentage was ‘neutral’ (27 %), followed by 
‘hot’ (15.9 %) and ‘slightly cool’ (14.3 %). The mean TSV across all observations was 0.54, indicating a slight tendency towards a 
warmer sensation than ‘neutral’, with a standard deviation of 1.987.

3.2. Development of traditional models

3.2.1. The UTCI model
To evaluate the predictive performance of UTCI on TSV, a simple linear regression analysis was conducted between TSV and UTCI 

(Table 3). The results indicated that UTCI can significantly predict variations in children’s TSV, with β = 0.708, t = 40.247, and P <
0.001. UTCI explained 50.1 % of the variance in TSV. The linear regression equation between TSV and UTCI was expressed as follows: 

TSV = − 0.478 + 0.073UTCI (12) 

Fig. 5. Percentages of thermal sensation votes in different seasons.

X. He et al.                                                                                                                                                                                                              Urban Climate 60 (2025) 102378 

9 



3.2.2. The MLR model
Multicollinearity occurs when two or more independent variables are highly correlated, which can affect both the explanation of 

the dependent variable’s variance and the overall fit of the multiple linear regression model. Therefore, this study first examined the 
collinearity among the six PMV factors (Table 4). There was significant collinearity between Ta and Icl (Variance Inflation Factor, VIF >
10). Considering that people tend to adjust their clothing based on temperature changes, Icl was excluded from the multiple linear 
regression predictive model. Thus, the variables Ta, RH, V, Tmrt, and MET were used as independent variables in the model.

Table 5 indicates that the regression model is statistically significant (P < 0.001). The five variables explain 52.7 % of the variance 
in TSV. The significance tests for the variables show that Ta, Tmrt, and MET can significantly predict children’s TSV. The multiple linear 
regression model for predicting children’s thermal sensation in Harbin is represented by Eq. (13). 

TSV = 0.048Ta − 0.003RH − 0.219V + 0.025Tmrt + 0.161MET − 0.892 (13) 

3.3. Development of ANN models

3.3.1. Feature selection and basic structure
This study used the four climatic variables and two personal variables proposed by Fanger in the PMV algorithm as the initial input 

features for the ANN model (Fanger, 1970). Based on this, a Pearson correlation analysis was conducted on other features recorded 
during the field survey (Fig. 6). Features significant at the 0.05 level were included in the ANN model. Ultimately, three personal 
parameters—Posture, BMI, and Sex—were excluded due to their insignificant correlation with TSV, while G, Tg, SVF, Height, Weight, 
and Age were included as input variables for the ANN model.

3.3.2. Development of ANN model
We designed and tested two different neural network architectures (Appendix Table S2, Fig. S2 and S3), the ANN model with two 

hidden layers performs better. Table 6 shows its specific performance. The R on the training set, validation set, and test set were close 
to each other. It indicated that the model had good generalization ability. The minimum MSE was 0.1107, the maximum was 0.1148, 
and the average was 0.1134, which outperforms the one-hidden-layer ANN model (Appendix Table S3).

3.4. Comparison of traditional models and ANN models

Table 7 presents the results of linear regression analysis for the predicted values of four models against the actual values. The R of 
the two-hidden-layer ANN was slightly greater than that of the single hidden layer (0.755 > 0.748), surpassing the other two tradi-
tional models. The MBE indicates that the systematic bias of all four models is relatively small. The RMSES of all models is less than the 

Table 3 
Linear regression analysis of children’s thermal perception and UTCI.

B Constant β R2 t F P

Total 0.073 − 0.478 0.708 0.501 40.247 1619.803 <0.001

Table 4 
Collinearity test between predictor variables.

VIF-total VIF-total (after delete Icl)

Ta 17.031 4.495
RH 1.178 1.166
V 1.956 1.954
Tmrt 4.783 4.780
Icl 13.718 –
MET 1.019 1.019

Table 5 
Multiple linear regression of TSV and six PMV factors.

B β t P

Ta 0.048 0.468 12.853 0.000
RH − 0.003 − 0.020 − 1.099 0.272
V − 0.219 − 0.044 − 1.832 0.067
Tmrt 0.025 0.282 7.523 0.000
MET 0.161 0.151 8.688 0.000
Constant − 0.892 − 4.673 0.000
Adjusted R2 0.524
F F = 356.026, p = 0.000
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RMSEU, which indicates that the error is mainly due to random noise in the data rather than systematic. Among the four models, the 
two-hidden-layer ANN model had the smallest MSE (1.697), followed by the one-hidden-layer ANN model (1.740), the MLR model 
(1.884), and the UTCI model (1.968). Moreover, the MSE values also revealed that the two-hidden-layer ANN model performed best. 
Both RMSE and MAE exhibited trends like those of MSE.

It is worth noting that we tested the performance of the two-hidden-layer ANN model across different age groups and found that it 
performed better (with a higher R2) in predicting thermal perception for younger children compared to the 16–17 age group 
(Appendix Table S4). This is similar to actual thermal sensation, which may also be attributed to the fact that children’s thermal 
perception differs significantly from that of adults (Zheng et al., 2024). Compared to younger children, children aged 16–17 have 

Fig. 6. Pearson correlation analysis of ANN model potential input variables and TSV.

Table 6 
The 10 optimal two-hidden-layer ANN models with the best performance on the ITS.

No Structure R MSE

TS VS TestS ITS

1 12–20–9-1 0.7585 0.7106 0.6894 0.1107
2 12–23–14-1 0.7482 0.7092 0.7262 0.1114
3 12–19–8-1 0.7549 0.7036 0.7140 0.1120
4 12–12–9-1 0.7523 0.7143 0.6517 0.1136
5 12–13–19-1 0.7805 0.6745 0.6203 0.1139
6 12–19–12-1 0.7566 0.7258 0.6849 0.1143
7 12–8–14-1 0.7586 0.6972 0.6991 0.1145
8 12–22–9-1 0.7572 0.6933 0.6915 0.1145
9 12–16–20-1 0.7620 0.6919 0.7327 0.1147
10 12–16–10-1 0.7496 0.7181 0.7096 0.1148
Mean 0.7578 0.7039 0.6919 0.1134

Table 7 
Linear regression analysis and predictive performance of (1) UTCI model, (2) MLR model, (3) one-hidden-layer ANN model, and (4) two-hidden-layer 
ANN model.

Model B R2 R MSE RMSE RMSES RMSEU MBE MAE

(1) 0.5035 0.5009 0.708 1.968 1.403 0.006 1.403 − 0.006 1.176
(2) 0.5494 0.5268 0.726 1.884 1.373 0.118 1.367 0.118 1.137
(3) 0.5436 0.5596 0.748 1.740 1.319 0.032 1.319 − 0.032 1.085
(4) 0.5528 0.5701 0.755 1.697 1.303 0.007 1.303 − 0.007 1.069

X. He et al.                                                                                                                                                                                                              Urban Climate 60 (2025) 102378 

11 



physiological metabolism and other characteristics that are more like those of adults. To make a more specific comparison of the 
performance of the four models, we calculated the prediction accuracy by counting the number of votes where the predicted TSV 
matched the actual TSV, then dividing the result by the total number of votes and multiplying by 100 % (Su et al., 2024). The pre-
diction accuracy of the UTCI model, MLR model, one-hidden-layer ANN model, and two-hidden-layer ANN model are 22.3 %, 23.3 %, 
24.9 %, and 25.6 %, respectively (Appendix Table S5). This further demonstrates that the two-hidden-layer ANN model is the best 
among the four models.

Fig. 7 illustrates the linear regression relationships between the predicted and actual values for the four models. The R2 for the two- 
hidden-layer ANN model (0.5701) was greater than that of the UTCI model (0.5009), MLR model (0.5268), and one-hidden-layer ANN 

Fig. 7. The values predicted by (a) UTCI model, (b) MLR model, (c) one-hidden-layer ANN model, and (d) two-hidden-layer ANN model against the 
actual values.
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model (0.5596). It is noteworthy that the two-hidden-layer ANN model improved the R2 values by 0.0692 and 0.0433 over the UTCI 
model and MLR model, respectively, but did not significantly enhance the predictive accuracy compared to the one-hidden-layer ANN 
model, with only a slight increase in the R2 value by 0.0105. This may be attributed to the fact that factors influencing thermal 
perception include, but are not limited to, meteorological conditions (Villadiego and Velay-Dabat, 2014), Environmental character-
istics (Chan and Chau, 2019), physiological factors (Y. Zhang et al., 2020), clothing insulation (Y. Yang et al., 2024), psychological 
factors (Elnabawi et al., 2016), socioeconomic background (Shooshtarian, 2015), thermal experience (Krüger et al., 2017), and cul-
tural differences (He et al., 2020). Some studies have even demonstrated that thermal perception is associated with aesthetic and 
auditory perceptions (Lau and Choi, 2021). In summary, thermal perception is a subjective variable influenced by multiple factors, and 
there are large differences between different individuals. In addition, the variables that can be quantified in our study are very limited. 
The predictive capability of the existing input features has likely reached its upper bound.

3.5. Predictor importance order

The multiple linear regression analysis provided insights into the contribution of each predictor variable to thermal sensation 
prediction. In section 3.2.2, the multiple linear regression analysis showed that among the six PMV factors, Ta, Tmrt, and MET were the 
most significant predictors of TSV. In contrast, RH and V did not significantly contribute to TSV prediction. The ANN prediction model 
not only exhibited better performance compared to traditional models but also identified the contributions of different input variables 
to predicting children’s thermal sensation through sensitivity analysis.

Fig. 8 illustrates the sensitivity coefficients of all input variables in the two-hidden-layer ANN model. A positive value indicates that 
changes in the input parameters are consistent with changes in thermal sensation, while a negative value indicates the opposite di-
rection. The higher the absolute value, the more sensitive the thermal sensation is to changes in the input variables. The results show 
that Tmrt, Ta, Tg, MET, Height, Weight, Icl, and G had positive contributions to TSV changes, while Age, V, and RH had negative con-
tributions. Tmrt had the highest contribution to predicting TSV (SC = 0.259), followed by Ta (0.200), Tg (0.161), MET (0.110), Height 
(0.081), Age (− 0.077), Weight (0.054), V (− 0.044), RH (− 0.022), Icl (0.019), and G (0.016). The prominent contributions of Tmrt, Ta, 
and MET to TSV prediction, as well as the small sensitivity coefficients of RH and V, were consistent with the results of the multiple 
linear regression analysis. The results also indicated that PMV factors significantly contributed to predicting children’s TSV, while 
personal parameters such as Age, Height, and Weight also played important roles in predicting children’s TSV.

It is worth noting that the sensitivity coefficient (0.0001) of TSV to SVF variations in this study was very small. However, the impact 
of SVF on TSV has been confirmed by many studies (Chiang et al., 2023; Lin et al., 2010). One possible reason for this discrepancy is 
that the differences in SVF between winter and spring in Harbin were relatively minor and they had not reached the minimum SVF 
threshold necessary to cause TSV changes. More importantly, Lam et al. (2023) pointed out in their study that SVF is an important 
predictor for the “warm group” (feeling warm and wanting to cool down), rather than the “neutral group” (feeling neutral and 
remaining unchanged). However, in this study, the highest proportion of TSV was ‘Neutral’ (27 %). These factors might hindered the 
role of SVF in predicting TSV.

Fig. 8. Order of importance of the input variables.
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4. Discussion

4.1. Application prospects of ANN model

4.1.1. Designer’s auxiliary tools
Thermal sensation corresponds to thermal stress (Table 8) (Chen et al., 2020; Matzarakis and Mayer, 1996). The sensitivity co-

efficients not only elucidated the contribution of each parameter to the prediction of TSV but also provided valuable insights for 
designing child-friendly parks aimed at mitigating thermal stress. In selecting predictive variables, this study employed objective and 
quantifiable parameters as potential inputs for the ANN model, deliberately excluding children’s subjective perceptions of wind, 
humidity, and temperature. These subjective factors have been proven to significantly enhance the predictive performance of ANN 
models (Chan and Chau, 2019), but their inclusion was avoided to maintain the practicality of the model. Incorporating subjective 
elements necessitates prior acquisition of these perceptions during the prediction process, which would render the model redundant, as 
direct collection of thermal sensation would be more straightforward.

The sensitivity coefficients of these objective variables revealed their significant impact on TSV. The ANN prediction model can 
thus serve as a valuable tool for assessing and refining design schemes. For example, if children exhibit lower TSV in a particular space 
during winter, indicating increased cold stress, designers can address this by incorporating facilities that encourage higher-intensity 
activities for children, since the sensitivity analysis shows that changes in MET correlate with changes in TSV. Furthermore, simulating 
microclimates for different design schemes is feasible with current technology. By using meteorological simulation software, the 
microclimates of various sites can be simulated. The resulting meteorological parameters, combined with individual parameters of the 
target demographic, can be input into the ANN thermal sensation prediction model to evaluate the effectiveness of the design schemes 
in mitigating thermal stress for the target population. This approach allows urban planners and landscape designers to strategically 
adjust and optimize design schemes based on the evaluation results to better meet the thermal needs of child users (Fig. 9).

4.1.2. Smarter weather forecast
Traditional weather forecasts have supplied numerous conveniences for people’s daily lives and activities. In indoor settings, in-

dividuals can more readily anticipate adjustments to clothing and physical activities in response to temperature forecasts, as indoor 
thermal conditions typically exhibit greater stability compared to outdoor environments. However, when individuals receive outdoor 
temperature forecasts from weather reports, they may find it challenging to fully comprehend the implications for their thermal 
comfort and necessary adjustments. Using thermal indices, such as UTCI and PET, as forecast values allow laypeople to assess the real 
outdoor thermal environment based on personal experience. Because these indices incorporate all climate parameters relevant to heat, 
including Ta, RH, V, and radiant temperature (Höppe, 1999). Nevertheless, as discussed in the introduction, these indices have certain 
limitations.

Therefore, even if UTCI or PET is reported in weather forecasts, individuals still need to autonomously adjust their thermal ex-
pectations based on subjective characteristics related to clothing and activities. The ANN-based thermal perception prediction 
developed in this study incorporates environmental characteristics, including meteorological parameters, as well as individual pa-
rameters such as behavioral activities. This enables potential users of outdoor spaces to forecast their thermal perception based on 
planned activities and clothing choices under specific environmental conditions. This implies that the model can also supply rec-
ommendations for activities and clothing that make thermal perception more neutral or suggest choosing appropriate spaces as 
destination. In short, the ANN prediction model also holds enormous potential in providing intelligent services related to urban park 
open spaces (Fig. 10).

4.2. Limitations and future research

Despite the promising results, this study still has some limitations that are worth considering in future research. Firstly, this study 
conducted field surveys on representative days selected from different seasons. It is well known that for training artificial neural 
networks, larger and more diverse datasets are advantageous for establishing high-performance models. Future research should 
involve monitoring and recording physical environmental data monthly, or even weekly, and conducting corresponding questionnaire 
surveys to obtain more comprehensive and extensive foundational data for developing ANN. Secondly, the richness of model input 

Table 8 
Correspondence between thermal sensation and heat stress.

Thermal sensation category Thermal stress category

4 Very hot Extreme heat stress
3 Hot Strong heat stress
2 Warm Moderate heat stress
1 Slightly warm Slightly heat stress
0 Neutral No thermal stress
− 1 Slightly cool Slightly cold stress
− 2 Cool Moderate cold stress
− 3 Cold Strong cold stress
− 4 Very cold Extreme cold stress
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features is also crucial. This study selected easily measurable and quantifiable features such as meteorological parameters, environ-
mental parameters, and personal parameters as predictive variables. These predictive variables could explain up to 57.01 % of the 
variation in children’s TSV. This also confirms that the factors affecting human thermal perception are complex and diverse. For 
example, studies have shown that acoustic environment, light intensity (Geng et al., 2021), and emotional regulation (T. Zhang et al., 
2021) also influence thermal sensation. Therefore, future research should consider more comprehensive selection of quantified 
environmental features to enhance the predictive performance of ANN models. Finally, this study briefly discussed the potential 
applications of ANN prediction models. However, the feasibility of these insights was not verified. Future research should focus on the 

Fig. 9. Schematic diagram of ANN model assisting designers in formulating design plans.

Fig. 10. Schematic diagram of ANN model as a park intelligent service assistant.
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integration of artificial intelligence (AI) with urban park design and services, exploring how ANN models and other AI tools can be 
practically applied to improve park layouts and services to better mitigate heat stress and enhance the overall well-being of park users.

5. Conclusion

This study developed an ANN model to predict thermal sensation of children in urban open spaces, using 12 variables as predictive 
variables, including traditional PMV factors, additional environmental parameters, and personal parameters. The main conclusions are 
as follows. Firstly, for the prediction of TSV, the average R values of the top 10 networks in the training dataset, validation dataset, and 
testing dataset for the two-hidden-layer ANN were 0.7578, 0.7039, and 0.6919, respectively. Their proximity indicated that the model 
has good generalization ability. Secondly, compared to traditional models, the predictive performance of the ANN model was superior. 
The two-hidden-layer ANN model had the smallest MSE value (1.697), followed by the one-hidden-layer ANN model (1.740), the MLR 
model (1.884), and the UTCI model with the largest MSE value (1.968). The R2 values of these four models were 0.5701, 0.5596, 
0.5268, and 0.5009, respectively. Furthermore, compared to the one-hidden-layer ANN model (R2 = 0.5596, B = 0.5517, MSE =
1.740), the improvement in predictive performance of the two-hidden-layer ANN model was limited (R2 = 0.5701, B = 0.5583, MSE =
1.697). Although the ANN model improves predictive performance, its effectiveness remains limited. This may be attributed to the fact 
that the contribution of the quantified predictor variables in this study has reached a plateau. Achieving better performance would 
require the model to learn from a larger and more diverse dataset. Lastly, sensitivity analysis revealed the sensitivity order of TSV to 
different features, from greatest to smallest: Tmrt (0.259), Ta (0.200), Tg (0.161), MET (0.110), Height (0.081), Age (− 0.077), Weight 
(0.054), V (− 0.044), RH (− 0.022), Icl (0.019), and G (0.016). While SVF (0.0001) did not significantly contribute to predicting TSV.

In summary, ANN models not only outperform traditional models in terms of predictive performance, but also address the limi-
tations of thermal indices like UTCI and PET. These indices, due to their generalization and lack of testing on children, can lead to 
inaccurate estimates of physiological stress. Blindly relying on these indices could have serious consequences, such as misidentifying 
health issues in children (Höppe, 1999). ANN models incorporate personalized parameters, including height, weight, age, metabolic 
rate of physical activity, and clothing insulation values, as well as environmental characteristics like meteorological parameters and 
SVF, demonstrating a broader adaptive capacity that is well-suited for children. Our findings will offer valuable insights into predicting 
outdoor thermal sensation and assessing thermal comfort.
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