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ABSTRACT 22 

Problems caused by urban heat have prompted the exploration of urban greenery and blue spaces for heat 23 

mitigation. Various numerical models can simulate heat-related processes, but their use as support-tools to 24 

urban planners remains underexplored, particularly at the city-scale, due to high computational demand and 25 

complexity of such models. This study investigates the spatial relationships between urban heat, urban form 26 

and urban green and blue spaces with the fast climate model TARGET (The Air-temperature Response to 27 
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Green/blue-infrastructure Evaluation Tool), which only requires minimal inputs of standard meteorological 28 

data, land cover and building geometry data. Using the City of Zurich as our case study, we: (i) validated the 29 

TARGET model against air temperature measurements from private sensor networks, (ii) performed a 30 

sensitivity analysis to identify key variables affecting urban heat, and (iii) investigated urban heat relationships 31 

with blue-green cover at locations frequented by pedestrians. Presence of urban green and blue spaces across 32 

the region shows potential for reducing local air temperatures by up to 5.2 °C (with urban forest). Investigating 33 

this relationship at different locations in the city revealed key districts that should potentially be targeted for 34 

reduction of pedestrian heat-impacts, due to their high pedestrian traffic, fewer green and blue spaces and high 35 

daytime air temperatures. Our results not only provide insights into the cooling effect of different amounts of 36 

green and blue features in the urban environment, but also demonstrates the application and integration 37 

potential of simplified models like TARGET to support the planning of more liveable future cities. 38 
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1. INTRODUCTION 43 

The summer of 2024 is confirmed to be the hottest ever recorded since reliable global measurements began, 44 

surpassing the previous benchmark set just a year earlier in 2023 (Copernicus, 2024). However, the trend 45 

towards more frequent heatwaves due to climate change will continue, regardless of our efforts to mitigate, as 46 

warned by the World Metrological Organization (United Nations, 2022). IPCC (2021) reported that the goal 47 

to limit global warming below 2 or 1.5 °C is unachievable unless emissions of greenhouse gases are 48 

significantly reduced in future decades. In urban settings, extreme heat has negative impacts on human health 49 

(Ebi et al., 2021; Nicholls et al., 2008), livelihoods and infrastructure (IPCC, 2022; Topham, 2022). The 2022 50 

heatwave in Europe has resulted in over 60,000 heat-related deaths, estimated from the Eurostat mortality 51 

database (Ballester et al., 2023).The economic loss due to heat-induced productivity drop amounts to 0.3 - 0.5% 52 

of European GDP historically and is predicted to increase fivefold if no measures are in place by 2060 (García-53 

León et al., 2021). As such, we must prepare for a hotter climate.  54 

Cities are particularly vulnerable to weather extremes and research interest in urban climate has rapidly 55 

increased in the past decade with a focus on urban heat and its mitigation (Masson et al., 2020). The negative 56 

impacts of heatwaves are exacerbated in cities as a result of rapid urbanisation (Solecki & Marcotullio, 2013). 57 

The modification of land cover from natural to artificial materials like concrete and asphalt changes the thermal 58 

properties of the urban surface and the urban water cycle (Manoli et al., 2019; Oke, 1987), leading to increased 59 

energy storage, reduced evapotranspiration and decreased ventilation. With more than half of the world’s 60 

population living in urban areas (United Nations, 2019), the capacity of the population and urban services to 61 

cope with urban heat has become a major concern. The translation of knowledge from urban climate research 62 

to urban planning and policymaking is key to develop practical solutions and alleviate stress on urban 63 

environment and populations (Kwok & Ng, 2021). 64 

Research efforts for urban heat mitigation have predominantly focused on innovative pavement designs (Wang 65 

et al., 2021), reflective materials (Santamouris & Fiorito, 2021) (should be used with caution as they may 66 

negatively impact pedestrian thermal comfort, e.g., Middel et al., 2020; Schneider et al., 2023) and increasing 67 

greenery (Wong et al., 2021). It has been demonstrated that one of the best methods for urban outdoor cooling 68 

is to increase vegetation cover (Probst et al., 2022). In fact, evapotranspiration from both green and blue spaces 69 
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is primarily relevant for pedestrian-level air temperature reduction (Gunawardena et al., 2017). While the 70 

cooling effects of urban green and blue spaces has been extensively studied by methods of field measurements 71 

(Broadbent, Coutts, Tapper, Demuzere, et al., 2018; Skoulika et al., 2014; C. Yu & Hien, 2006) , remote 72 

sensing (Gobatti et al., 2023; Vahmani & Jones, 2017; Z. Yu et al., 2017) and numerical modelling (Gromke 73 

et al., 2015; Tsoka et al., 2018) at multiple scales (Krayenhoff et al., 2021), spatially explicit city-scale 74 

simulation remains rare, and it is yet to be explored utilizing modelling tools to evaluate different scenarios to 75 

support city-wide planning of green and blue spaces.  76 

Given the heterogeneity of the urban fabric and function, the local climates across different locations within a 77 

city can exhibit significant variability. Understanding how urban heat is distributed over an urban area is 78 

important to identify mitigation measures, given limited resources. Numerical modelling, compared to field 79 

observations, is a more viable approach to study the interactions between cities and climate, elucidating the 80 

role of different processes and facilitating informed urban heat mitigation planning (Oke et al., 2017).  81 

To study urban climate at finer spatial resolutions (< 1 km), energy balance models (e.g. Town Energy Balance 82 

TEB: Masson, 2000) have been extensively used until early 2000s, before computational fluid dynamics (CFD) 83 

models gained popularity in this research discipline (Toparlar et al., 2017). Perhaps the most popular CFD-84 

based tool used in urban climate studies is ENVI-met (Bruse & Fleer, 1998), which captures all processes of 85 

surface-air-vegetation interactions and has been extensively validated in many studies over the last two decades 86 

(e.g., Elraouf et al., 2022; Ozkeresteci et al., 2003; Salata et al., 2016). Other CFD models include SOLENE-87 

microclimat, Ansys® Fluent and OpenFOAM® (Matsson, 2023; Musy et al., 2015; Weller et al., 1998). More 88 

recently, the large-eddy simulation (LES, a branch of CFD) model PALM-4U (Maronga et al., 2020) has been 89 

increasingly used for investigating urban climates at very fine scales (Anders et al., 2023; Geletič et al., 2021). 90 

Emerging models like CityFFD (Mortezazadeh et al., 2022) leverages graphics processing units (GPUs) for 91 

parallel computation. Despite their prowess, CFD-based models often still require higher computing power 92 

and runtime, suffer from improper parameterisation (Bouzouidja et al., 2021) and inaccuracy (Jamei et al., 93 

2019) and are limited to micro- to district-scale simulations due to their complexity. Less complex are models 94 

such as RayMan (Matzarakis et al., 2007) and SOLWEIG (Lindberg et al., 2008) that calculate radiation fluxes 95 

in urban areas up to neighbourhood-scale, or SUEWS (Järvi et al., 2011a), which models surface energy and 96 

hydrological fluxes at local-scale. Despite some authors having claimed that these modelling tools can be used 97 
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to support planning and ultimately testing of urban heat mitigation options, only a few studies have been 98 

presented on this aspect (Alves et al., 2022; Musy et al., 2015). In recent years, with the growing demand for 99 

supporting the planning of heat mitigation strategies, more simplified models have been developed, focusing 100 

on incorporating representations of trees, vegetation and soil processes. VTUF-3D (K. A. Nice et al., 2018) is 101 

an urban microclimate model designed for assessing the effects of green spaces on human thermal comfort. It 102 

is detailed and spatially distributed, but still requires high computational cost. The Urban Tethys-Chloris 103 

(UT&C) (Meili et al., 2020) is a fully-coupled energy and water balance model that has a strong focus on the 104 

biophysics and ecophysiology of vegetation. It is less expensive in terms of computational effort, but due to 105 

its 1-D nature, spatial modelling at larger scales remains difficult. The Urban Weather Generator (UWG) 106 

(Bueno et al., 2013) couples building energy and urban canyon models and calculates the canopy layer air 107 

temperature and humidity. UWG focuses on the urban heat island and is not spatialised in its original form. 108 

Assessment of urban heat at higher spatial resolution at district- to city-scale with a more human-centric 109 

method is urged (Nazarian et al., 2022). TARGET (Broadbent et al., 2019) is an urban climate modelling tool 110 

that builds upon the Local-Scale Urban Meteorological Parameterisation Scheme (LUMPS) (Grimmond & 111 

Oke, 2002). It is a rapid spatial model that calculates pedestrian-level air temperatures with minimal inputs 112 

and effort in parameter setting. Its representation of urban greenery is through different land cover types, 113 

linking directly to the urban form, making it suitable for supporting urban planning practices.  114 

Despite the proposed urban climate models, a very small number of studies has focused on the accuracy of 115 

modelling results across city-wide scales (Broadbent et al., 2019), and on the main parameters’ influence of 116 

modelling results. This can be explained by (i) the complexity of the models and their consequently large 117 

computational demand, and (ii) the need for spatially distributed temperature data, which is not frequently 118 

available or accessible. As mentioned above, recently proposed, simplified microclimate models, such as 119 

TARGET, make city-scale simulations feasible, whereas citizen science and the advent of private sensor 120 

networks, e.g. weather stations, create the possibility to assess the validity of urban climate models at a city 121 

scale (e.g. Potgieter et al., 2021). Such models also offers potential to assess and improve the walkability (e.g. 122 

Jia & Wang, 2021; Mouada et al., 2019) on a city-scale, or to facilitate active transport route choice. The 123 

relative simplicity of such models also allows for detailed sensitivity analysis of model parameters to quantify 124 

the uncertainty of obtained results.  125 
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Based on the few research challenges described above, we address the following research questions in this 126 

study: 127 

 Are simplified urban climate models like TARGET able to capture the spatial variability of daytime air 128 

temperature in a city? 129 

 What are the important characteristics of the built environment that impacts urban heat? 130 

 How much cooling can green and blue spaces provide in the modelling scheme? 131 

 How can simplified models like TARGET be useful in supporting city-wide planning of green and blue 132 

spaces for heat mitigation? 133 

The following study presents methods to enable the effective use of TARGET (our selected model of choice) 134 

in supporting urban planning for heat mitigation. We specifically evaluate its performance against spatially-135 

distributed air temperature measurements from private networks and understand, through sensitivity analysis, 136 

key model parameters that influence urban heat. With this, we then demonstrate the potential of currently 137 

existing urban green and blue spaces across the case study city to mitigate urban heat and how the coupling of 138 

urban climate modelling with spatial pedestrian traffic count data can assess and identify opportunities for 139 

more strategic and human-centric planning of heat mitigation measures across urban areas. 140 

2. MATERIALS AND METHODS 141 

2.1 Overview of the selected microclimate model 142 

The Air-Temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET) (Broadbent et al., 143 

2019) was developed to be an efficient model to estimate surface temperature and street-level (2 m above 144 

ground) air temperature and to assess impacts of urban greenery and water features. TARGET can be applied 145 

at specific locations or on a spatial grid (minimum resolution of 30 m recommended for surface temperature 146 

and 100 m for air temperature). This section serves as a reiteration of the modelling approaches of the TARGET 147 

model. Further specific details of the model are explained in Broadbent et al. (2019) including its individual 148 

sub-models for different land cover types. 149 

The model requires three data inputs: (1) land cover, (2) building geometry, and (3) meteorological forcing 150 

data. Land cover input should contain fractions of roofs, concrete, road, dry grass, irrigated grass, trees, and 151 

water. Average building height and street width for each grid cell are also part of the input data to determine 152 



 

 

7 
 

the shape of the urban canyon. Meteorological data (typically from a nearby reference point e.g., an airport or 153 

open field) include: incoming shortwave radiation (K↓[W m-2]), incoming longwave radiation (L↓[W m-2]), 154 

relative humidity (RH [%]), air temperature (Ta [°C]) and wind speed (Uz [m s-1]). Longwave radiation can be 155 

modelled in TARGET if not available. The meteorological input is used as forcing data for the model, local 156 

conditions are simulated based on the influence of the building and urban characteristics. The schematic of 157 

TARGET canyon set-up and the structure of TARGET sub-models can be found in Supplementary Information 158 

(SI) S1. 159 

TARGET comprises a series of sub-models that calculate the radiation balance, energy balance and, eventually, 160 

surface temperature for each surface type with the input meteorological forcing data. At its intended resolution, 161 

the shape and density of buildings and vegetation can be generalised into a sky view factor (SVF) for a given 162 

mix of urban forms as shown in Eq. (1), and in turn used to calculate available net energy (Rn,i) that reaches 163 

the urban surface of type i, as shown in Eq. (2).  164 
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𝑅𝑛,𝑖 = (𝐾 ↓ (1 − 𝛼𝑖)+ 𝜖𝑖(𝐿 ↓ −𝜎𝑇𝑠𝑢𝑟𝑓,𝑖,[𝑡−2]
4 )) 𝑆𝑉𝐹𝑖 (2) 166 

where H is building height [m], W* is average street width minus tree width [m], αi is surface albedo [-], ϵi is 167 

surface emissivity [-], σ is the Stefan-Boltzmann constant (=5.67 × 10-8 W m-2 K-4), and Tsurf,i,[t-2] is the modelled 168 

surface temperature from two time steps back [°C]. Albedo and emissivity parameters for different land cover 169 

types have preset values in TARGET, but can be adjusted by users.  170 

This net energy is then partitioned into components of sensible, latent, and ground storage fluxes according to 171 

Eq. (3). The ground storage flux (QG, i) varies through the Objective Hysteresis Model (OHM) (see Grimmond 172 

& Oke, 2002) with different coefficient values (a1, a2, and a3) to account for different amounts of heat capacity 173 

for different surface types.  174 
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𝑄𝐺,𝑖 = 𝑅𝑛,𝑖𝑎1,𝑖 + (
𝜕𝑅𝑛,𝑖

𝜕𝑡
) 𝑎2,𝑖 + 𝑎3,𝑖 (3)175 

The force-restore method (Jacobs et al., 2000) is used to calculate the surface temperature change between 176 

time steps for each land cover type. As an efficient alternative to the multi-layer conduction method that is 177 

commonly used in other climate models, the force-restore method assumes the complex surfaces to be a thin 178 

surface layer on top of a deep soil layer, both with uniform vertical temperatures. The calculation then uses a 179 

forcing terms driven by the ground flux QG,i to heat the surface, and a restore term from the deep soil that 180 

restrains the forcing term, as written in Eq. (4). 181 

𝜕𝑇𝑠𝑢𝑟𝑓,𝑖

𝜕𝑡
=

𝑄𝐺,𝑖

𝐶𝑖𝐷
−

2𝜋

𝜏
(𝑇𝑠𝑢𝑟𝑓,𝑖,[𝑡−1] − 𝑇𝑚,𝑖,[𝑡−1]) (4) 182 

where Ci is the volumetric heat capacity [J m-3 K-1], D is the damping depth of the diurnal temperature wave 183 

[m], τ is the period (86400 s), and Tm is the average soil temperature [°C], which is calculated using Eq. (5).  184 

𝜕𝑇𝑚,𝑖

𝜕𝑡
=

∆𝑄𝐺,𝑖

𝐶𝑖𝐷𝑦

(5) 185 

where Dy is the damping depth for the annual temperature cyle (= D√365) [m]. 186 

 187 

Tree canopy is considered as part of the urban canopy in the model, i.e. trees are modelled at roof height, which 188 

allows for a simplified representation of radiation reduction through shading. The surface temperature of trees 189 

is assumed to be equal to the meteorological air temperature data, which is proven to be a realistic and efficient 190 

estimation (r2 = 0.98, RMSE = 1.17 °C) (Broadbent, Coutts, Nice, Demuzere, Krayenhoff, et al., 2019). The 191 

surface beneath trees is assumed to be representative of ground-level surfaces in the canyon.  192 

There is a separate model that addresses these aspects for water surfaces to ensure reliable results because the 193 

OHM-force-restore method tend to substantially over-predict daytime surface water temperatures. The water 194 

model resolves the surface energy balance of the water layer considering the absorption of shortwave radiation 195 

by water and is designed for small inland water bodies with depths of 0.1 – 1 m.  196 

In the end, for each location (specific point or cell in the grid), surface temperatures are aggregated based on 197 

its land cover fractions using Eq. (6). Above-canopy air temperature Tb [°C] is calculated from the 198 

meteorological input and wind characteristics. Air temperature is then determined through the surface 199 
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temperature and Tb by two resistances as shown in Eq. (7). Heat from building walls are taken into account, 200 

but anthropogenic heat fluxes are not modelled explicitly. 201 

𝑇𝑠𝑢𝑟𝑓 = ∑(𝑇𝑠𝑢𝑟𝑓,𝑖𝐹𝑖

8

𝑖

) (6) 202 
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(
1
𝑐𝑠
+
1
𝑐𝑎

)
𝐹𝑟𝑜𝑜𝑓]+ (𝑇𝑏𝑐𝑎𝑊)7

𝑖

∑ (𝑐𝑠𝐹𝑖) + [
𝐹𝑟𝑜𝑜𝑓

(
1
𝑐𝑠
+
1
𝑐𝑎

)
]+ (𝑐𝑎𝑊)7

𝑖

(7) 203 

where Fi is the 2-D fractional coverage of surface i in the canyon [-], cs is the conductance from the surface to 204 

the urban canopy layer [m s-1], and ca is the conductance from the urban canopy layer to the above-canopy 205 

layer [m s-1]. Heat transfer from roofs are approximated by two resistances in series.  206 

 207 

As part of its development, the model has been validated for a 14-day period for land cover surface temperature 208 

at a spatial resolution of 30 m and for a 2-day period for air temperature at a spatial resolution of 100 m. The 209 

model is intended for short simulations of days to weeks (i.e. a heatwave) with clear sky conditions and not 210 

yet validated for longer period. 211 

The model is carefully designed to balance between simplicity and accuracy with the aim of providing good 212 

predictions of street-level air temperature with minimal input and skill requirement. It thus does not account 213 

for the horizontal advection, so the predicted cooling impacts of heat mitigation measures are likely to be the 214 

maximum potential, which is rather useful for practitioners and policymakers to evaluate different options. 215 

The model is open-source and scripted in both Java and Python. Ongoing work involves integrating it to a 216 

QGIS plugin that allows direct application and visualisation of modelling results, which will make the model 217 

highly accessible to non-expert users.   218 

2.2 Case study description 219 

We selected a study area of 28.8 km2 spanning the core centre of the City of Zurich in Switzerland (shown in 220 

Figure 1) to conduct our study. The area has a diverse land-use composition, with gardens and parks scattered 221 

on a principal amount of mixed commercial, offices, and residential zones. Some light industries are located 222 
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along the major railway and also on the outskirts of the study region. The river of Limmat flows through the 223 

area from Lake Zurich. Two large, vegetated areas north of the river, the Käferberg and Zürichberg are also 224 

included in this study area. Consequently, the area includes all TARGET land cover classes, with the most 225 

prevalent being concrete, roof, and irrigated grass, as shown in Figure 1.   226 

On the temporal aspect, to be consistent with the purpose of the model (it is intended for short periods like 227 

heatwaves) and, at the same time, provide greater practical value, we selected a short period of warmer 228 

temperatures, when a level 3 (considerable danger, daily mean temperature ≥ 25 °C for at least three 229 

consecutive days) heat wave warning was issued for lowlands throughout Switzerland.  to demonstrate the 230 

heat mitigation benefits that greenery can provide during typical hotter days in the City of Zurich in summer.  231 

 232 

Figure 1. Location of the selected study area, percentages of TARGET land cover classes in the study area (a – left), 233 

land cover map of the study area (b – upper right) and the proportions of land cover types (c – lower right). 234 

2.3 Data collection and pre-processing 235 

2.3.1 Spatial data 236 

Land cover data were obtained from the local planning authority and resulted from recent official surveying 237 

(ARE, 2019). As a pre-processing step, the data were re-classified into the seven land cover types used in the 238 
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TARGET model (shown in Figure 1(b) and (c)). Digital surface model (DSM) data of 0.5 m resolution 239 

(swisstopo, 2020) was used to calculate building heights and street widths according to (Lindberg et al., 2015). 240 

Land cover fractions, building heights, and street widths were aggregated into 100 m grid cells and used as 241 

input to the TARGET model. 242 

The global map of local climate zones (LCZs) (Demuzere et al., 2022) was used to group the numerous private 243 

weather stations, thus allowing the comparison of model accuracy under different urban environmental 244 

conditions. 245 

For demographic indicators, we used pedestrian and bicycle traffic counts gathered by the Zurich civil 246 

engineering office (Stadt Zürich, 2023) to describe how frequently different areas are traversed by citizens. 247 

There are 20 of automatic counting stations in the study area that count both incoming and outcoming 248 

pedestrians and cyclists every 15 minutes. Only one station was kept for one model grid cell of 100 m in the 249 

case where multiple stations sit in the same cell, resulting in a total of 18 locations. This study used hourly 250 

averaged pedestrian and bicycle count in the warmer hours (12:00 – 18:00) as a metric to judge the traffic 251 

volume (see Figure 2(b)) in the post spatial analysis.  252 

2.3.2 Meteorological data 253 

As another input to the TARGET model, meteorological data were obtained from Fluntern meteorological 254 

station (556 m a.s.l.) located nearest to the study area (MeteoSwiss, 2023). The data comprises global 255 

(shortwave) radiation, incoming longwave radiation, air temperature, relative air humidity, wind speed, and 256 

pressure at station level, measured at 10-minute intervals for four days from 2023/07/08 to 2023/07/11. The 257 

data were then resampled into 15-minute intervals for to match the temporal resolution of measured data for 258 

model evaluation.  259 

To be able to evaluate the spatial output of air temperature results from the model, local air temperature 260 

measurements were desired as data from standard weather stations do not have sufficient spatial resolution to 261 

be compared with the modelling results. Spatially distributed data from the climate service and data provider 262 

meteoblue, which is measured by a quality-controlled Internet of Things (IoT) measurement network 263 

(meteoblue, 2024), were available for the City of Zurich. Air temperature measurements at 15-minute intervals 264 

from 41 of such stations were obtained for the period studied. Additionally, citizen-contributed data were 265 

collected from the company Netatmo, which produces intelligent home devices. One of its featured products 266 
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is the Smart Home Weather Station, a portable instrument that measures indoor and outdoor environments. 267 

The users are advised to position the outdoor module half way up the north facing wall of the house, away 268 

from any disturbing heating source and avoiding direct sunlight (Netatmo, 2012). A shield can be purchased 269 

optionally to protect the station from bad weather and sunlight for more reliable readings. Pictures of the device 270 

itself and the shield are provided in SI S2. The outdoor module features an air temperature sensor that has a 271 

measurement range of -40 to 65 °C and accuracy of ±0.3 °C. The user can calibrate the temperature manually 272 

by adding an offset. This study utilised the outdoor air temperature measurements shared by Netatmo users 273 

voluntarily. The data were collected from private Netatmo weather stations within the study area via the 274 

Netatmo weather API. A simple quality control of the data combining a simple (Chapman et al., 2017) and an 275 

improved method (Napoly et al., 2018) was conducted by filtering out stations that have the same longitude 276 

and latitude, removing measurements that deviates more than three standard deviations from the average of 277 

measurements from all stations at the same time step, and subsequently discarding data from stations that have 278 

missing values. This resulted in a total of 117 stations with continuous data of good quality within the study 279 

area, covering the period with available meteorological station data. Locations of the meteoblue and Netatmo 280 

stations are shown in Figure 2(a). Measurements were spaced at 30-minute intervals, taken every 15 and 45 281 

minutes after each hour.  282 

2.4 Setup and evaluation of TARGET air temperature results 283 

2.4.1 Model setup 284 

Surface and air temperatures were simulated with TARGET mainly according to (Broadbent et al., 2019), with 285 

minor changes in LUMPS coefficients as reflected in the most recent version of the model (K. Nice, 2019). A 286 

complete list of parameters used for simulations in this study can be found in Table S3 and the site-specific 287 

values in Table S4 in SI. Simulations covered the period of 2023/07/08 until the beginning of 2023/07/12, the 288 

first 24 hours being the spin-up period.  289 

2.4.2 Comparison of TARGET results with spatially distributed observations 290 

As mentioned before, to compare TARGET simulation results with both meteoblue and Netatmo data, we 291 

grouped these weather stations according to the local climate zone they sit in. The modelled results were still 292 

compared to measurements one-to-one for each of the meteoblue or Netatmo data point at every simulation 293 

time step. The grouping is only a measure to investigate how the model performs in different urban 294 
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environments and does not attempt to mask any errors. The locations and LCZ groups of the stations are shown 295 

in Figure 2(a).  296 

 297 

Figure 2. Agglomerative clustering of meteoblue and Netatmo stations for model validation (a – left) and  average 298 

hourly pedestrian and bicycle traffic count in the warmer hours (12:00 – 18:00) during the study period (2023/07/09 – 299 

07/11) at 18 counting stations (labelled as 1 – 18) in the study area (b – right). 300 

2.5 Sensitivity testing of TARGET 301 

A variance-based global sensitivity analysis, or so-called Sobol sensitivity analysis, was carried out to better 302 

understand the TARGET model itself as well as the uncertainty of the modelling results. The Sobol index 303 

indicates the contribution of variance of a parameter to the output variance. It can be estimated by a quasi-304 

Monte Carlo approach, by sampling from parameter ranges, running the sampled values through the model 305 

and, finally, determining the sensitivity index by calculating estimators (Saltelli et al., 2010; Sobol, 2001). 306 

Separate indices can be calculated for the first-order effect and higher-order interactions between parameters, 307 

but this is computationally demanding. Therefore, a total sensitivity index (𝑆𝑇) was used, which measures the 308 

total contribution of a parameter to the output (Y) variance, including any order effects, which is expressed in 309 

Equation 8 for parameter i: 310 

𝑆𝑇𝑖 = 1−
𝑉𝑎𝑟𝑋𝑖

(𝐸𝑋𝑖
(𝑌|𝑋𝑖))

𝑉𝑎𝑟(𝑌)
(8) 311 

Among TARGET parameters, the four related to the radiative and thermal properties of the surfaces, including 312 

albedo (α), emissivity (ε), thermal diffusivity (κ), and heat capacity (C), were considered worth investigating 313 
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as they are more accessible for practitioners. We also considered the H/W-ratio of the idealised urban canyon 314 

in the sensitivity analysis to better understand the important parameters in modelling the urban environment. 315 

Table 1. Parameter ranges for Sobol sensitivity analysis. 316 

Parameter Range Sources 

αroof 0.08 – 0.70 (Akbari et al., 1992; Oke, 2002) 

αroad 0.05 – 0.20 (Akbari et al., 1992; Chartered Institution of Building Services Engineers, 2015; 
Oke, 2002) 

αconc 0.10 – 0.35 (Akbari et al., 1992; Chartered Institution of Building Services Engineers, 2015; 
Oke, 2002) 

αdry 0.19 – 0.32 (Chartered Institution of Building Services Engineers, 2015; Järvi et al., 2011b, 
2014) 

αirr 0.16 – 0.26 (Barry & Chorley, 2009; Chartered Institution of Building Services Engineers, 2015; 
Järvi et al., 2011b, 2014; Oke, 2002) 

αveg 0.05 – 0.20 (Akbari et al., 1992; Barry & Chorley, 2009; Oke, 2002) 

εroof 0.13 – 1.00 (Bitelli et al., 2015; Oke, 2002) 

εroad 0.93 – 0.99 (Bitelli et al., 2015; Oke, 2002) 

εconc 0.80 – 0.98 (Bitelli et al., 2015; Oke, 2002; K. Wang et al., 2005) 

εdry 0.88 – 0.99 (Järvi et al., 2011b, 2014; K. Wang et al., 2005) 

εirr 0.90 – 0.98 (Järvi et al., 2011b, 2014; Oke, 2002; Van Wijk, W. R., Scholte Ubing, 1963) 

εveg 0.97 – 0.99 (Järvi et al., 2011b; Oke, 2002) 

κroof 0.05 – 0.57 (Broadbent et al., 2019; Chartered Institution of Building Services Engineers, 2015) 

κroad 0.29 – 0.62 (Chartered Institution of Building Services Engineers, 2015; Oke, 2002) 

κconc 0.08 – 1.51 (Chartered Institution of Building Services Engineers, 2015; Oke, 2002) 

κdry 0.11 – 0.32 TARGET default with ± 50% variation 

κirr 0.21 – 0.63 TARGET default with ± 50% variation 

Croof 0.81 – 1.96 (Chartered Institution of Building Services Engineers, 2015) 

Croad 1.70 – 3.91 (Chartered Institution of Building Services Engineers, 2015; Järvi et al., 2011b) 

Cconc 0.17 – 2.10 (Chartered Institution of Building Services Engineers, 2015) 

Cdry 0.68 – 2.03 TARGET default with ± 50% variation 

Cirr 1.10 – 3.29 TARGET default with ± 50% variation 

H/W 0.0015 – 5 Representing nearly open space to extremely dense urban environments 

α is the surface albedo, ε is the surface emissivity, κ is the thermal diffusivity (×10 -6) (m2 s-1), and C is the 
volumetric heat capacity (×106) (J m-3 K-1), H/W is the height-to-width ratio of the idealised urban canyon 
modelled in TARGET.  

 317 

The Sobol sensitivity analysis was conducted with a single cell with synthetic land cover input consisting of 318 

all land cover types in TARGET with equal fractions for a 1-day simulation for 2023/07/09.Variations in 319 

parameters were limited by their broadest practical ranges, as in Table 1. For cases where there are few 320 

reference values in the literature, TARGET default values were varied by ± 50%. The Sensitivity Analysis 321 

Library (SALib) in Python developed by (Herman & Usher, 2017) was utilised for automated analysis. We 322 
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used a sample size N = 1000 and dimension = 23 for the 23 parameters listed in Table 1. Parameters were 323 

sampled by a quasi-random method (Saltelli et al., 2010) which provides a more uniform coverage of the 324 

parameter space. Average sensitivity over the day, as well as sensitivity indices at three time stamps across the 325 

day, namely 6:00, 14:00 and 22:00, were calculated using Eq. (8), with Y being the overall average air 326 

temperature (across the study area and study period) and the air temperature at the selected time stamps 327 

averaged over space. 328 

2.6 Evaluation of the impact of blue-green cover on air temperature 329 

An assessment of green and blue cover’s impact on air temperature was performed using the simulation results. 330 

The green and blue cover of a grid cell was defined to be the fraction of irrigated grass, trees, and water. Grid 331 

cells were classified according to their green and blue cover (in %) into five groups and the simulated air 332 

temperatures for each group at 6:00, 14:00 and 22:00 on 2023/07/09 were compared using boxplots. The same 333 

analysis for surface temperature was performed to complement the results. We also conducted a multiple linear 334 

regression (ordinary least squares) to calculate the relationship between land cover characteristics and peak air 335 

temperature variability in the study area. Fractions of irrigated grass, trees, and water, separately, were used as 336 

the predictor variables and the dependent variable is the air temperature at 14:00 in each model grid cell. 337 

2.7 Combined consideration of temperature, blue-green cover and pedestrian traffic volume 338 

The spatial pedestrian and bicycle traffic data made it possible to prioritise locations within the study area by 339 

combining the local air temperature, blue-green cover and the busyness. TARGET-modelled air temperatures 340 

at the 18 locations of the traffic counting stations at the hottest time point (14:00) on 2023/09/07 were extracted 341 

from the simulation results. The blue-green cover for the corresponding model grid cells were taken from the 342 

land cover input and plotted together with air temperature and traffic count data to investigate the impact of 343 

greenery on air temperature at sites travelled more frequently and potential for planning heat mitigation 344 

strategies. 345 

3. RESULTS AND DISCUSSION 346 

3.1 Evaluation of model performance against measurement data 347 

Figure 3 demonstrates the spatial distribution of TARGET modelled air temperatures at two points in time, at 348 

14:00 and 22:00. The spatial variations are expected: in the afternoon the densely built urban areas are the 349 
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warmest, and it is cool in the two forested areas, while at night areas that are open and less urban are the coolest, 350 

water being a bit warmer than other surfaces. Figure 4 shows the validation of the model for different LCZ 351 

groups. 352 

 353 

 354 

Figure 3. TARGET modelled air temperature maps (a - left) at 14:00 and (b – right) at 22:00 on 09/07/2023. White 355 

areas are cells with a fraction of roof surface higher than 0.75, for which the air temperature was not calculated by 356 

TARGET. 357 

The model generally follows the observed patterns closely, taking meteoblue measurements as representative 358 

of the reality. A lag in air temperature change is observed in densely built areas, when compared with modelling 359 

results. This lag becomes less prominent with increasing vegetation cover and decreasing building heights as 360 

in LCZs 5 and 6, which could be explained by not considering processes of the heat storage and release of 361 

urban surfaces in TARGET. Nevertheless, the model still captures the general spatial and temporal patterns of 362 

air temperature well, achieving an overall correlation coefficient (r) of 0.95 and an RMSE of 2.2 °C. An all-363 

station point-to-point comparison is provided in Figure S7 in SI. 364 
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 365 

Figure 4. Comparison of the time series of meteoblue (in purple) and Netatmo (in green) air temperature observations  366 

and TARGET modelled air temperature results (in orange) for weather stations sitting in different LCZs. Observed vs. 367 

modelled air temperatures are plotted on the right; r is the correlation coefficient, RMSE is the root mean square error 368 

[°C], and MAE is the mean absolute error[°C]. 369 

The five LCZ classes present in Figure 2(a) shows a variation of urban environments in the study area from 370 

compact high- to mid-rise (LCZs 1 and 2) to open mid- to low- rise (LCZs 5 and 6), where more vegetation is 371 

present, and large low-rise (LCZ 8), where the land cover is mostly paved. For LCZs 1 and 8 significantly less 372 

data (4 stations in each LCZ) were available; as such, in the results presented in Figure 4 LCZs 1 and 2 were 373 

merged but LCZ 8 was kept individually for its lack of similarity to the other classes.  374 

Comparing the results for the four groups in Figure 4, we observed a slight increase in model accuracy (r = 375 

0.94 to 0.97, RMSE = 2.4 to 1.7 °C, MAE = 1.73 to 1.07 °C), comparing against meteoblue data, when the 376 

urban environment changes from dense buildings to more open arrangements with higher pervious cover. 377 

Similar trend is seen in the results for Netatmo stations, with some deterioration in the performance indicators, 378 

which could be explained by the high underlying uncertainty in crowd-sourced data. Higher model accuracy 379 

for LCZs 5, 6 and 8 might be attributed to higher presence of these LCZ classes in the validation during the 380 
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development of the TARGET model, for which data from part of Melbourne (mainly LCZs 6: open low-rise, 381 

8: large low-rise, 4: open high-rise) for land cover surface temperature, and Mawson Lakes (LCZ 8: large low-382 

rise) for canyon surface and air temperature. Another possible reason of such differences in space is that 383 

elevations are not considered in TARGET and the model was validated in a flat urban area, while Zurich 384 

presents a more hilly landscape. The meteorological station, where the forcing data to drive the model was 385 

from, is located approximately 150 m higher than the lowest areas in the middle of the study area where most 386 

of the LCZs 1 and 2 stations are located. This may explain why the model underestimates the air temperature 387 

the most in the first group and improves as the terrain ascends gradually for LCZs 5 and 6. The same applies 388 

for LCZ 8 as this group is the farthest away from the meteorological, where the conditions could differ. 389 

Considering the lack of elevation in the representation, the validation results are considered good comparing 390 

to the values (r = 0.92, RMSE = 2.0 °C) reported in the original TARGET study (Broadbent et al., 2019) and 391 

a more complex model SURFEX (r = 0.94 - 0.95, RMSE = 1.6 – 1.8 °C) (Broadbent, Coutts, Tapper, & 392 

Demuzere, 2018) given the simplicity of the model and the comparative nature of the subsequent analyses. 393 

Future studies using the model should consider using different meteorological forcings that are representative 394 

of different areas, or correcting the modelling results according to elevations.  395 

Comparing measurement data from the two sources, it is obvious that simple quality control could not improve 396 

the quality of Netatmo data to the same standard as meteoblue data. Netatmo stations measures warmer daytime 397 

temperatures and features a faster warm-up in the morning, which are also seen in (Potgieter et al., 2021), 398 

mostly due to the sitting of the stations. Rigorous quality control and filtering methods are yet to be developed 399 

to make better use of crowdsourced data (Middel et al., 2022). However, the validation using Netatmo data 400 

shows similar trend that was seen in results with meteoblue data, only with deteriorated goodness of fit. 401 

Crowdsourced data can still be useful for model validation and other analysis that requires high-resolution 402 

spatial atmospheric data, especially when the network is dense and confidence can be increased by averaging.  403 

 404 

3.2 Sensitivity testing results 405 

Sensitivity analysis with 22 radiative and thermal parameters for different surfaces plus the H/W-ratio of the 406 

canyon shows that the H/W-ratio is dominating in modelling the physics of urban canyon compared to other 407 
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parameters analysed (see SI S6). The simultaneous change of parameters has led to a maximum variation in 408 

the predicted daily and domain average air temperature of 3.6 °C. 409 

We therefore repeated the analysis, leaving out the H/W-ratio, to investigate which land cover types are more 410 

important for urban heat. The sensitivity analysis for the 22 physical parameters showed that the heat capacity 411 

and thermal diffusivity of concrete are the most sensitive. This indicates that the heat stored in impervious 412 

surfaces like concrete is a major contributor to urban heat, confirming the findings from a previous study that 413 

daytime air temperature is strongly driven by street fractions (K. A. Nice et al., 2022). A closer look into 414 

sensitivities at different time points revealed that, other than concrete parameters, higher sensitivity was found 415 

in the thermal properties of dry grass for predicting air temperature in early morning. However, the maximum 416 

variation in the average model output when varying these 22 parameters is only 0.07 °C, which is negligible. 417 

Since the H/W-ratio is strictly speaking a model input that is calculated based on building geometry data, we 418 

believe that it is safe to assume typical values for urban surfaces if these modelling parameters are unknown 419 

for a city.  420 

It is worth noting that we consider the physical properties for each surface type individually, so the sensitivity 421 

results are limited to the realistic ranges of the parameters for every single surface type. Therefore, these results 422 

might not be able to reflect the general importance of a parameter of the overall built environment, such as the 423 

average albedo for a neighborhood, although it is well known that albedo is an important factor influencing 424 

urban heat (Krayenhoff et al., 2021; L. Wang & Li, 2021). 425 

We have also tested the impact of using input data from different meteorological stations on the modelled air 426 

temperature. It was found that stations closer to the study area represents the meteorological conditions within 427 

the region better, especially at night-time; More details on theses analyses are presented in SI S5.  428 

 429 

3.3 Impact of blue-green cover on urban heat 430 

Figure 5(a) displays the influence of blue-green cover on TARGET surface temperature estimations at different 431 

times of the day. The surface temperature difference across different blue-green covers is largest, around 17 °C, 432 

in the afternoon. The median surface temperature decreases as blue-green cover increases. This negative 433 

relationship is also found in the morning and at night, but with less variability. The significant difference in 434 
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surface temperatures represents a reduction of around 5.2 °C in air temperature in the afternoon by increasing 435 

the blue-green cover from low to high, as depicted in Figure (b). 436 

Previous studies have found surface temperature reductions of 9 – 19 °C provided by green parks (Wong et al., 437 

2021), 11.1 °C by artificial lakes and wetlands (Broadbent, Coutts, Tapper, Demuzere, et al., 2018), and air 438 

temperature reductions of 5 °C by water bodies (Murakawa et al., 1991; Peng et al., 2020), 1 – 2 °C provided 439 

by urban green spaces (Aram et al., 2019), which is also supported by more recent studies (Cheung et al., 2021; 440 

Cheung, Jim, et al., 2022; Cheung, Nice, et al., 2022). Our results are on the right end or even beyond these 441 

ranges, because the study area include two large forested areas, Käferberg and Zürichberg, as described in 442 

Section 2.2. These two areas are in fact very different in terms of land cover compositions, compared to mixed 443 

urban areas. They consist of over 90% trees, meaning that radiation reaching the ground level is substantially 444 

limited. In addition, as the model adds under trees surfaces that are representative of the grid cell land cover 445 

composition, additional cooling is expected when the grid cell has high irrigated grass or water fractions other 446 

than trees. Therefore, the results show a sudden decrease in surface and air temperatures when increasing the 447 

blue-green cover from medium high (MH) to high (H), where all of these forest grid cells belong. If the trend 448 

continues without the sudden decrease, the resulting reductions will be well within the reported ranges in the 449 

previous studies. The large temperature reductions by trees are expected as studies have shown that urban 450 

parks can reduce the air temperature by 0.94 – 5.7 °C (Probst et al., 2022), and that large urban forest can 451 

provide a cooling effect of up to 8.4 °C (Yin et al., 2022). Additionally, elevation can also be an influencing 452 

factor here, as the degree of greenness is apparently related to the topography of the city. Hence, these locations 453 

experience a “double” cooling effect, which can be a reason for the large temperature reductions.  454 

The outliers in surface temperature results can be explained by presence of trees together with other blue-green 455 

land covers, which will lead to additional blue-green fractions (bottom outliers), and presence of water (top 456 

outliers). Most of the water surfaces present in the study area are natural deep water bodies (Lake Zurich and 457 

Limmat river), violating TARGET’s assumption that water depth is within 1 m. The model sometimes 458 

overestimates the air temperature above water, which adds uncertainty to the results. 459 

To summarise, the differences between our modelled results and some of the findings in the literature can be 460 

explained by model simplification, different climatic conditions, urban morphology, and urban fabric 461 
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compositions. Nevertheless, the results show the cooling potential of increasing blue-green cover in urban 462 

areas, and that our modelling approach can provide reasonable comparisons of different planning scenarios. 463 

 464 

 465 

Figure 5. Boxplots of modelled (upper) surface temperature and (lower) air temperature for grid cells grouped by blue-466 

green cover (L: low, 0-20%, ML: medium low, 20-40%, M: medium, 40-60%, MH: medium high, 60-80%, H: high, 80-467 

100%) at 6:00, 14:00, 22:00 for 2023/07/09 to 2023/07/11. 468 

To quantify how blue-green land covers contribute to peak air temperature variability, we conducted a multiple 469 

linear regression of fractions of irrigated grass, trees and water, and the results are shown in Table 2. The 470 

statistical analysis suggests that trees have the largest impact among the three land cover types, which confirms 471 

with the results in Figure 5 where temperature drops significantly when large amounts of trees are present. 472 

Trees are about two times as effective as irrigated grass in providing cooling, while irrigated grass and water 473 

have similar impacts. However, the cooling impact of water is likely underestimated because of the issue with 474 

the TARGET water sub-model assumption discussed before. 475 

Table 2. Peak daytime air temperature multiple linear regression model results. 476 

Variable Coefficient [°C] Standard error t value p value 
Intercept 31.99 0.04 721.56 0.000 
% irrigated grass -2.25 0.12 -19.68 0.000 
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% trees -4.68 0.10 -47.20 0.000 
% water -2.08 0.17 -12.4 0.000 

The kind of analysis presented in this section can help practitioners understand approximately how much 477 

cooling impacts they can expect from each type of blue or green land cover in their particular geographical 478 

location. This prior knowledge may assist them in designing urban blue and green spaces more effectively. 479 

3.4 Investigating modelled spatial cooling effects of urban greenery and blue spaces 480 

Figure 6incorporates the blue-green cover, air temperature and pedestrian traffic busyness at 18 locations 481 

across the City of Zurich at 14:00 on a warm day (2023/07/09), and demonstrates how TARGET can be used 482 

to pinpoint priority areas for increasing urban greenery. Places with high blue-green cover unsurprisingly 483 

exhibit lower temperatures compared to those with less green and blue spaces. For example, in Figure 6, 484 

location 18 is on a footpath next to the Limmat river very close to the city centre. Blue-green cover here is over 485 

70%, and modelled air temperature is 1.6 °C lower than that on a street leading to the train station in the main 486 

commercial area in the district (location 3), where only around 5% street trees are present and the land surface 487 

consists mainly of asphalt and concrete. . A decreasing trend in air temperature is observed with increasing 488 

blue-green cover, and the negative relationship becomes stronger with higher presence of green and blue spaces, 489 

as the modelled air temperature is also influenced by types of impervious land covers that are not shown in 490 

this figure. These impervious land covers play an important role as well. It is not always true that places with 491 

green and blue features have lower temperatures than those without. For instance, a location with 30% greenery 492 

and 70% concrete might be warmer than a location with 100% dry grass. 493 
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 494 

Figure 6. TARGET modelled air temperatures(extracted from simulation results) at locations 1 – 18 where pedestrian 495 

traffic count data are available. The locations are ranked according to their blue-green cover, distinguishing between 496 

fractions of irrigated grass, trees and water. Street views at these locations are from Google Maps. 497 

Based on this type of analysis, urban planners can quickly spot places for improvements from temperature 498 

profiles like those presented in Figure 6. Places with high pedestrian and bicycle traffic volume and low blue-499 

green cover are those to be prioritised. To illustrate this idea, location 7 is near Bucheggplatz, a transportation 500 

hub in Zurich, and it would largely benefit commuters and nearby residents if the pervious cover surrounding 501 

the hub can be increased. Another example is location 6 in a rather densely built residential area. Despite some 502 

trees on sides of the street, this place appears to have a higher temperature than most of the other locations. 503 

Although it can be challenging to alter the land surface considering the already tight space, improvements 504 

should certainly be sought. The same applies to location 2 on Langstrasse, one of the liveliest streets in the 505 

city. Identifying locations like these forms a starting point for urban planners to develop plans and assess 506 

proposed greening options by modifying the land cover and simulating new modelling conditions. They can 507 

even plan for connected green spaces along the routes and throughout the city to maximise cooling 508 

(Gunawardena et al., 2017; Zhang et al., 2017).  509 
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As the placement of green features is found to be more opportunistic than strategically planned (Kuller et al., 510 

2021), and planning practitioners are willing to adopt novel planning tools (Kuller et al., 2022), TARGET, 511 

together with post-spatial analysis, can fit in this purpose very well. The methods we proposed and 512 

demonstrated in this study are easy to adopt, fast to process, and operable at a city-scale. The model is also 513 

highly flexible to simulate the cooling impact of different greenery options including types, locations and even 514 

maintenance level (by switching between dry and wet grass), under different climate conditions (past, present 515 

or future) and in different places. Modelling results can be coupled with different data, not necessarily traffic, 516 

to evaluate heat mitigation options with consideration of other factors according to user preferences. It is also 517 

possible to implement a multi-criteria decision analysis (MCDA) approach starting with the idea presented in 518 

this paper.  519 

3.5 Limitations of the proposed approach 520 

We demonstrated a range of applications that TARGET can be used to support the planning of urban 521 

microclimate. Although TARGET was the specific tool used, the overall methodology could utilise any 522 

suitable simplified climate model. Nevertheless, several limitations remain that future work can address. 523 

TARGET’s design represents a trade-off between speed and level of detail to support planners in evaluating 524 

suburb- to city-scale blue-green infrastructure solutions and test heat mitigation scenarios. As such, it aims to 525 

generate reliable temperature estimations while maintaining computational efficiency and consequently makes 526 

several key assumptions. One crucial assumption of TARGET is that it does not consider horizontal advection 527 

(Broadbent et al., 2019). In reality, the local cooling impact of these infrastructures is weakened by atmospheric 528 

mixing, which is particularly strong when wind speed is high (Broadbent et al., 2019). Without proper 529 

representation of the horizontal mixing of air in the model, the predicted cooling benefits of greenery in this 530 

study would most likely be the maximum value. 531 

In addition, as mentioned before, the water sub-model of TARGET is not designed for natural lakes and rivers, 532 

which were present in the case study; this sometimes leads to instability in the air temperature results above 533 

these water surfaces. Variation of elevation is not accounted for in the model. This simplification could lead 534 

to errors in air temperature results for the case study. These are limitations we acknowledge and worked with 535 

throughout our analysis. 536 
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4. CONCLUSION 537 

This study reports insights into modelling air temperature with an urban climate model called TARGET to 538 

assess the impacts of green and blue spaces and plan liveable cities. We compared TARGET results with local 539 

air temperature measurements from professional climate service and data provider and crowd-sourced data 540 

from home devices, and also conducted a parameter sensitivity analysis for the model. Finally, we 541 

demonstrated how TARGET results can be used to support spatial planning of green and blue spaces in cities 542 

to improve city liveability. The study found that city-wide modelling with TARGET generally captures the air 543 

temperature patterns well (r = 0.95, RMSE = 2.2°C). Additionally, we demonstrated the added value of 544 

spatially distributed temperature data from private sensor networks to validate urban climate models. Based 545 

on the sensitivity testing results, the canyon height-to-width ratio was found to be the most influential on urban 546 

heat, and concrete parameters had more impact on the results than other surfaces’ parameters. Application of 547 

the model to the case study of Zurich found that an air temperature reduction of around 1.2 °C can be achieved 548 

by increasing the blue-green cover of a location from low (0 – 20%) to medium high (60 – 80%), and a further 549 

4 °C if the location is transformed to an urban forest, which are in accordance with literature values and 550 

confirms the validity of the predicted cooling impact provided by increasing green and blue spaces. Notably, 551 

we showed that TARGET is useful for identifying critical locations for urban heat mitigation when coupled 552 

with spatial pedestrian count data. 553 

In summary, we found that TARGET is a useful tool to simulate air temperature fast and accurately at city-554 

scale, allowing urban planners to: (1) identify locations for improvements by looking for low blue-green cover 555 

and high temperature, (2) assess different planning options simply by altering the land covers and run TARGET 556 

with the new land cover input, (3) couple TARGET results with different spatial data for multi-faceted analyses. 557 

The framework around quick and efficient model setup and simulation we presented in this study is 558 

generalisable to other locations and offers opportunity for urban planners to use simplified models for 559 

improving the liveability in cities.  560 

 561 
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Code and data availability. TARGET is distributed under the Creative Commons Attribution-562 

NonCommercial-ShareAlike 4.0 Generic (CC BY-NC-SA 4.0). Python code used for this study is available at 563 

https://github.com/jixuan-chen/target. 564 
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