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ABSTRACT
Estimation of bicycling volumes is essential for the strategic
implementation of infrastructure and related transport elements
and policies. Link-level volume estimation models (models that
estimate volumes on individual street segments) allow for
understanding variation in bicycling volumes across an entire
network at higher spatial resolution than area-level models. Such
models assist transport planners to efficiently monitor network
usage, to identify opportunities to enhance safety and to evaluate
the impact of policy and infrastructure interventions. However,
given the sparsity and scarcity of bicycling data as compared to its
motorised counterparts, link-level bicycling volume estimation
literature is relatively limited. This paper conducts a scoping review
of link-level bicycling volume estimation methods by implementing
systematic search strategies across relevant databases, thereby
identifying appropriate studies for the review. The review resulted
in some interesting findings. Among all the methods implemented,
direct demand modelling was the predominant one. Not a single
study implemented multiple modelling approaches in the same
study area, thereby not allowing for comparison of these
approaches. Most studies were conducted in the United States. It
was also observed that there exists a lot of heterogeneity in the
reporting of basic study characteristics and validation results,
sometimes to the extent of not reporting these at all. The study
presents the different types of data used in modelling (count, travel
survey, GPS data) along with an array of popular explanatory
variables that can inform future studies about data collection and
variable selection for modelling. The study discusses the strengths
and limitations of different methods and finally presents
recommendations for future research.
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1. Introduction

1.1. Background

Bicycling is an active and sustainable mode of transportation that offers an array of public
health and environmental benefits. At an individual level, bicycling improves the physical
health of the rider via physical exercise (De Geus et al., 2007; Wen & Rissel, 2008). At a com-
munity scale, more bicycling leads to reduced traffic congestion thereby minimising air
pollution, therefore improving public health in the longer term (De Hartog et al., 2010;
Grabow et al., 2012; Lindsay et al., 2011). To enable planners and decision-makers to
develop targeted investment strategies for improving the uptake of bicycling, data on
patterns of bicycling across the entire area of interest namely, at the municipality-wide
scale or city-wide scale, is needed. However, collecting such spatially comprehensive
data requires frequent implementation of costly data collection infrastructure, such as
dense placement of sensors, running computationally expensive vehicle classifier pro-
grammes, and traditional observational surveys, and is therefore not convenient. To fill
this gap, transport models that can estimate relevant traffic parameters, such as traffic
volumes, are developed (ATAP, 2022; Kraft & Wohl, 1967).

Researchers and planners develop travel demand models (the most common form of
transport models) to understand traffic volumes (motor vehicles or other modes such
as bicycles or pedestrians) within a geographic area. For example, Mohamad et al.
(1998) developed a model to predict traffic volumes across 40 counties in Indiana,
U.S., Zhao and Chung (2001) estimated annual average daily traffic in a Florida
county, and Apronti and Ksaibati (2018) estimated traffic volumes on rural low-
volume roads in Wyoming, U.S., while Cooper (2017) developed link-level models for
active travel in Cardiff, Wales. These travel demand models attempt to replicate
ground conditions of existing traffic flow, such as traffic volume along street segments
(also referred to as links). Validated models are then used to estimate changes in flow
dynamics due to changes in parameter settings, estimate volumes at locations without
any known volume information in the same study area (spatial transferability), or
predict future traffic volumes at locations with known volume information across mul-
tiple time points using time-series methods (temporal transferability). Spatial and tem-
poral models can work together as well if a model is transferred over both space and
time (Fox & Hess, 2010). Therefore, travel demand models help relevant authorities in
monitoring, evaluating and in strategic implementation of policy, program, or infra-
structural interventions by either estimating current demand at locations without
demand information, or forecast future demand at locations with demand information
across multiple time points, or both. Demand can be specific to one mode of travel, or
be multi-modal. Travel demand models can cater to small, large, and multiple geo-
graphical areas. To support pro-bicycling policies, decision makers often need access
to bicycling volume data to determine patterns of bicycling, create denominators to
measure bicycling safety, and evaluate the impact of policies and infrastructure inter-
ventions aimed to increase bicycling. Therefore, travel demand models that focus on
modelling bicycling volumes are important. The focus of this review is to conduct a
systematic review of studies that have developed models to estimate bicycling
volumes at link-level.
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1.2. Motivation

Travel demand models are primarily data-driven and their performance heavily depends
on the data they use. However, bicycling-related data is sparse and lacks comprehensive
coverage spatially and temporally, as compared to its motorised counterparts (DiGioia
et al., 2017; Roy et al., 2019; Winters & Branion-Calles, 2017). Crowdsourced bicycling
data has filled some of the voids by leveraging current advances in smartphone technol-
ogy (Jestico et al., 2016; Kwigizile et al., 2019) such as providing data at a high spatial and
temporal resolution, offsetting limitations related to spatial coverage of traditional data-
sets, and real-time monitoring of mobility. However, the disparity in quantity between
bicycling data and motor vehicle data is still prominent. This limits the scope, resolution
and representativeness of bicycling-related models. Hence, traditionally, transportation
planning has been more focused on motorised vehicles, resulting in far greater
numbers of associated research efforts. In contrast, bicycling-specific demand modelling
(especially link-level volume modelling) efforts are far fewer in number and less mature,
with authorities gradually, only recently, making more serious investments in relation to
active and sustainable mobility.

Moreover, the mobility patterns of cyclists differ from motorists as the mobility behav-
iour of cyclists depends on a host of factors such as available infrastructure, safety and
safety perception, weather and other disaggregated factors, which are not significant
drivers of mobility behaviour of motor vehicle users (Dill & Gliebe, 2008). For example,
motor vehicle drivers usually opt for the fastest routes as they tend to prefer highways
with greater posted speed limits over local roads (Winters et al., 2010). However, whilst
trip time and route length are important factors for bicyclists as well, choice of route is
also influenced by safety and the availability of bike-related infrastructure, such as prefer-
ence for lower-volume local roads and off-road bike paths separated from motorised
traffic (Stinson & Bhat, 2003; Tilahun et al., 2007; Winters et al., 2010). Area-level transport
demand models aggregate over large geographic areas which are divided into large
analysis zones. However, bicycling trips are usually, significantly shorter in distance com-
pared to car trips, and therefore, bicycling trips need to be captured at a greater spatial
resolution, such as at link-level (Liu et al., 2012). Models which are based on the mobility
behaviour of motor vehicle users, or aggregate over large traffic analysis zones, are not
appropriate for modelling bicycling in their current state (McDaniel et al., 2014). This is
because bicycling volume estimates for aggregated zones are not appropriate for stra-
tegic implementation of additional infrastructure, or identification of the impacts of
such changes across the streets in the network. Given the mobility behaviour of bicyclists,
link-level bicycling volume estimates are essential for planners to understand the
dynamics of bicycling flows at the finest spatial resolution. While disaggregated travel
demand models are data intensive, computationally expensive and complex, such
models are gaining prominence with improvement in computational capacities and the
availability of more high-resolution data (McDaniel et al., 2014; Wang et al., 2011).

Furthermore, we have limited the scope of our review to studies that developed
demand models that can estimate bicycling volumes at locations without any volume
information. The scope of this review excludes studies that had implemented time-
series models to forecast bicycling volumes only at locations where current and past
volume information is known. Our aim is to review studies which develop a model
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using bicycling volumes at known locations and consequently expand this to the rest of
the study network producing estimates at locations where there is no volume data.

1.3. Objectives

There have been limited research efforts for modelling link-level bicycling volumes that
overcome the challenges of the traditional travel demand models. However, to the
best of our knowledge, no comprehensive review of such modelling efforts exists in
the current literature. In this paper, we present a scoping review of studies that have esti-
mated link-level bicycling volumes, and highlight the strengths and limitations of the
modelling approaches.

The first set of objectives of this review are to present:

(a) The reported study characteristics
(b) The approaches taken for modelling link-level bicycling volumes
(c) The types of data used for modelling link-level bicycling volumes
(d) Frequently used variables in models
(e) The reported modelling accuracies and validation methods.

Furthermore, the review intends to:

(a) Discuss the variation in reporting of study characteristics, modelling accuracies and
validation methods

(b) Discuss the strengths and limitations of the major modelling approaches
(c) Make recommendations for future studies.

1.4. Structure

The rest of the paper is structured as follows. Section 2 briefly discusses the predominant
travel demand modelling approaches in the literature. Section 3 presents the systematic
approach undertaken to search, screen and select the studies relevant for this review.
Section 4 presents important information related to the studies included in this review
such as year of publication, location of the study, types of data used, modelling approach
and accuracy measures, discusses the findings, highlights the strengths and limitations of
the different methods, and makes recommendations for future research. Section 5 con-
cludes the paper by presenting a summary of all the previous sections.

2. Types of travel demand modelling approaches

There are multiple approaches to modelling traffic volume and/or travel demand that
exist in the literature. Researchers and practitioners predominantly use (a) four-step
demand modelling, (b) direct demand modelling and (c) agent-based modelling. These
approaches are presented in the order of their development/first usage to showcase
the historical evolution of different modelling approaches. There are some alternative
methods which are presented as well. These are briefly discussed as follows.
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2.1. Traditional four-step demand modelling

Conventionally, travel demand modelling is a four-step process. (i) Trip generation –
number of trips generated by each travel analysis zone (origins). (ii) Trip distribution –
share of generated trips from each travel analysis zone (origins) distributed to same/
other travel analysis zones (destinations). (iii) Mode choice – share of these trips distribu-
ted among existing travel modes. (iv) Trip assignment – assigning trips to specific routes.
These four-step demand models are key to developing long-term city-wide strategic fra-
meworks and therefore, have been extensively used by city planning authorities.
However, four-step models are often associated with greater errors as a result of error
accumulation across multiple steps (Choi et al., 2012).

2.2. Direct demand modelling

The primary alternative to the four-step model is the direct demand modelling approach,
which bypasses some of the limitations of sequential four-step models and potentially
increases accuracy. Direct demand models (DDMs) predict traffic volumes by combining
all four steps of the conventional demand model into one step (McFadden, 1974) and
therefore, do away with cumulative errors across multiple steps. Direct demand models
directly associate known traffic volumes with relevant attributes (de Dios Ortúzar & Will-
umsen, 2011). They employ statistical and machine learning models to first fit the model
to known volumes using surrounding road network, socio-demographic, land-use and
other relevant information which significantly affect these volumes, and then estimate
volumes at locations (where volume information is unavailable) using the same attributes
(Anderson et al., 2006; Cooper, 2016, 2017, 2018; McDaniel et al., 2014). However, DDMs
do not account for either travel behaviour and perception of travellers, or the interaction
between travellers and between travellers and their environment.

2.3. Simulation-based demand modelling

Simulation-based models have gained popularity in the travel demand modelling space
with increases in computational capacities (Turner et al., 2017). Microsimulation and
agent-based simulation models provide an appropriate simulation environment to
produce spatially and temporally explicit traffic flows. Agent-based models (ABMs) simu-
late actions of and interactions between agents (individual elements in the model) that
act individually based on their characteristic attributes and behaviour (Wilensky &
Rand, 2015). In a transportation-focused ABM, agents might represent heterogenous indi-
viduals who make travel decisions based on their assigned unique characteristics and
related behavioural traits. ABMs are considered a suitable approach when recognising
the heterogeneity of cyclists with individual demands, behaviour patterns, and interper-
sonal interactions (Kaziyeva et al., 2021). ABMs can reproduce the travel behaviour of real
individuals, and therefore aim to imitate the real-world heterogeneity of persons and
external conditions (Heppenstall et al., 2011). This results in generation of traffic flows
and mobility patterns of the population at a very fine spatial and temporal resolution
(Leao & Pettit, 2016). However, evidence-based behaviour assignment of agents is critical
for developing a representative and useful ABM.
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2.4. Other modelling approaches

Spatial network analysis models are variations of DDMs that use the concepts of graph
theory, space syntax and spatial network analysis, with network measures such as
centrality measures and intersection density to estimate traffic volumes across the
network (Cooper, 2016, 2017, 2018; McDaniel et al., 2014; Raford & Ragland, 2004,
2006). However, in comparison to assignment-free DDMs, spatial network analysis
models incorporate the trip assignment process. Therefore, the built environment
and demographic variables serve as independent variables to formulate trip assign-
ment, which in turn, acts as the governing variable to estimate travel demand
(Cooper et al., 2021). GIS-based models rely heavily on GIS (Geographic Information
System) to depict relevant land-use and infrastructure configurations and thereby
estimate their effects on trip generation and modal split, consequently estimating
travel demand (often focused for specific modes, such as walking) (Turner et al.,
2017). They are useful for scenario planning, such as comparison of the impacts of
different configurations of relevant land-use and infrastructure on travel demand
(Kuzmyak et al., 2014).

While we presented a brief overview of these modelling approaches in this section, it is
only through this systematic review, thorough synthesisation and critique of the reviewed
studies and other related literature, that we can robustly compare the strengths and limit-
ations of these modelling approaches. These are presented later in Section 4.6.

3. Method

To address the objectives mentioned in section 1.3, we conducted a systematic literature
review on studies that estimated link-level bicycling volumes. We developed a compre-
hensive search strategy based on similar transport and bicycling reviews, content
matter expertise. We reviewed multiple articles that estimated link-level bicycling
volumes to identify relevant keywords. We employed our search strategy on multiple
databases. There were no restrictions placed on the type of article or the year of publi-
cation. However, only articles published in English were included.

3.1. Study eligibility

Studies were included if they met the following criteria:

. Modelled link-level bicycling volumes separately (study has to include a separate bicy-
cling volume model).

. Conducted a primary study involving their own data collection and modelling.

. Published in English.

Studies were excluded if:

. The spatial granularity of the models developed were coarser than link-level, such as, a
model that produces volume estimates at an area-level.

6 D. BHOWMICK ET AL.



. They developed a time-series model to forecast future link-level bicycling volumes only
at locations with known volumes, and do not predict volumes on links without any
count information and therefore, the rest of the study network.

. They developed mixed-mode models, where volumes of transport modes other than
bicycles are grouped together in the same model, such as a combined volume
model for pedestrians and bicyclists.

. They were related to bike-sharing programmes.

. Their full-text was not accessible.

3.2. Search strategy

The search was conducted in December 2021 using Scopus, Compendex, Inspec,
GEOBASE, GeoRef, U.S. Patents, EP Patents & WO Patents, and TRID (Transport Research
International Documentation). Scopus is the largest abstract and citation database of
peer-reviewed literature (Abduljabbar et al., 2022; Biswas et al., 2021; Pritchard, 2018),
while “Ei Compendex is the broadest and most complete engineering literature database
available in the world” (Bian et al., 2022; Biswas et al., 2021; Elsevier, 2022a). Inspec is
another comprehensive engineering dataset (Elsevier, 2022c), while TRID “focuses on
transportation research and contains more than 1.1 million records worldwide and is
maintained by the Transportation Research Board of the U.S. National Academies” (Bian
et al., 2022; Kamaluddin et al., 2018; Pritchard, 2018). While a search of the four databases
mentioned above is expected to cover all relevant transport related literature, the other
databases (also mentioned above) were searched anyway as they are included on the
Engineering Village, a search and discovery platform (Elsevier, 2022b), with Compendex
and Inspec.

We used free-text keywords for all the databases with index/MeSH terms relevant
to the database. Major search concepts were bicycling/bicyclists, demand/volume
modelling (excluding bike-sharing and related terms). A detailed description of the
systematic search strategy (conducted by the primary author) is provided in the sup-
plementary material. The queries listed in the supplementary material were
implemented in the respective databases and then imported in Covidence, “A
web-based collaboration software platform that streamlines the production of sys-
tematic and other literature reviews”. The references of the imported articles were
stored in Covidence as it facilitated organised screening (abstract screening and
full-text screening) (Covidence, 2022). Screening was conducted solely by the
primary author.

3.3. Title, abstract screening and full-text review

All the identified and unique articles underwent title and abstract screening. All articles
that passed the title and abstract screening were reviewed by studying their full-texts.
Studies whose full-texts could not be retrieved were excluded, and so were duplicate
studies and studies that developed only mixed-mode models. The reference lists of the
full-texts were also screened for any additional studies that were not returned by the
search, but fitted into the scope of this review.
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3.4. Data extraction

We extracted basic study characteristics such as title, year of publication, primary author’s
name, source where the study was published (journal/conference), and geographic
location of the study. Next, we recorded information related to the data and methods
employed by the study which included the types and quantity of data used, modelling
approach (e.g. DDM, ABM), type of models (subclass of model employed, i.e. type of stat-
istical or machine learning model such as negative binomial regression, support vector
machines), and independent variables used in the model. Finally, we extracted infor-
mation on the results of the studies, such as reported accuracy and error of the model,
and whether model validation was performed.

4. Results and discussion

Our search strategy produced 6865 studies for screening, out of which 2592 were
identified as duplicates by Covidence, and were therefore excluded. Title and abstract
screening were conducted on the remaining 4273 studies, which led to the exclusion
of 4135 irrelevant studies. Full-texts of the remaining 138 studies were reviewed out
of which 98 studies were excluded. Reasons for exclusion included studies not esti-
mating link-level bicycling volumes (n = 56), temporal-only forecasting using time-
series models (n = 17), mixed mode models which estimate collective volumes of
more than one transport mode (n = 2), non-primary review studies (n = 3), duplicate
studies (n = 4), irrelevant study design and outcomes (n = 8) and full texts not
found (n = 8). One, additional relevant study was identified from the list of references
of another study while reviewing its full text, leading to a final set of 41 studies
within the scope of this review. This search process is illustrated in Figure 1. In the
following subsections, we present the information extracted from the studies in
detail.

4.1. Basic study characteristics

Forty-one studies were included for the final review. The publication year of these
studies range from 2010 to 2021. Thirty-one studies were conducted in single cities
while 10 studies were conducted in multiple cities, sometimes across multiple
countries (n = 2). The majority of studies were conducted in North America (n = 30;
n = 26 in the United States of America), with others in Europe (n = 9), Oceania (n =
2) and South America (n = 1). There is a clear geographical bias when it comes to
the location of the studies. The 26 studies conducted in the U.S. reflected models
in 55 unique cities. This is in contrast to other study locations that reflected
models from 16 cities. The greater number of U.S.-based models may be explained
by greater availability of bicycling data and data collection infrastructure in the
U.S. as compared to the rest of the world. Only one study was conducted in a devel-
oping nation (Arellana et al., 2020). With the increased uptake of bicycles around the
globe, municipal authorities should be promoting enhanced bicycling data collection
in their respective areas.

8 D. BHOWMICK ET AL.



4.2. Types of modelling approaches

Among the modelling approaches undertaken by the authors of the studies, DDMwas the
most predominant (n = 29). Mixed methods, using a combination of Spatial Network
Analysis and DDM, were used in four studies. The traditional four-step demand modelling
procedure was employed by three studies, while ABM, and two-stage bicycle origin and
destination (OD) matrix estimation process was employed by two studies each. Finally,
there was one study that employed microsimulation. The basic study characteristics
and the corresponding modelling approaches have been detailed in Table 1.

4.3. Types of data (and variables) used in the models

The most popular type of data used was bicycle count data (short-term and long-term
counts of bicycles obtained using automated sensors or a manual counting process) (n
= 39), followed by road infrastructure data (presence of protected bicycle lanes, density
of bicycling facility present, presence of bike signals, functional class of road, pavement
width, number of lanes in the carriageway, presence of on-road parking lanes, posted

Figure 1. Study selection flowchart.
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Table 1. Study characteristics.
Author (year) Study area Countries Number of count locations Modelling approach

Arellana et al.
(2020)

Barranquilla Colombia 27 locations Direct demand modelling

Bargh et al. (2012) Hastings and Havelock North New Zealand Microsimulation
Cooper (2016) Cardiff U.K. 107 on-road locations, 14

traffic-free paths
Mixed method – Spatial Network Analysis
+ Direct demand modelling

Cooper (2017) Cardiff U.K. 107 on-road locations, 14
traffic-free paths

Mixed method – Spatial Network Analysis
+ Direct demand modelling

Cooper (2018) Cardiff U.K. 107 on-road locations, 14
traffic-free paths

Mixed method – Spatial Network Analysis
+ Direct demand modelling

Dadashova et al.
(2020)

Austin, Brownsville, Corpus Christi, Dallas, Houston, League City, Lubbock,
Midland, Odessa, Plano, San Antonio, and Wichita Falls (All TX)

U.S.A. 100 locations across 12 cities Direct demand modelling

Dadashova and
Griffin (2020)

Austin, Brownsville, Corpus Christi, Dallas, Houston, League City, Lubbock,
Midland, Odessa, Plano, San Antonio, and Wichita Falls (All TX)

U.S.A. 350 locations in 12 cities Direct demand modelling

Ermagun et al.
(2018)

Portland, ME; Arlington, VA; Miami, FL; New Orleans, LA; Minneapolis, MN;
Duluth, MN; Fort Worth, TX; Houston, TX; Albuquerque, NM; Colorado
Springs, CO; Billings, MT; Seattle, WA; San Diego, CA

U.S.A. 32 locations in 13 cities Direct demand modelling

Fagnant and
Kockelman
(2016)

Seattle, WA U.S.A. 251 locations Direct demand modelling

Fan and Lin (2019) Charlotte, NC U.S.A. 7 locations Direct demand modelling
Gehrke and
Reardon (2021)

Cambridge, MA U.S.A. 91 manual counts across 19
intersections

Direct demand modelling

Gosse and Clarens
(2014)

Charlottesville, VA U.S.A. 18 locations Temporal factoring using Markov chain
Monte Carlo (MCMC) sampling, and
Spatial factoring

Hankey et al.
(2012)

Minneapolis, MN U.S.A. 259 locations Direct demand modelling

Hankey et al.
(2021)

Blacksburg, VA; Boston, MA; Champaign Urbana, IL; Cleveland, OH;
Columbus, OH; Denver, CO; Hartford, CT; Lawrence, KS; Los Angeles, CA;
Madison, WI; Manhattan, KS; Minneapolis, MN; New York City, NY;
Philadelphia, PA; Portland, OR; San Francisco, CA; Seattle, WA; St Louis,
MO; Tucson, AZ; Washington, DC

U.S.A. 4145 locations across 20
cities

Direct demand modelling

(Continued )
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Table 1. Continued.
Author (year) Study area Countries Number of count locations Modelling approach

Haworth (2016) London U.K. 298 locations Direct demand modelling
Hochmair et al.
(2019)

Miami-Dade County, FL U.S.A. 32 locations Direct demand modelling

Jacyna et al.
(2017)

Warsaw Poland Four-step modelling procedure

Jahangiri et al.
(2019)

San Diego, CA U.S.A. 88 locations Direct demand modelling

Jestico et al.
(2016)

Victoria, BC Canada 18 locations Direct demand modelling

Jones et al. (2010) San Diego County, CA U.S.A. 80 locations Direct demand modelling
Kaziyeva et al.
(2021)

Salzburg Austria 9 locations Agent-based simulation modelling

Kwigizile et al.
(2019)

Ann Arbor, MI; Grand Rapids, MI U.S.A. 19 locations Direct demand modelling

Le et al. (2017) Blacksburg, VA; Boston, MA; Champaign Urbana, IL; Cleveland, OH;
Columbus, OH; Denver, CO; Hartford, CT; Lawrence, KS; Los Angeles, CA;
Madison, WI; Manhattan, KS; Minneapolis, MN; New York City, NY;
Philadelphia, PA; Portland, OR; San Francisco, CA; Seattle, WA; St Louis,
MO; Tucson, AZ; Washington, DC

U.S.A. 9870 locations Direct demand modelling

Lin and Fan
(2020a)

Charlotte, NC U.S.A. Direct demand modelling

Lin and Fan
(2020b)

Charlotte, NC U.S.A. 7 locations Direct demand modelling

Lindsey et al.
(2018)

Minneapolis, MN U.S.A. 471 locations Direct demand modelling

Liu et al. (2021) New York, NY U.S.A. 112 locations Direct demand modelling
Lu et al. (2018) Blacksburg, VA U.S.A. 101 locations Direct demand modelling
McDaniel et al.
(2014)

Moscow, ID U.S.A. 14 intersections Mixed method – Spatial Network Analysis
+ Direct demand modelling

Munira et al.
(2021)

Austin, TX U.S.A. 44 locations Direct demand modelling

Nelson et al.
(2021)

Boulder, CO; Ottawa, ON; Phoenix, AZ; San Francisco, CA; Victoria, BC U.S.A.,
Canada

1236 locations Direct demand modelling

(Continued )
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Table 1. Continued.
Author (year) Study area Countries Number of count locations Modelling approach

Orvin et al. (2021) Auckland; Kelowna, BC New Zealand,
Canada

25 locations (Auckland), 12
locations (Kelowna)

Direct demand modelling

Oskarbski et al.
(2021)

Gdynia Poland 221 locations Four-step modelling procedure

Rupi et al. (2019) Bologna Italy 46 locations Direct demand modelling
Ryu et al. (2019) Utah State University campus, Logan, UT U.S.A. 46 locations Two-stage bicycle origin and destination

(OD) matrix estimation process
Sanders et al.
(2017)

Seattle, WA U.S.A. 403 locations Direct demand modelling

Schoner et al.
(2021)

Seattle, WA U.S.A. 65 locations Direct demand modelling

Ryu (2020) Winnipeg, MB Canada 19 locations Two-stage bicycle origin and destination
(OD) matrix estimation process

Strauss et al.
(2015)

Montreal, QC Canada 1065 locations Direct demand modelling

Wallentin and
Loidl (2015)

Salzburg Austria 3 locations Agent-based simulation modelling

Wang et al. (2016) Minneapolis, MN; Columbus, OH U.S.A. 86 locations (Minneapolis)
and 41 locations
(Columbus)

Direct demand modelling
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Table 2. Data types by study.

Study

Bike
count
data

Infrastructure
data

Census
data

Network
characteristics data

Land-
use
data

Strava
data

Weather
data

Travel
survey
data

Traffic
flow data

GPS
data

Crash
data

Google Earth
bicycle facility

data

Google
StreetView
imagery

OD
data

POI
data

Arellana et al.,
(2020)

✓ ✓ ✓ ✓

Bargh et al.,
(2012)

✓ ✓ ✓

Cooper (2016) ✓ ✓
Cooper (2017) ✓ ✓ ✓ ✓
Cooper (2018) ✓ ✓
Dadashova et al.
(2020)

✓ ✓ ✓ ✓

Dadashova and
Griffin (2020)

✓ ✓ ✓ ✓ ✓

Ermagun et al.
(2018)

✓ ✓ ✓ ✓

Fagnant and
Kockelman
(2016)

✓ ✓ ✓

Fan and Lin
(2019)

✓ ✓ ✓ ✓ ✓

Gehrke and
Reardon (2021)

✓ ✓ ✓

Gosse and
Clarens (2014)

✓ ✓ ✓

Hankey et al.
(2012)

✓ ✓ ✓ ✓

Hankey et al.
(2021)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Haworth (2016) ✓ ✓
Hochmair et al.
(2019)

✓ ✓ ✓ ✓ ✓ ✓

Jacyna et al.
(2017)

✓ ✓ ✓ ✓

Jahangiri et al.
(2019)

✓ ✓ ✓

Jestico et al.
(2016)

✓ ✓ ✓

Jones et al. (2010) ✓ ✓ ✓ ✓

(Continued )
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Table 2. Continued.

Study

Bike
count
data

Infrastructure
data

Census
data

Network
characteristics data

Land-
use
data

Strava
data

Weather
data

Travel
survey
data

Traffic
flow data

GPS
data

Crash
data

Google Earth
bicycle facility

data

Google
StreetView
imagery

OD
data

POI
data

Kaziyeva et al.
(2021)

✓ ✓ ✓ ✓

Kwigizile et al.
(2019)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Le et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓
Lin and Fan
(2020b)

✓ ✓ ✓

Lin and Fan
(2020a)

✓ ✓ ✓ ✓

Lindsey et al.
(2018)

✓ ✓ ✓ ✓ ✓ ✓

Liu et al. (2021) ✓ ✓ ✓ ✓
Lu et al. (2018) ✓ ✓ ✓ ✓ ✓
McDaniel et al.
(2014)

✓ ✓ ✓ ✓ ✓

Munira et al.
(2021)

✓ ✓ ✓ ✓ ✓

Nelson et al.
(2021)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Orvin et al. (2021) ✓ ✓ ✓ ✓ ✓ ✓
Oskarbski et al.
(2021)

✓ ✓ ✓ ✓ ✓ ✓

Rupi et al. (2019) ✓ ✓
Ryu (2020) ✓ ✓ ✓ ✓ ✓
Ryu et al. (2019) ✓ ✓ ✓ ✓ ✓ ✓
Sanders et al.
(2017)

✓ ✓ ✓ ✓

Schoner et al.
(2021)

✓ ✓ ✓

Strauss et al.
(2015)

✓ ✓

Wallentin and
Loidl (2015)

✓ ✓ ✓

Wang et al.
(2016)

✓ ✓ ✓ ✓ ✓
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speed limit, slope of road segment, proximity to transit stops, etc.) (n = 31) and census
data (aggregated socio-demographic information such as median age, percentage of
people > 65 years, percentage of male, female, male bicyclists, percentage of population
with at least a high-school degree, more highly-educated people, employment density,
job accessibility, unemployment rate, percentage of white people, percentage of
African-Americans, population density, households within 0.25 miles of count location,
number of housing units in each census block, median household income, number of
households with income > $125,000, car ownership, bicycle mode share, mode share
for bicycling, walking and transit combined, etc.) (n = 29). Network characteristics data
(such as betweenness centrality, angular distance, segment length, number of through
lanes, size of street polygon in a block group, multimodal network density, intersection
density, road-connectivity index, etc.) were employed in 16 studies, land use data (percen-
tage of industrial, retail, residential and open space area, if commercial land use is greater
than residential land use, proximity to university and other educational institutes, proxi-
mity to water bodies, etc.) in 14 studies, while crowdsourced Strava data (link-level Strava
counts, percentage of Strava trips that are commuting trips, etc.) was used in 11 studies.
Weather data (mean temperature, maximum precipitation, etc.) was used in 10 studies,
travel survey data (travel diaries recording trips of participants over a specific time
period) in nine studies, traffic flow data (link-level Annual Average Daily Traffic, percen-
tage of right turning traffic, percentage of trucks, etc.) was used in five studies, while
bicycle crash data (bicycle crash density, number of crashes) was used in two studies.
Points-of-interest data (POI) (locations that serve as probable destinations of cyclists),
origin-destination data (OD) (aggregated trip counts from one travel analysis zone to
another in a study area), Google Street View imagery (for characterising street environ-
ment near the count locations) and Google Earth data (derive bicycle facility data
derived from manual coding of imagery data) were used in one study each. The types
of data used by individual studies are presented in Table 2. It is important to note that
our search strategy is not designed to be biased towards any particular trip tracking appli-
cation. However, the studies included in this review that used crowdsourced mobility data
had only used Strava Metro data for this purpose. There are several other tracking appli-
cations such as Endomondo, MapMyRide, MapMyFitness and Garmin Connect (Romanil-
los et al., 2016). Figure 2 shows the types of datasets used vs their corresponding
modelling approaches.

4.4. Reporting study and modelling details

Although the studies included in this review aimed to estimate bicycling volumes at link-
level, there were inconsistencies observed in reporting of modelling details and results.
First, of the 41 studies, only three studies objectively reported (in terms of a number)
the size of the study area (Lu et al., 2018; Ryu et al., 2019; Wallentin & Loidl, 2015). We
acknowledge that most of the other studies had mentioned the names of these geo-
graphical locations such as cities and counties which indicate the extent of the study
area. However, the real extent of study areas is often ambiguous. For example, Melbourne,
City of Melbourne and Greater Melbourne are areas with different sizes. Reporting the size
of the study area size objectively in terms of an approximate number is a trivial task, and
can help the reader judge the extrapolation capability of the model, i.e. how well it is able
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to predict bicycling volumes at locations where there is no count information available.
For example, 15 count locations across a suburb would have a greater probability of
being representative of the entire suburb (i.e. the study area), than 15 count locations
spread across a large city being representative of the entire city. Second, there were
only three studies out of the 41 that reported the number of links or the number of
nodes that were part of their study (Jahangiri et al., 2019; Oskarbski et al., 2021; Rupi
et al., 2019; Ryu, 2020) while three out of the 39 studies that used bicycle count data
did not detail the number of bicycle count locations (Bargh et al., 2012; Oskarbski et al.,
2021; Ryu et al., 2019). Bicycle counts is the most critical data that is used by the
studies as the dependent variable in their models. Therefore, reporting the number of
count sites is crucial to help the reader understand the foundation of the model. Report-
ing of the number of nodes (intersections) or links (street segments) covered by the study
area helps the reader to understand the proportion of known data (number of nodes or
links with known counts) and the extent of extrapolation (number of nodes or links with
unknown counts where volumes have been estimated).

4.5. Model validation and reporting of accuracies and errors

There was variation in reporting of accuracy and errors of the developed models. Model
effectiveness was reported in the form of accuracy, R-squared (Ermagun et al., 2018;
Haworth, 2016), log-likelihood (Fagnant & Kockelman, 2016; Gehrke & Reardon, 2021),
Mean Absolute Error (MAE) (Jahangiri et al., 2019; Munira et al., 2021), Mean Absolute Per-
centage Error (MAPE) (Dadashova & Griffin, 2020; Jestico et al., 2016), Mean Relative Per-
centage Error (MRPE) (Ermagun et al., 2018), and/or Root Mean Squared Error (RMSE)

Figure 2. Number of studies by data type and applied method.
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(Jahangiri et al., 2019; Ryu, 2020). DDMs were more standardised in this respect, with all
studies but two (Arellana et al., 2020; Schoner et al., 2021) reporting model effectiveness
using at least one metric. Other approaches did not report model accuracy consistently.

The three studies which only report log-likelihood values (Fagnant & Kockelman, 2016;
Gehrke & Reardon, 2021; Liu et al., 2021) have compared the goodness of fit of multiple
models (not model types) such as a Poisson model and negative binomial model and
nested models (comparing one model with a subset of predictor variables of another).
However, log-likelihood values are not helpful in terms of assessing the accuracy or the
representativeness of a model. Therefore, this should have been supported with better
metrics such as R-squared and mean errors.

Model validation is an important step that reveals the representativeness of the model
for the study area, especially when trying to estimate bicycling volumes for an area which
is relatively large in size (such as a city or a county). Validation efforts were conducted by
23 studies included in this review. Most of the studies (18 out of 23) conducted either used
k-fold cross validation, random n% hold-out cross validation or leave-one-out cross-vali-
dation. Pattern-oriented modelling (POM) framework was adopted by both the ABM
studies to validate their models. Multiple patterns were used to test the validity of
model outputs such as spatio-temporal distributions of cyclists over the study area and
their relative frequencies from observed datasets. One study reported a cross-city vali-
dation method, where the model developed on one city was applied to another city
(and vice versa) and checked for estimation accuracy. Ten out of 41 studies reported
neither estimation accuracy nor errors of their models (see Table 3). Interestingly, a
DDM study used cross-validation techniques to achieve the best-fitting model (Schoner
et al., 2021). However, the study did not report metrics reflecting the accuracy for the bicy-
cling model. Furthermore, some studies did not report the units of their errors. Hankey
et al. (2021) described count data collection for peak periods, but their results did not
mention the unit of Mean Absolute Error (bicycles per hour or bicycles per peak period,
consisting of two hours). Table 3 presents the accuracy/error metrics used, accuracy/
error values and validation details reported by the studies included in the review.

4.6. Strengths and limitations of different modelling approaches

In this section, the order of presenting the modelling approaches is based on their current
usage for link-level bicycling volume modelling. Direct demand modelling is presented
first because of its predominance, while the adjacency of the four-step model and the
agent-based model helps the reader understand how activity-based models address
the limitations of four-step trip-based models.

4.6.1. Direct demand modelling and related mixed methods
Direct demand modelling was the most popular modelling approach (n = 29) identified in
this review.(Arellana et al., 2020; Orvin et al., 2021; Schoner et al., 2021) Using count data
(dependent variable) from a set of locations, and variables that influence bicycling
volumes such as socio-demographics, network characteristics, and land-use patterns
(independent variables), direct demand models apply statistical methods (Sanders
et al., 2017; Schoner et al., 2021; Wang et al., 2016) or machine learning algorithms
(Hankey et al., 2021; Kwigizile et al., 2019; Nelson et al., 2021) to estimate link level
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Table 3. Modelling types vs. accuracy/errors.

Method Study Validation

No. of
count
sites Validation method Accuracy R-squared

Log-
likelihood MAE MAPE MRPE RMSE

Direct demand
modelling

Arellana et al.
(2020)

No 27

Dadashova and
Griffin (2020)

Yes 350 Leave-one-out cross-validation with 100 repetitions 29%

Dadashova et al.
(2020)

Yes 100 Random 20% hold-out cross validation 70–75% 29%

Ermagun et al.
(2018)

Yes 32 Leave-one-out cross-validation 0.63 65.4%

Fagnant and
Kockelman
(2016)

No 251 −970.05

Fan and Lin
(2019)

No 7 0.61

Gehrke and
Reardon (2021)

No 91 −603.31

Hankey et al.
(2012)

Yes 259 Comparing estimated 12-h counts to 12-h counts
imputed from scaling factors for the year 2010 at 85
locations (46 new and 39 previously sampled
locations).

0.48

Hankey et al.
(2021)

Yes 4145 Random hold-out cross validation 0.84 34–63 (units
missing)

Haworth (2016) Yes 298 Cross-validation 0.67 72.9 cyclists
per hour

Hochmair et al.
(2019)

No 32 0.45–0.50

Jahangiri et al.
(2019)

Yes 88 10-fold cross validation 0.67 87.68 AADB 105.93
AADB

Jestico et al.
(2016)

Yes 18 Random 10% hold-out cross validation with 100
repetitions

76–85% 38%

Jones et al.
(2010)

No 80 0.47

Kwigizile et al.
(2019)

Yes 19 10-fold cross-validation with 10 repetitions 0.71

Le et al. (2017) Yes 9870 Random 10% hold-out cross validation with 100
repetitions

0.19–0.56

Lin and Fan
(2020a)

No 0.22

Lin and Fan
(2020b)

No 7 0.61

Ermagun et al.
(2018)

Yes 471 Monte Carlo-based 10% hold-out analysis 0.58
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Liu et al. (2021) No 112 −659.36,
−646.51

Lu et al. (2018) Yes 101 Monte Carlo-based 20% holdout analysis 0.49
Munira et al.
(2021)

Yes 44 10-fold cross validation 0.7 132 AADB 171 AADB

Nelson et al.
(2021)

Yes 1236 10-fold cross validation 0.08–0.92

Orvin et al.
(2021)

No 37 0.996–0.997

Rupi et al. (2019) No 46 0.73
Sanders et al.
(2017)

No 403 0.57–0.62

Schoner et al.
(2021)

Yes 65 Leave-one-out cross-validation

Strauss et al.
(2015)

Yes 1065 Correlation between AADB values obtained from GPS
data and from count data

0.48–0.76

Wang et al.
(2016)

Yes 127 Within city validation – random 10% hold out; Cross
city validation – Model for one city is applied to the
other city and vice versa

0.58–0.64

Mixed methods Cooper (2016) Yes 121 Generalised cross-validation 0.65–0.78
Cooper (2017) No 121 0.61
Cooper (2018) Yes 121 7-fold cross validation with 50 repetitions 0.78
McDaniel et al.
(2014)

Yes 14 Random 10% hold-out cross validation 0.45–0.61

Agent-based
modelling

Kaziyeva et al.
(2021)

Yes 9 Pattern oriented modelling framework – Relative
frequencies of spatial and temporal distributions of
cyclists
over the study area.

1002.27
cyclists per
day

Wallentin and
Loidl (2015)

Yes 3 Relative frequencies of cyclist count from 3 locations

OD matrix
estimation

Ryu (2020) No 19 37.91 (unit
missing)

Ryu et al. (2019) No 46 18.57 (unit
missing)

Four-step demand
modelling

Oskarbski et al.
(2021)

No 221 0.77

Jacyna et al.
(2017)

Yes Sampling rate distributions in each speed interval
were compared for the model dataset and the
control observation dataset

Gosse and
Clarens (2014)

No 18

Microsimulation Bargh et al.
(2012)

No

AADB = Annual Average Daily Bicycling traffic.
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counts, first at known locations, and finally applying the resultant model to predict link
level counts for all the links in the rest of the study area where count information is una-
vailable. DDMs are simpler to interpret, as the associations between the explanatory vari-
ables and the bicycling volumes are apparent from the magnitude and direction of the
model coefficients and their significance values. This is unlike more complex models,
where the cause and effect have to be traced back via a longer chain of model elements,
which is challenging. Therefore, DDMs have been extensively employed by researchers to
inform urban transport planners about the elements that drive volumes at locations
across a study area. State and local government authorities often use results from the
DDMs for operational purposes, such as to introduce an infrastructural element at
more locations that is known to improve bicycling patronage (Jahangiri et al., 2019;
Jones et al., 2010).

However, there are limitations of direct demand modelling approach. Variables that
influence bicycling volumes at link level often vary across cities. For example, distance
to sea shore was a unique explanatory variable in the model developed by Nelson et al.
(2021). Some models considered ethnicity as a significant explanatory variable influencing
bicycling volumes while others did not (Hochmair et al., 2019; Kwigizile et al., 2019; Nelson
et al., 2021; Wang et al., 2016). Some studies have tried to overcome this limitation by
developing a single direct demand model for multiple cities to expand the spatial cover-
age of their models (Ermagun et al., 2018; Hankey et al., 2021; Le et al., 2017). While that
improves the transferability of the model across different cities, such multi-city models
lose accuracy when compared to multiple city-specific models. Nelson et al. (2021)
stated that the R-squared values of their generalised models ranged from 0.08 to 0.80
(when applied on individual cities), while that of their city-specific models ranged from
0.68 to 0.92. On the other hand, separate studies developing direct demand models for
the same study area came up with different models. For example, Sanders et al. (2017)
and Schoner et al. (2021) developed DDMs for Seattle, and the included independent vari-
ables differed between the two studies. Sanders et al. (2017) included unique variables
such as number of bike markings on a segment and presence of school within 0.25 miles
of either end of a segment while Schoner et al. (2021) included unique variables such as
households within 0.25 miles and type of street and available bicycle facility. Often, DDMs
are developed using a small number of known count locations (Fan & Lin, 2019; Jestico
et al., 2016; Kwigizile et al., 2019; Lin & Fan, 2020b) which may be biased towards high-
frequency bicycling locations (majority of count locations being on dedicated bicycle
paths, and fewer on roads and streets). DDM predicts volumes for links without count
data, and often assumes uniformity in the relationship between the predictor variables
and the dependent variables (one set of coefficients for the entire study area), which
may lead to inaccuracy in volume predictions. Most models do not account for temporal
variability and seasonality observed in bicycle count data (Dadashova & Griffin, 2020).
DDMs are unable to account for travel behaviour and perceptions of travellers (Kaziyeva
et al., 2021). The models are simply statistical associations between observed counts and
ambient information around a count site relevant for bicycling, however, they do not
incorporate the nuance of travel behaviour of bicyclists. Hence, they are not capable of
considering the interactions between the travellers and their environment, or the inter-
actions between the travellers themselves, based on the characteristics of the travellers.
Modelling this heterogeneity for bicycling is extremely important as bicycling preferences

20 D. BHOWMICK ET AL.



is dependent on a wider range of individual and environmental factors and is hetero-
geneous (Loidl et al., 2019).

4.6.2. Four-step demand modelling
Traditional demand models (trip-based models) are usually developed based on detailed
data collected via household travel surveys. Such models are commonly macroscopic in
nature, covering large study areas. Unlike DDMs, the major advantage of traditional
four-step models is that they are employed for large-scale, long-term planning purposes.
For example, Oskarbski et al. (2021) developed a bicycle traffic model for the city of
Gdynia, Poland to support the planning and decision making with regard to changes in
the transport network.

However, disaggregated versions of large-scale trip-based demand models that have
higher spatial granularity, are data-intensive and computationally expensive. As a result,
to apply them in the bicycling context becomes challenging as they become computation-
ally expensive for high resolution bicycling networks, requiring a significant increase in the
cost of calibration. Despite such challenges, Oskarbski et al. (2021), Jacyna et al. (2017) and
Gosse and Clarens (2014) had developed trip-based models for modelling link-level bicy-
cling volumes. However, these high-resolution bicycling models use area-level origin-des-
tination (OD) survey data, which is of far lower spatial and temporal resolution. Oskarbski
et al. (2021) simulated trips from centroids of travel-analysis zones (TAZs) due to low-resol-
ution of the OD data. Depending on the size of the TAZs, this can lead to large inaccuracies
in modelling, especially in local non-arterial roads, given link-level volumes are being esti-
mated. Also, adequate information related to different steps in the modelling procedure
was not clearly communicated. For example, Jacyna et al. (2017) only stated the importance
of link classification based on road characteristics for route choice, but did not present any
detail on how the route assignment was conducted in their Warsaw model. Furthermore,
trip assignment of these studies were not robust. For example, Oskarbski et al. (2021)
had considered surface type and longitudinal gradient to be the only factors influencing
bicycling route choice. While Gosse and Clarens (2014) had considered the importance
of dedicated bicycling infrastructure on route assignment, they employed only two attri-
bute levels with coarse values. Models of this nature are unable to account for heterogen-
eity of route preferences among cyclists.

However, there are inherent limitations of such traditional trip-based demand models.
While these models have ensured the popularity of simulation in transport planning, their
inability to associate trips to individuals, capture their heterogeneous behaviour and their
interactions, and inter-dependencies between different components of the transport
system such as infrastructure, congestion, mode and route choice, and activity chains,
calls for more sophisticated models that address these limitations (Rasouli & Timmermans,
2014). Activity-based models (an alternative to trip-based models) simulate the individual
behaviour of each traveller in the system, their interactions with the environment and
other travellers.

4.6.3. Agent-based modelling
In the transport demand modelling space, agent-based modelling approaches are appro-
priate for producing spatially and temporally explicit traffic flows. Agent-based models
(ABMs) are congruent with disaggregated activity-based models (different to trip-based
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models of traditional four-step demand modelling). Activity-based models are more
promising for active travel modes such as bicycling, as unlike trip-based models and
DDMs, activity-based models focus on individual travellers, their mode and route
choice decisions being influenced by their characteristics (Liu et al., 2012). Agent-based
models for traffic flows are relatively recent (due to advancement in computational
capacity). These models have the ability to incorporate the travel behaviour of individual
people (agents in the model). Also, parameter tweaking in agent-based models allows for
scenario analysis, and therefore test the system’s sensitivity to plausible hypothetical
scenarios.

There still exists challenges with agent-based models when attempting to calibrate to
real-world scenarios. First, generating an agent population that appropriately represents
the travel behaviour of the real-world population is challenging. ABMs rely on robust
inputs to the model related to the agent population, and their mobility behaviour
when their goal is to accurately estimate volumes. Researchers often rely on census
data to assign spatially driven socio-demographic characteristics to the agents, and
based on travel survey data, assign activities and destinations. However, behaviour
assignment is mostly assumption-based, since individual or household-level popu-
lation-wide information about travel behaviour is rarely available, particularly in low-
income countries. Wallentin and Loidl (2015) categorised their agents into “working
cyclists”, “student cyclists”, and “leisure cyclists” and assigned only two trips (home to des-
tination, and destination to home) to each agent. Kaziyeva et al. (2021) increased the level
of complexity and assigned age, gender and employment status to their agents. Second,
the route choice heuristics assigned to the agents are often too simplistic and are not
based bicycling route choice models. Kaziyeva et al. (2021) implemented a safest route
assignment in their model, and so did Wallentin and Loidl (2015). However, Wallentin
and Loidl (2015) accounted for the variations of perception and preferences across indi-
viduals by introducing a stochastic variation in routing weights. Third, representative
ABMs are highly complex and therefore are computationally expensive. Study areas of
bicycling models commonly span across entire cities. An ABM designed to accurately rep-
resent real-world travel demand needs to assign characteristics to individual agents that
govern their travel behaviour. Bicycling ABMs that intend to estimate link-level volumes
require high spatial resolution to capture fine-grained movement of these agents moving
across the network. As the ABM attempts to replicate the actual travel behaviour of an
entire city, complexity increases, and the model becomes computationally expensive.

4.6.4. Summary
The Table 4 summarises the strengths and limitations of the aforementioned modelling
approaches.

4.7. Method vs. accuracy

While we sought to understand the effectiveness of different methods at estimating link-
level bicycling volumes, it was not possible to do so, given the range of confounding
factors present across these studies. We have already presented the details of modelling
accuracy and errors of all the studies included in this review in Table 3. Despite the use of
standardised metrics, it is challenging to compare these methods using the metrics alone.
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First, model performance depends highly on data quality and quantity, which varies
across studies. Sourcing of bicycling travel data from travel surveys, counts, and nonmo-
torized travel infrastructure databases remains a challenge (Liu et al., 2012). Since tra-
ditional monitoring methods are resource-intensive, bicycling travel data is usually
limited by small sample sizes, low spatial and temporal coverages, and infrequent
updates (Lee & Sener, 2020). Therefore, there is a lack of standardisation in not just
data quantity (e.g. number of count sites ranging from 3 (Wallentin & Loidl, 2015) to
9870 locations (Le et al., 2017)), but also in methods of data collection (e.g. manual
counts (Ryu et al., 2019) vs automatic counts (Schoner et al., 2021); counts on AM and
PM peaks (Rupi et al., 2019) vs continuous counts (Cooper, 2018); short-term counts
(Liu et al., 2021) vs long-term counts (Hankey et al., 2021)), which may affect model accu-
racy. Studies are often reliant on using a combination of counts with different temporal
coverages and resolutions (Hankey et al., 2012; Munira et al., 2021; Strauss et al., 2015).
Second, we noted that each study only employed a single modelling approach, and no
study compared the accuracy of different modelling approaches, limiting our understand-
ing of the most effective modelling approach.

4.8. Exclusion of research related to bike-share programmes

Bike-sharing programmes have gained popularity over the years. They could serve as a
rich source of information for bicycling related research. However, they were outside
the scope of this review for the following reasons. Bike-sharing data is fundamentally
different from all other forms of bicycling data as it is normally complete and more
detailed. Most bike-sharing datasets have entire GPS traces, and therefore bike-sharing
data contains detailed spatial and temporal information about all the bikes involved in
that particular bike-share platform, and all from a single user base. Link-level (bike-
sharing) volume modelling using bike-sharing data is not necessary (as we already
have all necessary information). Therefore, such studies do not apply any transport
demand modelling that would be of interest to this review, and hence, the scope of
this review excludes modelling bike-sharing volumes.

This is also reflected in existing bike-sharing literature. Bike-sharing data is almost
always used to develop models that predict bike-sharing demand at stations, temporal
demand analysis and forecasting of bike-sharing, bike-sharing route choice and others.
Conducting link-level (overall) volume modelling is not appropriate with bike-sharing
counts and therefore, the scope of this review excludes studies related to bike-sharing.
Only Pogodzinska et al. (2020) had expanded bike-share GPS traces to estimate overall
bicycling volumes with high accuracy, however, they had only made estimations at 5
locations, and their model was not validated.

4.9. Recommendations and possible research directions

We make the following recommendations for future studies to consider.

. Studies could undertake multiple modelling approaches in the same study area using
the same data leading the way to comparison of accuracy across different types of
models.
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. In cases where studies will have access to temporal patterns of data (daily, monthly,
yearly) across a large enough timespan, they should explore both spatial and temporal
expansion of the model (estimating current demand and forecasting future demand at
locations where volume information is absent).

. Studies should ensure that they report basic study characteristics, thereby allowing
greater readability and reproducibility of their research methods. Most important,
they should report the number of count sites which are used to develop their
model, and the extent of the study area, where the developed model estimates
volumes.

. In case of direct demand models, studies should report all possible accuracy and error
metrics. Errors should be provided with units.

. Studies should validate their models and report the same, otherwise the validity of
such models is difficult to judge by the reader. In cases where validation is not
being done, this should be explicitly mentioned with justifications.

. Agent-based modelling studies should base the route assignments of their agents on a
data-driven route choice model, where possible.

. More studies should be encouraged in developing nations.

. Appropriate state-of-the-art machine learning techniques (deep learning methods)
such as graph neural networks (which can capture graph-structured data such as
road networks), which are already applied for traffic prediction and forecasting,
should be translated to estimate link-level bicycling volumes and consequently,

Table 4. Strengths and limitations of major modelling approaches.
Direct demand modelling Four-step demand modelling Agent-based modelling

Strengths . Low computational
complexity

. Easier to infer the cause-
effect relationships

. Useful for operational
purposes

. Model validation is easier

. Suitable for long-term urban and
traffic planning purposes

. Can account for route choice of
bicyclists

. Able to capture
heterogeneity in rider
behaviour

. Able to capture rider-rider
and rider-environment
interaction

. Suitable for long-term
urban and traffic planning
purposes

. Can account for route
choice of bicyclists

. Can be used to develop and
test future scenarios

Limitations . Unable to capture
heterogeneity in rider
behaviour

. Unable to capture rider-rider
and rider-environment
interaction

. Unable to account for route
choice of bicyclists

. Not suitable for long-term
urban and traffic planning
purposes

. Unable to capture heterogeneity
in rider behaviour

. Unable to capture rider-rider
and rider-environment
interaction

. Hard to infer cause-effect
relationships

. Implementation of this model is
not simple

. Data intensive

. Model is validation is
challenging

. Most complex of all
modelling approaches

. Hard to infer cause-effect
relationships

. Data intensive

. Model is validation is
challenging
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comparisons of the results could be drawn with traditional approaches. However, it
must be noted that such deep learning methods have high data demand (Yin et al.,
2022), which is a challenge in the bicycling space.

5. Conclusions

Given the importance of sustainable urban goals, the importance of active mobility
modes such as bicycling has become paramount. Strategic infrastructural and policy inter-
ventions require city-wide high-resolution models of bicycling. In this review of methods
for modelling link-level bicycling volumes, we identified a variety of methodological
approaches, all of which have intrinsic limitations. Direct demand modelling was most fre-
quently employed, but the inability to account for heterogeneity in travel behaviour and
the inability to leverage this approach for forecasting are major limitations of this method.
Agent-based simulation models may overcome these limitations, but existing studies for
modelling link-level bicycling volumes were infrequent and further validation is required.
Further research is required to contrast modelling approaches within the same study area
to determine the most robust approaches for modelling link-level bicycling volumes.
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