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ABSTRACT 

Background: Numerous studies have explored associations between bicycle network characteristics 

and bicycle ridership. However, the majority of these studies have been conducted in inner 

metropolitan regions and as such, there is limited knowledge on how various characteristics of 

bicycle networks relate to bicycle trips within and across entire metropolitan regions, and how the 

size and composition of study regions impact on the association between bicycle network 

characteristics and bicycle ridership. 

Methods: We conducted a retrospective analysis of household travel survey data and bicycle 

infrastructure in the Greater Melbourne region, Australia. Seven network metrics were calculated 

and Bayesian spatial models were used to explore the association between these network 

characteristics and bicycle ridership (measured as counts of the number of trips, and the proportion 

of all trips that were made by bike).  

Results: We demonstrated that bicycle ridership was associated with several network 

characteristics, and that these characteristics varied according to the outcome (count of the number 

of trips made by bike or the proportion of trips made by bike) and the size and characteristics of the 

study region. 

Conclusions: These findings challenge the utility of approaches based on spatially modelling network 

characteristics and bicycle ridership when informing the monitoring and evaluation of bicycle 

networks. There is a need to progress the science of measuring safe and connected bicycle networks 

for people of all ages and abilities. 

 

 

  



INTRODUCTION 

To advance bicycling as an active and sustainable mode of transport, cities across the world are 

increasing investment in bicycling infrastructure. 1, 2 The presence and quality of bicycling 

infrastructure has a significant impact on bicycling,3 and there is considerable scope for increases in 

bicycling participation when high-quality and connected infrastructure is provided.4 

The length of bicycling infrastructure and the extent of newly implemented bicycling infrastructure 

are commonly used in planning documents and academic studies to assess a city’s bicycling 

network.5, 6 However, there is growing recognition of the importance of how ‘connected’ the 

network is; that is, enabling people to use continuous, safe and low-stress routes to access everyday 

destinations.5, 7, 8 Fragmentation in the network may force riders into mixed traffic, require lengthy 

detours, and may discourage bike riding altogether, primarily due to safety concerns.9, 10 

Understanding the role that bicycle infrastructure network characteristics have on bicycling is 

therefore necessary to advance knowledge of how to plan the implementation of safe and 

connected networks, and to benchmark networks across jurisdictions. Recent developments in 

measuring bicycle network connection include the use of indicators developed using graph theory, 

such as density, directness and centrality.9, 11, 12 Such approaches offer systematic methods for 

measuring network quality for comparison within and between cities. For example, Schoner and 

Levinson demonstrated that connectivity and directness were important factors in predicting bicycle 

commuting,9 Osama et al. suggested more connected, dense, flat, continuous and off-street bicycle 

networks yield higher bicycling,11 and Kamel and Sayed showed that network centrality, 

assortativity, weighted slope, directness, length, complexity and connectivity were associated with 

bicycle ridership.12 While these studies have been important in advancing knowledge on the role of 

various network characteristics, they have commonly been conducted in inner metropolitan regions, 

such as inner Vancouver11, 12 or inner Seattle,8 or have used single city-wide network measures to 

contrast these factors between cities.9 As such, there is limited knowledge on how various 



characteristics of bicycle networks relate to bicycle trips within and across entire metropolitan 

regions, and how the size and composition of study regions impact on the association between 

bicycle network characteristics and bicycle ridership. 

Using population-weighted travel survey data and robust measures of bicycle network 

characteristics, this study aimed to: 1) quantify the association between bicycle network 

characteristics and bicycle ridership across the metropolitan region of Greater Melbourne, Australia; 

and 2) explore the impact of the geographical study region on these associations. 

METHODS 

Study design 

We conducted a retrospective analysis of household travel survey data and bicycle infrastructure in 

the Greater Melbourne region, Australia. 

Setting 

The State of Victoria, Australia, has a population of 6.7 million people of which 67% reside in the 

Greater Melbourne area.13 The Australian Bureau of Statistics (ABS) define seven hierarchical 

classifications of functional areas in Australia, from mesh blocks (the smallest unit) to the country 

level (the largest unit). Within these is a functional area known as Statistical Areas Level 2 (SA2), 

which are medium-sized general-purpose areas, reflecting a community that interacts together 

socially and economically. SA2s generally have a population range of 3,000 to 25,000 persons, with 

an average of approximately 10,000 persons. For this study, analyses were restricted to the 309 SA2 

areas within Greater Melbourne, reflecting an area of 9,986 km2 (Figure 1). 

Travel survey data 

Travel survey data were captured through the Victorian Integrated Survey of Travel & Activity 

(VISTA), coordinated by the Victorian Department of Transport. We used data from three waves 

(2012-14, 2014-16, 2016-18) of the VISTA. VISTA is a survey of day-to-day travel conducted in the 



Greater Melbourne area and in a single regional centre in Victoria. Since 2012, 16,000 households 

and 66,000 people have contributed to the VISTA survey. VISTA randomly selects households to 

complete the VISTA travel diary for a single specified day. VISTA employs a stratified, clustered 

sampling methodology, with stratification based on ABS Statistical Areas Level 3 (SA3), which are 

geographical areas built from whole SA2s. The survey and resulting data are weighted to generate 

population-representative data at the SA3 level. In this study, we employed a set of combined 

weights that use the full data set from 2012-2018 to produce statistics weighted to the 2017-18 

population. As robust weights for bicycling were not available at a SA2 level, SA3 weights were 

applied to SA2 level. Weights were applied to the SA2 in which the trip originated, and therefore, 

data reflect where trips commenced and not trip routes or destinations. Unless otherwise specified, 

data reflect trips made within Greater Melbourne on an average day across the study period. 

Eligibility for inclusion in this study were participants aged 18 years and older, and trips that had trip 

origins and destinations within the Greater Melbourne region. 

Bicycle infrastructure data 

In the absence of government data sets of bicycle infrastructure in Victoria, we used Open Street 

Map (OSM) data to characterise bicycling infrastructure in the study region. We captured 

infrastructure at a single time-point, which was the final year of the study period (2018). 2018 OSM 

data was downloaded for the Greater Melbourne region from Geofrabrik.14 Bicycle infrastructure 

was coded by OSM contributors according to the OSM Wiki15 and stratified into: on-road bike lanes, 

protected on-road bike lanes, and off-road paths (off-road dedicated bike path, off-road shared path 

(shared with pedestrians), and footways where bicycling is legal). Further information on this 

method is described previously.16 In some cases, the border lines of SA2 areas fell along roads and 

paths. When classifying network characteristics for each SA2, a road or path that fell along an SA2 

border was included in the analysis for both adjacent SA2s. Therefore, in some situations, roads or 

paths have been double counted as a result of their inclusion in multiple SA2s. 



Network characteristics 

To explore characteristics of the network, we calculated seven network metrics that have previous 

been demonstrated to be associated with bicycle ridership. 9, 11, 12 These were measures of bicycle 

network length, network centrality (betweenness and degree centrality), connectivity and coverage 

(network density, network coverage, and intersection density), and topography (average weighted 

slope). These are described in detail below. 

Bicycle network length 

The length of the bicycle network was calculated for each SA2. This was stratified by bicycle 

infrastructure that was off-road (off-road dedicated bike path and off-road shared path) and on-road 

(on-road bike lanes and protected on-road bike lanes). 

Network centrality 

Two measures of centrality were calculated for the bicycle network (combined for both on-road and 

off-road infrastructure): betweenness centrality and degree centrality. Betweenness centrality 

quantifies the number of times a node acts as a bridge along the shortest path between two other 

nodes, and is based on the idea that a node is central if it lies between many other nodes. 

Betweenness centrality, CB, is calculated as: 

𝐶𝐵 =  
1
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Where 𝑔𝑗𝑘(𝑖)represents the number of node pairs 𝑗 and 𝑘 that contain point 𝑖 on the shortest path 

connecting them and 𝑔𝑗𝑘 represents the number of node pairs 𝑗 and 𝑘.  

Degree centrality measures to what extent a node is connected directly to other nodes, and is based 

on the idea that important nodes have the largest number of ties to other nodes in the graph. 

Degree centrality, 𝐶𝐷, is calculated as: 



𝐶𝐷 =  
1

(𝑛 − 1)
∑ 𝑎𝑖𝑗
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Where 𝑎𝑖𝑗 = 1 only if node 𝑖 and node 𝑗 are connected by a link or more, and is equal to zero 

otherwise, and 𝑛 is the number of nodes in the network. 

Because the aim of this study was to explore the association between network characteristics and 

bicycle trips at an SA2 level, betweenness centrality and degree centrality were aggregated to SA2s, 

as per Zhang et al.17 ‘Network centrality’ is defined as “the average difference between the relative 

centrality of the most central point and that of all other points”.18 Therefore, higher values of 

network centrality reflect a network that has a greater number of greater number of streets/paths 

that serve as the only connection to other streets/paths.17 Conversely, a gridded network tends to 

have a lower value of network centrality because all streets/paths in such a network are equally 

important and have the same possibility of connecting to others. The following equation is used to 

calculate these aggregate measures of centrality (𝐶𝑋): 

𝐶𝑋 =  
∑ [𝐶𝑖∗

𝑋 − 𝐶𝑖
𝑋]𝑛

𝑖=1

max ∑ [𝐶𝑖∗
𝑋 −  𝐶𝑖
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Where 𝐶𝑖
𝑋 is the centrality of SA2 𝑖 and 𝐶𝑖∗

𝑋 is the largest possible value of 𝐶𝑖
𝑋 for the SA2. 

Coverage 

Three measures of connectivity and coverage were implemented in this study: network coverage, 

network density and intersection density. 12, 19 Network coverage was calculated as the ratio of the 

number of bicycle network links to the number of street network links in the SA2. Network density 

was calculated as the ratio of the total length of bicycle network links in the SA2 to the SA2 area. 

Intersection density was calculated as the ratio of the number of intersections to the area of the 

SA2, including intersections between bicycle network links, and between bicycle network and street 

network links. 



Topography 

Topography was measured using the average weighted slope of the bicycle network within the SA2. 

Elevation data was sourced from the Victorian Government ‘Vicmap Elevation’ product, which 

includes a Digital Elevation Model (DEM) at 10m grid resolution.20 The elevation data was applied to 

the OSM network using the ‘slopes’ package in R.21 The average weighted slope was then calculated 

by computing the bicycle network link slopes (𝑠𝑖), multiplying the slope by the length of the link (𝑙𝑖), 

and then applying the following formula: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑙𝑜𝑝𝑒 𝑖𝑛 𝑆𝐴2 =  
𝑙1 × 𝑠1 +  𝑙2 × 𝑠2 +  … + 𝑙𝑛 × 𝑠𝑛

𝑙1 + 𝑙2 + … +  𝑙𝑛
 

Process 

The first step in calculating network metrics is to characterise the bicycle network as a graph. The 

links represent the bicycle network infrastructure (e.g. off-road path or on-road bike lane) and the 

nodes represent the intersections between network links (e.g. street and bicycle network links). 

Street and path networks, such as those represented in OSM data, are commonly represented by 

points which are effectively arbitrarily located, such as scenarios in which a curved path between 

two intersections is represented by a series of intermediate points.22 In these scenarios, it is 

necessary to ‘contract’ the network and remove these artefacts such that the network contains only 

edges that directly connect junctions. Following the guidance of Gilardi et al.,22 we used the R 

package ‘dodgr’ to contract the OSM network and employed the ‘igraph’ package to calculate the 

aforementioned network metrics. 

Data were prepared using the statistical software package R v4.0.3 (R Core Team, 2021) and the 

integrated development environment RStudio (RStudio 2020, Boston, MA, USA), using the ‘srvyr’, 

‘tmap’, ‘survey’, ‘srvyr’, ‘dodgr’, ‘igraph’ and ‘slopes’ libraries. 

Statistical analyses 



We employed Bayesian spatial models to explore the association between network characteristics 

and bicycle ridership. We modelled two outcomes: counts of the number of trips, and the proportion 

of all trips that were made by bike. These outcomes were spatially modelled according to Besag-

York-Mollie,23 as described elsewhere.24, 25 

Counts of the number of trips made by bike (𝑦𝑖) were modelled as Poisson distributed with mean 𝜆𝑖: 

𝑦𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖) 

Then, the logarithmic transform of 𝜆𝑖 is modelled as: 

log(𝜆𝑖) =  𝛽0 + 𝛽1𝑥𝑖 +  𝜇𝑖 + 𝜐𝑖  

Where 𝛽0 is the main effect, 𝛽1𝑥𝑖 is a vector of area-level covariates, 𝜇𝑖  is the spatially structured 

effect, and 𝜐𝑖 is the spatially unstructured effect. 

The proportion of trips that were made by bike were modelled as Binomial distributed (accounting 

for the ratio of the number of trips made by bike 𝑦𝑖  over the total number of trips 𝑛𝑖). Then, the 

logistic transformation of 𝜋𝑖 is modelled as: 

logit(𝜋𝑖) =  𝛽0 + 𝛽1𝑥𝑖 +  𝜇𝑖 +  𝜐𝑖  

Where 𝛽0 is the main effect, 𝛽1𝑥𝑖 is a vector of area-level covariates, 𝜇𝑖  is the spatially structured 

effect, and 𝜐𝑖 is the spatially unstructured effect. 

Similar to prior studies,17 to inform the selection of covariates in the models, we firstly used 

correlation analyses to examine whether variables were highly correlated with each other. If two 

variables were found to be substantially correlated (defined as a Pearson's product moment 

correlation coefficient greater than 0.5), they were not used in the same model. This left a total of 

33 combinations of eight covariates. All 33 models were run and evaluated and model fit was 

evaluated using the Deviance Information Criterion (DIC). The model with the lowest DIC was 

considered to have the best fit and selected as the final model. 



Models were fitted using the INLA library26 through the statistical software package R v4.0.3 (R Core 

Team, 2021) and the integrated development environment Rstudio (Rstudio 2020, Boston, MA, 

USA). The default prior distributions in INLA were employed. 

Sensitivity analysis 

To explore the impact of the size of the study area on model covariates, we conducted sensitivity 

analyses by classifying Greater Melbourne into three sub-regions and running the aforementioned 

analyses in each of these sub-regions. Three sub-regions were defined based on ABS Statistical Areas 

Level 4 (SA4) areas. Specifically, ‘Inner Melbourne’ was defined as the SA4 areas of ‘Melbourne – 

Inner’, ‘Melbourne – Inner East’ and ‘Melbourne – Inner South’, ‘North and West Melbourne’ was 

defined as the SA4 areas of ‘Melbourne – West’, ‘Melbourne – North West’ and ‘Melbourne – North 

East’, and ‘South and East Melbourne’ was defined as the SA4 areas of ‘Melbourne – Outer East’, 

‘Melbourne – South East’ and ‘Mornington Peninsula’. These areas are shown in Figure 2. 

Ethical approval 

Ethical approval for this study was provided by the Monash University Human Research Ethics 

Committee (Project ID: 29210). 

 

RESULTS 

On an average day in Greater Melbourne, there were 180,393 trips made by bike, reflecting 1.7% of 

all trips. The median number of bike trips across SA2s in Greater Melbourne was 222 trips (Q1: 64, 

Q3: 505) and the median proportion of trips made by bike was 0.8% (Q1: 0.3%, Q3: 1.6%) (Table 1). 

Spatial variation in the number of bike trips is shown in Figure 3 and spatial variation in the 

proportion of bike trips is shown in Figure 4. The median length of off-road bicycle infrastructure per 

SA2 was 6.06 km (Q1: 2.50, Q3: 10.47) and the median length of on-road bicycle infrastructure per 

SA2 was 2.34 km (Q1: 0.22, Q3: 5.82). A map of bicycle infrastructure is shown in Figure 5 and 



further summary statistics of network characteristics are provided in Table 1. Spatial variation in 

network characteristics is shown in Figure 6 and Figure 7. In general, on-road bicycle network length, 

network density, and intersection density were higher in the inner regions of Greater Melbourne, 

while off-road bicycle network length, degree centrality and average weighted slope were higher in 

the outer regions of Greater Melbourne. 

For the number of trips made by bike, the model with the lowest DIC included measures of degree 

centrality, off-road bicycle network length, on-road bicycle network length, and network density 

(Table 2). Off-road bicycle network length (mean: 0.08; 95% credible interval: 0.04, 0,12) and on-

road bicycle network length (mean: 0.14; 95% credible interval: 0.07, 0.22) were positively 

associated with the number of trips made by bike. Degree centrality (mean: 0.86; 95% credible 

interval: -3.29, 5.00) and network density (mean: -0.26, 95% credible interval: =0.54, 0.03) were not 

statistically credible at the 5% level. 

For the proportion of trips made by bike, the model with the lowest DIC included measures of 

intersection density and averaged weighted slope (Table 3). Neither of these measures were 

statistically credible at the 5% level. 

Model fit parameters for all models are provided in Supplementary Material. 

Sensitivity analysis 

We conducted sensitivity analyses to explore the impact of the study area on model selection and 

model covariates. Comparisons of bicycle ridership and network characteristics between the overall 

study area of Greater Melbourne and the three sub-regions of Inner Melbourne, North and West 

Melbourne, and South and East Melbourne are presented in Table 1. In summary, median values of 

the count of the number of trips made by bike, the proportion of trips made by bike, the length of 

on-road bicycling infrastructure, network density and intersection density were higher in Inner 

Melbourne relative to North and West Melbourne and South and East Melbourne, while the length 



of off-road bicycling infrastructure was higher in North and West Melbourne and South and East 

Melbourne. 

For the number of trips made by bike, variation was observed in model covariates, as well as the 

strength and direction of associations, between the overall study region and the three sub-regions ( 

Table 4). For example, differences were observed in the inclusion of measures of bicycle network 

length, centrality and network coverage across all models. Where covariates were included in 

multiple models, there was some variation in the direction and strength of associations. For 

example, degree centrality was included in modes for both Inner Melbourne and North and West 

Melbourne. However, degree centrality was negatively associated with the number of trips made by 

bike in Inner Melbourne (mean: -12.34; 95% credible interval: -18.39, -7.04), but positively 

associated with the number of trips made by bike in North and West Melbourne (mean: 22.14; 95% 

credible interval: 8.27, 36.49). Additionally, off-road bicycle network length was positively associated 

with the number of trips made by bike for Greater Melbourne overall (mean: 0.08; 95% credible 

interval: 0.04, 0.12) and for North and West Melbourne (mean: 0.11; 95% credible interval: 0.05, 

0.17), but was not associated with the number of trips made by bike in South and East Melbourne 

(mean: 0.06; 95% credible interval: -0.02, 0.14) and was not included as a covariate in the Inner 

Melbourne model. 

For the proportion of trips made by bike, variation was observed in model covariates, as well as the 

strength and direction of associations, between the overall study region and the three sub-regions 

(Table 5). For example, while measures of off-road bicycle network length and on-road bicycle 

network length were included in the models for North and West Melbourne and South and East 

Melbourne, they were not included in the overall model nor the Inner Melbourne model. Further, as 

an example of differences in the strength and direction of associations, on-road bicycle network 

length was positively associated with the proportion of trips made by bike in North and West 

Melbourne (mean: 0.17; 95% credible interval: 0.06, 0.28)), but was not associated with the 



proportion of trips made by bike in South and East Melbourne (mean: -0.01, 95% credible interval: -

0.16, 0.14). 

Model fit parameters for all models are provided in Supplementary Material. 

 

DISCUSSION 

In this study of the bicycle network characteristics and bicycle ridership, we demonstrated that 

bicycling rates were associated with several network characteristics, and that these characteristics 

varied according to the outcome (count of the number of trips made by bike or the proportion of 

trips made by bike) and the size and characteristics of the study region. Given the sensitivity of these 

models to model inputs, these findings challenge the utility of approaches based on spatially 

modelling network characteristics and bicycle ridership when informing the monitoring and 

evaluation of bicycle networks. There is a need to progress the science of measuring safe and 

connected bicycle networks for people of all ages and abilities. 

Consistent with prior research, we demonstrated that the length of the bicycle network was 

positively associated with various measures of bicycle ridership.11, 12, 27 A surprising finding was 

variation in the direction of association between degree centrality and bicycle ridership. In the inner-

city region of Inner Melbourne, the finding of centrality being negatively associated with bicycle 

ridership is logical; high network centrality indicates low inter-connectivity and accessibility of the 

network.17 However, degree centrality was strongly positively associated with bicycle ridership in the 

North and West Melbourne region. The association between low connectivity and bicycle ridership 

may be an artefact of a focus on off-road bicycle infrastructure (particularly rail trails; shared-use 

paths recycled from abandoned railway corridors) in these regions that, while they are not 

considered as connected and accessible using graph theory approaches, are supportive of 

recreational bicycling. 



It is also important to consider the size and composition of the spatial area when modelling bicycle 

ridership. In this study, we modelled two outcomes: the count of the number of trips by bike, and 

the proportion of all trips made by bike. As depicted in Figure 1, there is variation in both population 

density and the total population of each SA2. Modelling the count of the number of trips or the 

number of bicycle kilometres travelled, both of which are common approaches in the literature,11, 12, 

19 is potentially confounded by the underlying population of the spatial area. Therefore, normalising 

these measures, either as a proportion of the population or as a proportion of all trips (as we have 

done), is needed to account for this confounding. Additionally, and similar to prior research,9, 11, 12 we 

explored the association between bicycle network length and bicycle ridership. Measures of bicycle 

length suffer from similar issues in that they may be related to the underlying size of the spatial area. 

To address this limitation, we explored normalised measures of bicycle infrastructure (network 

density and coverage), but further research is required to combine measures of both network 

coverage and network connectivity. We discuss this in detail below. 

An interesting finding of this study was the impact of the size and characteristics of the study area 

had on model and covariate selection. Specifically, our sensitivity analyses on three sub-regions of 

the Greater Melbourne metropolitan region demonstrated inconsistencies in model selection and 

the strength and direction of associations between network characteristics and bicycle ridership. 

This is, perhaps, unsurprising as bicycle ridership and network characteristics vary vastly across large 

geographical regions, as we have demonstrated. This issue has been highlighted previously; Gil 

(2017) demonstrated the impact of varying sizes of study areas on measures of street network 

centrality.28 Given that the vast majority of prior research has focused on inner city areas,8, 11, 12 the 

generalisability of such findings, particularly to metropolitan areas outside of the inner city, must be 

questioned. It also raises the question of how robust such approaches are to defining important 

characteristics of bicycle networks. 



It is well established that connected networks of safe and comfortable bicycling infrastructure, 

known as ‘All Ages and Abilities (AAA) bicycle networks’, are needed to enhance bike riding 

participation and safety, and thereby realise the potential for substantial gains in population health, 

equity and sustainability. Reflecting this, engineering guidance has focussed on providing tools to 

measure bicycling infrastructure on individual street segments, intersections or corridors. However, 

the absence of standardised definitions and supporting metrics to measure AAA bicycle networks 

has hindered the implementation of connected, safe and comfortable bicycle networks that enable 

people of all ages and abilities to get where they want to go. Certainly, the development of 

measures of ‘bicycle level of service’ (similar to ‘level of traffic stress’) has enhanced our 

understanding of how the actual and perceived environment is conducive and safe for bicycling.29, 30 

These measures include such factors as the presence, type and quality of bicycle infrastructure, 

topography, exposure to and speed of traffic, bicycle volumes, lighting, perceived and objective 

safety, and end of trip facilities.29, 30 However, as previously described, these measures are often 

applied to individual street/path segments and challenges exist as to how to utilise these measures 

to defined AAA bicycle networks. Where the connectivity of networks has been considered, the 

measurement of connectivity has often been limited to the use of graph theory approaches, such as 

that employed in this study. The challenge with such approaches is that they don’t consider the 

myriad of aforementioned factors that relate to comfort and safety. Our study is an example of this. 

Measures of connectivity used in this study included on-road bicycling infrastructure; the vast 

majority of which was on-road painted lanes. During the study period, only 8 km of the 1173 km 

(0.7%) of the on-road infrastructure were protected bike lanes,16 and it is acknowledged that marked 

on-road bicycle lanes are inadequate in creating safe spaces for people on bikes and are likely only 

supportive of bicycling for the most confident riders.4, 31 This also reflects current ridership in our 

region in which the vast majority of people who ride bikes are considered ‘Strong and fearless’ 

(people who are comfortable riding with traffic in any road environment) and ‘Enthused and 

confident’ (people who are comfortable riding in traffic, but prefer bike lanes and like using 



segregated facilities).4 There has been some progress towards better characterising bicycle 

networks, such as the use of multi-objective methodologies to assess bikeability between origin-

destination locations over an entire network.32 However, it is evident that we need to advance the 

science of measuring AAA bicycle networks to support the implementation of such networks for 

health, sustainability and equity benefits. 

The strengths of this study include the use of population-weighted travel survey data that enables 

robust evaluation of bike riding across small spatial areas in Greater Melbourne, and the evaluation 

of the association between network characteristics and bicycling across a large metropolitan area. 

However, there are a number of limitations to note. Firstly, due to a low number of bicycle trips, 

robust survey weights were only available at the SA3 level, and these were applied to SA2 areas. As a 

result, there may be some errors in the weightings applied the travel survey data. Further, survey 

weights were applied to the SA2 in which the trip originated, and the data presented do not reflect 

trips that occurred across multiple SA2s. Additionally, due to the relatively low number of trips made 

by bike, we were unable to stratify by trip purpose; it is likely that network characteristics that are 

supportive of bicycling may differ between recreational and transport trips. In the absence of 

government data sets of bicycling infrastructure in Victoria, we were reliant on Open Street Map 

(OSM) data to characterise bicycling infrastructure. There is variability in the accuracy of OSM data in 

international settings,33 and the accuracy of OSM data is unknown in our region. Additionally, as 

described above, network characteristics may not reflect how connected and comfortable a network 

is for all ages and abilities. Further, we did not consider land use and other parameters shown to be 

associated with bicycle ridership,7, 34 as the primary focus of this study was on the association 

between network characteristics and bicycle ridership. 

 

CONCLUSION 



We have demonstrated that the association between network characteristics and bicycle ridership 

varies according to the measure of bicycle ridership and the size and characteristics of the study 

area. When considering the development of models of bicycle ridership, consideration must be given 

to the impact of the study area and the generalisability of findings. While we employed robust 

measures of network connectivity, these measures not to consider comfort and safety. There is a 

need to advance how we characterise the connectivity and comfort of bicycling networks for all ages 

and abilities. 
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TABLES 

Table 1: Summary statistics of bicycle ridership and network data across SA2s. Data presented for Greater Melbourne and 
for Inner Melbourne. 

Measure 
Greater 

Melbourne 
[median (Q1, Q3)] 

Inner Melbourne 
[median (Q1, Q3)] 

North and West 
Melbourne 

[median (Q1, Q3)] 

South and East 
Melbourne 

[median (Q1, Q3)] 

Bicycling data     

Count of the number 
of trips made by bike 

222 (64, 505) 576 (283, 2219) 184 (10, 353) 165 (39, 299) 

Proportion of trips 
made by bike (%) 

0.8 (0.3, 1.6) 1.7 (0.8, 3.6) 0.6 (0.0, 1.4) 0.5 (0.1, 0.9) 

Network data     

Off-road bicycle 
network length (km) 

6.06 (2.50, 10.47) 4.21 (1.83, 7.16) 8.23 (4.53, 13.48) 7.20 (2.06, 12.07) 

On-road bicycle 
network length (km) 

2.34 (0.22, 5.82) 3.35 (1.46, 6.23) 2.91 (0.61, 7.23) 0.64 (0.00, 3.63) 

Betweenness centrality 0.04 (0.02, 0.08) 0.05 (0.02, 0.09) 0.04 (0.01, 0.08) 0.04 (0.02, 0.08) 

Degree centrality 0.04 (0.02, 0.07) 0.04 (0.02, 0.08) 0.03 (0.02, 0.05) 0.04 (0.02, 0.08) 

Network density 1.19 (0.50, 1.97) 1.69 (1.03, 2.95) 1.38 (0.41, 2.02) 0.64 (0.22, 1.19) 

Network coverage 4.16 (1.99, 6.31) 5.13 (2.54, 7.03) 4.88 (2.90, 7.50) 2.90 (1.14, 4.51) 

Intersection density 6.16 (2.49, 11.57) 9.98 (4.63, 18.72) 7.36 (2.62, 11.99) 3.48 (0.70, 6.45) 

Average weighted 
slope (%) 

1.85 (1.15, 2.84) 1.70 (1.13, 2.51) 1.51 (1.06, 2.77) 2.23 (1.36, 3.38) 

Note: Q1 = quartile 1; Q3 = quartile 3. 

 

Table 2: Summary statistics for the model of the count of the number of trips take by bike: posterior mean, posterior 
standard deviation (SD), and posterior 95% credible interval for the fixed effects of the covariates. This model relates to the 
Greater Melbourne region. 

   Credible Interval 

 Mean SD 2.5% 97.5% 

Degree centrality 0.86 2.11 -3.29 5.00 

Off-road bicycle network length 0.08 0.02 0.04 0.12 

On-road bicycle network length 0.14 0.04 0.07 0.22 

Network density -0.26 0.14 -0.54 0.03 

Intercept 3.67 0.30 3.07 4.26 

 

Table 3: Summary statistics for the model of the proportion of trips taken by bike: posterior mean, posterior standard 
deviation (SD), and posterior 95% credible interval for the fixed effects of the covariates. This model relates to the Greater 
Melbourne region. 

   Credible Interval 

 Mean SD 2.5% 97.5% 

Intersection density 0.02 0.02 -0.02 0.05 

Averaged weighted slope 0.02 0.09 -0.15 0.19 

Intercept -5.90 0.28 -5.89 -5.33 

 



Table 4: Summary statistics for the model of the count of the number of trips take by bike: posterior mean, posterior 
standard deviation (SD), and posterior 95% credible interval for the fixed effects of the covariates. Three separate models 
are presented for Inner Melbourne, North and West Melbourne, and South and East Melbourne. 

   Credible Interval 

 Mean SD 2.5% 97.5% 

INNER MELBOURNE     

Degree centrality -12.34 2.88 -18.39 -7.04 

Network coverage 0.06 0.06 -0.04 0.17 

Intercept 6.71 0.46 0.582 7.62 

NORTH AND WEST MELBOURNE     

Degree centrality 22.14 7.17 8.27 36.49 

Off-road bicycle network length 0.11 0.03 0.05 0.17 

On-road bicycle network length 0.26 0.07 0.14 0.39 

Network density -0.35 0.26 -0.86 0.15 

Average weighted slope 0.37 0.15 0.08 0.68 

Intercept 0.33 0.76 -1.23 1.78 

SOUTH AND EAST MELBOURNE     

Betweenness centrality 0.25 2.98 -5.62 6.11 

Off-road bicycle network length 0.06 0.04 -0.02 0.14 

On-road bicycle network length 0.09 0.10 -0.12 0.29 

Network coverage -0.02 0.17 -0.36 0.32 

Intercept 2.98 0.69 1.61 4.32 

 

Table 5: Summary statistics for the model of the proportion of trips taken by bike: posterior mean, posterior standard 
deviation (SD), and posterior 95% credible interval for the fixed effects of the covariates. Three separate models are 
presented for Inner Melbourne, North and West Melbourne, and South and East Melbourne. 

   Credible Interval 

 Mean SD 2.5% 97.5% 

INNER MELBOURNE     

Degree centrality -7.61 2.25 -12.26 -3.41 

Network coverage 0.09 0.04 0.01 0.18 

Intercept -4.26 0.36 -4.96 -3.54 

NORTH AND WEST MELBOURNE     

Degree centrality 19.52 6.63 6.71 32.84 

Off-road bicycle network length 0.07 0.03 0.02 0.13 

On-road bicycle network length 0.17 0.06 0.06 0.28 

Intersection density -0.03 0.03 -0.09 0.02 

Average weighted slope 0.43 0.14 0.15 0.71 

Intercept -9.06 0.72 -10.52 -7.69 

SOUTH AND EAST MELBOURNE     

Off-road bicycle network length 0.10 0.04 0.03 0.18 

On-road bicycle network length -0.01 0.08 -0.16 0.14 

Network density -1.21 0.54 -2.32 -0.17 

Intercept -6.39 0.44 -7.29 -5.54 

 

  



FIGURES 
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Figure 1: Map of: A) population density (persons per square kilometre); and B) total population per SA2. The borders 
represent SA2 boundaries in the Greater Melbourne region. 

 



 

Figure 2: Map of Greater Melbourne region with black borders depicting SA2 boundaries and the coloured regions depicting 
the three sub-regions of Inner Melbourne, North and West Melbourne, and South and East Melbourne. 



 

Figure 3: Count of the number of bicycle trips (per SA2 area). 

  



 

Figure 4: Proportion of all trips that were made by bike (per SA2). 

 

  



 

Figure 5: Map of bicycling infrastructure, stratified by infrastructure type. The grey borders reflect SA2 boundaries. 
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Figure 6: Network characteristics (per SA2). A) Off-road bicycle network length; B) On-road bicycle network length; C) 
Betweenness centrality; D) Degree centrality. 
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Figure 7: Network characteristics (per SA2). A) Network coverage; B) Network density; C) Intersection density; D) Average 
weighted slope. 

 

  



SUPPLEMENTARY MATERIAL 

 

Covariates: correlation matrix 

Highlighted cells reflect Pearson correlation coefficients greater than 0.5. 
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Betweenness centrality 1 0.6 0.11 -0.05 0.12 0.1 0.04 -0.17 

Degree centrality  1 -0.24 -0.25 -0.23 -0.32 -0.24 -0.06 

Bicycle network length – 
off-road 

  1 0.17 0.13 0.29 0.05 -0.03 

Bicycle network length – 
on-road 

   1 0.48 0.38 0.41 -0.23 

Network density     1 0.67 0.92 -0.21 

Network coverage      1 0.73 -0.14 

Intersection density       1 -0.16 

Average weighted slope        1 

 

  



Modelling counts of the number of bicycle trips: covariates and model fit parameters (Greater 

Melbourne) 

The model with the lowest DIC is highlighted in bold. 

Model Covariates DIC 
Effective 

number of 
parameters 

1 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage + average 
weighted slope 

2582.34 296.587 

2 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage 

2582.221 296.4258 

3 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density + average 
weighted slope 

2581.538 296.4862 

4 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density 

2581.468 296.3515 

5 
Betweenness centrality + network coverage + average 
weighted slope 

2584.66 298.2385 

6 Betweenness centrality + network coverage 2584.639 298.0784 

7 
Betweenness centrality + network density + average 
weighted slope 

2585.231 298.2907 

8 Betweenness centrality + network density 2585.208 298.1399 

9 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density + average 
weighted slope 

2582.24 296.7281 

10 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density 

2582.175 296.552 

11 
Betweenness centrality + intersection density + average 
weighted slope 

2584.93 298.2501 

12 Betweenness centrality + intersection density 2584.851 298.0878 

13 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage + average weighted 
slope 

2582.342 296.5809 

14 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage 

2582.267 296.4333 

15 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density + average weighted 
slope 

2581.478 296.4333 

16 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density 

2581.391 296.2776 

17 
Degree centrality + network coverage + average 
weighted slope 

2584.944 298.3277 

18 Degree centrality + network coverage 2584.919 298.1654 

19 
Degree centrality + network density + average weighted 
slope 

2585.228 298.2983 

20 Degree centrality + network density 2585.204 298.1457 

21 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density + average 
weighted slope 

2581.982 296.6878 

22 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density 

2582.112 296.5138 



23 
Degree centrality + intersection density + average 
weighted slope 

2585.22 298.3159 

24 Degree centrality + intersection density 2585.096 298.1719 

25 
Bicycle length off-road + Bicycle length on-road + 
network coverage + average weighted slope 

2582.605 296.5113 

26 
Bicycle length off-road + Bicycle length on-road + 
network coverage 

2582.514 296.3559 

27 
Bicycle length off-road + Bicycle length on-road + 
network density + average weighted slope 

2581.511 296.4125 

28 
Bicycle length off-road + Bicycle length on-road + 
network density 

2581.412 296.2248 

29 
Bicycle length off-road + Bicycle length on-road + 
intersection density + average weighted slope 

2582.441 296.694 

30 
Bicycle length off-road + Bicycle length on-road + 
intersection density 

2582.336 296.441 

31 Network density + average weighted slope 2585.19 298.1326 

32 Network coverage + average weighted slope 2584.811 298.1483 

33 Intersection density + average weighted slope 2585.01 298.1797 

 

  



Modelling the proportion of trips made by bicycle: covariates and model fit parameters (Greater 

Melbourne) 

The model with the lowest DIC is highlighted in bold. 

Model Covariates DIC 
Effective 

number of 
parameters 

1 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage + average 
weighted slope 

2592.214 297.8813 

2 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage 

2591.445 297.4911 

3 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density + average 
weighted slope 

2590.634 297.4894 

4 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density 

2591.253 297.3336 

5 
Betweenness centrality + network coverage + average 
weighted slope 

2594.671 298.2679 

6 Betweenness centrality + network coverage 2595.062 298.2668 

7 
Betweenness centrality + network density + average 
weighted slope 

2595.358 298.5736 

8 Betweenness centrality + network density 2594.813 298.1853 

9 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density + average 
weighted slope 

2589.708 296.9658 

10 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density 

2591.107 297.4425 

11 
Betweenness centrality + intersection density + average 
weighted slope 

2594.692 298.3134 

12 Betweenness centrality + intersection density 2595.351 298.4502 

13 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage + average weighted 
slope 

2591.772 297.8121 

14 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage 

2590.56 297.2419 

15 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density + average weighted 
slope 

2589.759 297.145 

16 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density 

2590.5 297.2548 

17 
Degree centrality + network coverage + average 
weighted slope 

2595.018 298.41 

18 Degree centrality + network coverage 2594.897 298.2747 

19 
Degree centrality + network density + average weighted 
slope 

2595.648 298.5982 

20 Degree centrality + network density 2594.932 298.1735 

21 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density + average 
weighted slope 

2591.542 297.6344 

22 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density 

2590.252 297.0733 



23 
Degree centrality + intersection density + average 
weighted slope 

2587.596 301.7865 

24 Degree centrality + intersection density 2595.58 298.5183 

25 
Bicycle length off-road + Bicycle length on-road + 
network coverage + average weighted slope 

2592.025 297.6023 

26 
Bicycle length off-road + Bicycle length on-road + 
network coverage 

2590.829 297.1427 

27 
Bicycle length off-road + Bicycle length on-road + 
network density + average weighted slope 

2591.607 297.582 

28 
Bicycle length off-road + Bicycle length on-road + 
network density 

2591.009 297.2637 

29 
Bicycle length off-road + Bicycle length on-road + 
intersection density + average weighted slope 

2591.399 297.3353 

30 
Bicycle length off-road + Bicycle length on-road + 
intersection density 

2592.185 297.6946 

31 Network density + average weighted slope 2584.696 301.8204 

32 Network coverage + average weighted slope 2595.021 298.1743 

33 Intersection density + average weighted slope 2583.404 301.5073 

 

  



Modelling counts of the number of bicycle trips: covariates and model fit parameters  

Inner Melbourne 

The model with the lowest DIC is highlighted in bold. 

Model Covariates DIC 
Effective 

number of 
parameters 

1 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage + average 
weighted slope 

938.5053 92.14977 

2 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage 

938.3852 92.14072 

3 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density + average 
weighted slope 

939.1291 92.17102 

4 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density 

939.152 92.13594 

5 
Betweenness centrality + network coverage + average 
weighted slope 

937.5864 92.20227 

6 Betweenness centrality + network coverage 937.0141 92.20504 

7 
Betweenness centrality + network density + average 
weighted slope 

939.4461 92.15936 

8 Betweenness centrality + network density 939.2781 92.08382 

9 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density + average 
weighted slope 

939.6071 92.16326 

10 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density 

939.3879 92.10681 

11 
Betweenness centrality + intersection density + average 
weighted slope 

939.7624 92.17568 

12 Betweenness centrality + intersection density 939.4616 92.17072 

13 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage + average weighted 
slope 

937.7516 91.94054 

14 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage 

937.6217 91.92354 

15 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density + average weighted 
slope 

938.169 91.92123 

16 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density 

938.1713 91.91918 

17 
Degree centrality + network coverage + average 
weighted slope 

936.6586 91.94916 

18 Degree centrality + network coverage 935.0777 92.05474 

19 
Degree centrality + network density + average weighted 
slope 

938.1691 91.95818 

20 Degree centrality + network density 937.9556 91.98682 

21 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density + average 
weighted slope 

938.602 91.91471 

22 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density 

938.4169 91.96588 



23 
Degree centrality + intersection density + average 
weighted slope 

938.5874 91.94692 

24 Degree centrality + intersection density 938.0953 91.97694 

25 
Bicycle length off-road + Bicycle length on-road + 
network coverage + average weighted slope 

938.7449 92.15606 

26 
Bicycle length off-road + Bicycle length on-road + 
network coverage 

938.8692 92.11084 

27 
Bicycle length off-road + Bicycle length on-road + 
network density + average weighted slope 

939.2167 92.14041 

28 
Bicycle length off-road + Bicycle length on-road + 
network density 

939.4209 92.15563 

29 
Bicycle length off-road + Bicycle length on-road + 
intersection density + average weighted slope 

939.6858 92.17184 

30 
Bicycle length off-road + Bicycle length on-road + 
intersection density 

939.7974 92.13599 

31 Network density + average weighted slope 939.3555 92.16915 

32 Network coverage + average weighted slope 937.7688 92.24352 

33 Intersection density + average weighted slope 939.8281 92.2071 

 

  



Modelling the proportion of trips made by bicycle: covariates and model fit parameters 

Inner Melbourne 

The model with the lowest DIC is highlighted in bold. 

Model Covariates DIC 
Effective 

number of 
parameters 

1 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage + average 
weighted slope 

941.4414 92.00321 

2 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage 

940.4013 91.92084 

3 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density + average 
weighted slope 

941.4271 91.94921 

4 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density 

940.9627 91.95268 

5 
Betweenness centrality + network coverage + average 
weighted slope 

941.1734 91.94699 

6 Betweenness centrality + network coverage 938.9721 91.94015 

7 
Betweenness centrality + network density + average 
weighted slope 

942.0239 91.94289 

8 Betweenness centrality + network density 941.042 91.90629 

9 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density + average 
weighted slope 

941.697 91.91388 

10 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density 

940.8401 91.9339 

11 
Betweenness centrality + intersection density + average 
weighted slope 

942.4255 91.89803 

12 Betweenness centrality + intersection density 941.0562 91.9187 

13 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage + average weighted 
slope 

940.3456 91.72 

14 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage 

939.2749 91.7107 

15 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density + average weighted 
slope 

940.5987 91.73071 

16 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density 

939.8039 91.69685 

17 
Degree centrality + network coverage + average 
weighted slope 

939.7673 91.75912 

18 Degree centrality + network coverage 936.9489 91.8644 

19 
Degree centrality + network density + average weighted 
slope 

940.7913 91.76218 

20 Degree centrality + network density 939.8014 91.68179 

21 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density + average 
weighted slope 

940.9296 91.74893 

22 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density 

939.683 91.69434 



23 
Degree centrality + intersection density + average 
weighted slope 

941.4187 91.81084 

24 Degree centrality + intersection density 939.6452 91.77997 

25 
Bicycle length off-road + Bicycle length on-road + 
network coverage + average weighted slope 

941.9773 91.98294 

26 
Bicycle length off-road + Bicycle length on-road + 
network coverage 

941.3685 91.93038 

27 
Bicycle length off-road + Bicycle length on-road + 
network density + average weighted slope 

942.046 91.92751 

28 
Bicycle length off-road + Bicycle length on-road + 
network density 

941.873 91.91036 

29 
Bicycle length off-road + Bicycle length on-road + 
intersection density + average weighted slope 

942.5701 91.9782 

30 
Bicycle length off-road + Bicycle length on-road + 
intersection density 

941.866 91.87461 

31 Network density + average weighted slope 942.7169 91.96252 

32 Network coverage + average weighted slope 941.5986 91.98187 

33 Intersection density + average weighted slope 943.1707 92.00523 

 

  



Modelling counts of the number of bicycle trips: covariates and model fit parameters  

North and West Melbourne 

The model with the lowest DIC is highlighted in bold. 

Model Covariates DIC 
Effective 

number of 
parameters 

1 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage + average 
weighted slope 

868.21 108.6734 

2 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage 

868.8677 108.8489 

3 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density + average 
weighted slope 

867.8078 108.434 

4 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density 

868.3809 108.6293 

5 
Betweenness centrality + network coverage + average 
weighted slope 

872.0314 110.0899 

6 Betweenness centrality + network coverage 872.0517 110.2027 

7 
Betweenness centrality + network density + average 
weighted slope 

871.1004 110.149 

8 Betweenness centrality + network density 871.6482 110.1572 

9 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density + average 
weighted slope 

868.0154 108.371 

10 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density 

868.436 108.5429 

11 
Betweenness centrality + intersection density + average 
weighted slope 

871.6662 109.956 

12 Betweenness centrality + intersection density 872.0128 110.0596 

13 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage + average weighted 
slope 

865.8591 107.3496 

14 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage 

866.8227 107.9829 

15 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density + average weighted 
slope 

865.4029 107.226 

16 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density 

866.4752 107.7298 

17 
Degree centrality + network coverage + average 
weighted slope 

871.1078 109.9805 

18 Degree centrality + network coverage 872.0249 110.0727 

19 
Degree centrality + network density + average weighted 
slope 

871.1479 109.858 

20 Degree centrality + network density 871.4645 110.0146 

21 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density + average 
weighted slope 

865.5369 107.2167 

22 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density 

866.5996 107.7891 



23 
Degree centrality + intersection density + average 
weighted slope 

871.3005 109.7595 

24 Degree centrality + intersection density 871.5734 109.7934 

25 
Bicycle length off-road + Bicycle length on-road + 
network coverage + average weighted slope 

868.1924 108.4782 

26 
Bicycle length off-road + Bicycle length on-road + 
network coverage 

868.9149 108.7245 

27 
Bicycle length off-road + Bicycle length on-road + 
network density + average weighted slope 

867.8106 108.2878 

28 
Bicycle length off-road + Bicycle length on-road + 
network density 

868.4159 108.4653 

29 
Bicycle length off-road + Bicycle length on-road + 
intersection density + average weighted slope 

867.8548 108.1824 

30 
Bicycle length off-road + Bicycle length on-road + 
intersection density 

868.4527 108.4093 

31 Network density + average weighted slope 871.5173 109.856 

32 Network coverage + average weighted slope 871.6308 109.9932 

33 Intersection density + average weighted slope 870.8585 109.7745 

 

  



Modelling the proportion of trips made by bicycle: covariates and model fit parameters 

North and West Melbourne 

The model with the lowest DIC is highlighted in bold. 

Model Covariates DIC 
Effective 

number of 
parameters 

1 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage + average 
weighted slope 

875.2749 110.7585 

2 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage 

877.0256 111.9731 

3 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density + average 
weighted slope 

872.9782 109.7948 

4 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density 

876.5978 111.2933 

5 
Betweenness centrality + network coverage + average 
weighted slope 

879.6224 111.5463 

6 Betweenness centrality + network coverage 877.5424 111.2088 

7 
Betweenness centrality + network density + average 
weighted slope 

879.0183 111.537 

8 Betweenness centrality + network density 878.1704 111.3961 

9 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density + average 
weighted slope 

875.0341 110.4822 

10 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density 

875.8455 111.27 

11 
Betweenness centrality + intersection density + average 
weighted slope 

874.1603 112.8899 

12 Betweenness centrality + intersection density 879.11 111.6487 

13 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage + average weighted 
slope 

873.6623 109.7352 

14 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage 

873.98 110.5571 

15 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density + average weighted 
slope 

872.0168 109.1296 

16 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density 

874.6884 110.8202 

17 
Degree centrality + network coverage + average 
weighted slope 

876.5377 110.2628 

18 Degree centrality + network coverage 875.2819 110.6284 

19 
Degree centrality + network density + average weighted 
slope 

877.0736 110.4706 

20 Degree centrality + network density 877.2589 111.1718 

21 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density + average 
weighted slope 

871.7408 109.0401 

22 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density 

873.9005 110.4718 



23 
Degree centrality + intersection density + average 
weighted slope 

876.6781 113.073 

24 Degree centrality + intersection density 878.3381 111.4113 

25 
Bicycle length off-road + Bicycle length on-road + 
network coverage + average weighted slope 

875.6317 110.61 

26 
Bicycle length off-road + Bicycle length on-road + 
network coverage 

877.5099 111.7725 

27 
Bicycle length off-road + Bicycle length on-road + 
network density + average weighted slope 

877.1678 111.3342 

28 
Bicycle length off-road + Bicycle length on-road + 
network density 

876.4904 111.4692 

29 
Bicycle length off-road + Bicycle length on-road + 
intersection density + average weighted slope 

876.7325 110.9251 

30 
Bicycle length off-road + Bicycle length on-road + 
intersection density 

872.6613 109.8041 

31 Network density + average weighted slope 878.8011 111.3913 

32 Network coverage + average weighted slope 879.4976 111.614 

33 Intersection density + average weighted slope 878.8523 112.9248 

 

  



Modelling counts of the number of bicycle trips: covariates and model fit parameters  

South and East Melbourne 

The model with the lowest DIC is highlighted in bold. 

Model Covariates DIC 
Effective 

number of 
parameters 

1 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage + average 
weighted slope 

772.0071 99.66835 

2 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage 

770.9272 99.67434 

3 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density + average 
weighted slope 

771.266 99.7766 

4 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density 

771.9555 98.41639 

5 
Betweenness centrality + network coverage + average 
weighted slope 

773.9007 99.16665 

6 Betweenness centrality + network coverage 773.5655 98.96252 

7 
Betweenness centrality + network density + average 
weighted slope 

773.9132 99.22891 

8 Betweenness centrality + network density 773.6458 98.96909 

9 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density + average 
weighted slope 

773.5344 99.26658 

10 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density 

771.4019 99.11838 

11 
Betweenness centrality + intersection density + average 
weighted slope 

773.6176 99.16443 

12 Betweenness centrality + intersection density 773.3959 98.85498 

13 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage + average weighted 
slope 

772.307 98.81081 

14 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage 

771.5327 99.13104 

15 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density + average weighted 
slope 

771.3416 99.51609 

16 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density 

771.2795 97.93796 

17 
Degree centrality + network coverage + average 
weighted slope 

773.7706 99.18969 

18 Degree centrality + network coverage 773.4604 98.91919 

19 
Degree centrality + network density + average weighted 
slope 

773.9028 99.2446 

20 Degree centrality + network density 773.5966 98.93267 

21 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density + average 
weighted slope 

771.8742 99.28412 

22 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density 

772.9734 98.78456 



23 
Degree centrality + intersection density + average 
weighted slope 

773.6187 99.10113 

24 Degree centrality + intersection density 773.3375 98.84517 

25 
Bicycle length off-road + Bicycle length on-road + 
network coverage + average weighted slope 

773.6363 99.16157 

26 
Bicycle length off-road + Bicycle length on-road + 
network coverage 

771.5514 99.29818 

27 
Bicycle length off-road + Bicycle length on-road + 
network density + average weighted slope 

772.2925 98.19422 

28 
Bicycle length off-road + Bicycle length on-road + 
network density 

773.2802 98.80227 

29 
Bicycle length off-road + Bicycle length on-road + 
intersection density + average weighted slope 

771.7209 99.72491 

30 
Bicycle length off-road + Bicycle length on-road + 
intersection density 

771.0809 99.28344 

31 Network density + average weighted slope 774.0771 99.14003 

32 Network coverage + average weighted slope 774.0039 99.18049 

33 Intersection density + average weighted slope 774.0145 99.14583 

 

  



Modelling the proportion of trips made by bicycle: covariates and model fit parameters 

South and East Melbourne 

The model with the lowest DIC is highlighted in bold. 

Model Covariates DIC 
Effective 

number of 
parameters 

1 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage + average 
weighted slope 

780.7368 101.6839 

2 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network coverage 

780.9822 101.5806 

3 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density + average 
weighted slope 

780.1573 102.0705 

4 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + network density 

779.7459 100.7279 

5 
Betweenness centrality + network coverage + average 
weighted slope 

781.0385 101.4823 

6 Betweenness centrality + network coverage 780.0207 100.7756 

7 
Betweenness centrality + network density + average 
weighted slope 

780.2953 101.0924 

8 Betweenness centrality + network density 779.67 101.0775 

9 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density + average 
weighted slope 

780.593 101.5677 

10 
Betweenness centrality + Bicycle length off-road + 
Bicycle length on-road + intersection density 

778.9679 100.727 

11 
Betweenness centrality + intersection density + average 
weighted slope 

780.8195 101.4399 

12 Betweenness centrality + intersection density 779.94 100.7531 

13 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage + average weighted 
slope 

780.7624 102.1617 

14 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network coverage 

779.7164 100.9467 

15 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density + average weighted 
slope 

778.9937 100.9955 

16 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + network density 

779.0555 101.4264 

17 
Degree centrality + network coverage + average 
weighted slope 

781.0754 101.443 

18 Degree centrality + network coverage 779.3304 100.4006 

19 
Degree centrality + network density + average weighted 
slope 

781.1107 101.4689 

20 Degree centrality + network density 780.0071 100.7008 

21 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density + average 
weighted slope 

779.5743 101.5367 

22 
Degree centrality + Bicycle length off-road + Bicycle 
length on-road + intersection density 

779.0882 100.7162 



23 
Degree centrality + intersection density + average 
weighted slope 

781.2366 101.9255 

24 Degree centrality + intersection density 778.3228 99.96271 

25 
Bicycle length off-road + Bicycle length on-road + 
network coverage + average weighted slope 

780.7624 101.4653 

26 
Bicycle length off-road + Bicycle length on-road + 
network coverage 

780.331 100.9373 

27 
Bicycle length off-road + Bicycle length on-road + 
network density + average weighted slope 

780.0156 101.2182 

28 
Bicycle length off-road + Bicycle length on-road + 
network density 

777.3564 100.5806 

29 
Bicycle length off-road + Bicycle length on-road + 
intersection density + average weighted slope 

780.5249 101.3422 

30 
Bicycle length off-road + Bicycle length on-road + 
intersection density 

779.5533 100.7835 

31 Network density + average weighted slope 781.5287 101.392 

32 Network coverage + average weighted slope 780.6814 101.057 

33 Intersection density + average weighted slope 779.7604 100.6717 

 

 


