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Abstract

Transportation mode distribution has a large implication on the resilience, economic output,

social cost of cities and the health of urban residents. Recent advances in artificial intelligence and

the availability of remote sensing data have opened up opportunities for bottom-up modeling

techniques that allow understanding of how subtle differences in the urban fabric can impact

transportation mode share distribution. This project presents a novel neural network-based

modeling technique capable of predicting transportation mode distribution. Trained with millions

of images labeled with information from a georeferenced transportation survey, the resulting

model is able to infer transportation mode share with high accuracy (R2¼ 0.58) from satellite

images alone. Additionally, this method can disaggregate data in areas where only aggregated

information is available and infer transportation mode share in areas without underlying infor-

mation. This work demonstrates a new and objective method to evaluate the impact of the urban

fabric on transportation mode share. The methodology is robust and can be adapted for cases

around the world as well as deployed to evaluate the impact of new developments on the

transportation mode choice.

Keywords

Transportation modeling, neural networks, machine learning, transportation mode share,

walkability

Corresponding author:

Gideon DPA Aschwanden, University of Melbourne, Building 133, Masson, Melbourne, VIC 3010, Australia.

Email: gideon.aschwanden@gmail.com

EPB: Urban Analytics and City Science

2021, Vol. 48(1) 186–199

! The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/2399808319862571

journals.sagepub.com/home/epb

https://orcid.org/0000-0003-0315-7778
https://orcid.org/0000-0002-5832-4134
https://orcid.org/0000-0001-6102-1292
https://orcid.org/0000-0002-3051-6417
mailto:gideon.aschwanden@gmail.com
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/2399808319862571
journals.sagepub.com/home/epb
http://crossmark.crossref.org/dialog/?doi=10.1177%2F2399808319862571&domain=pdf&date_stamp=2019-07-10


Introduction

Population increases in past decades have led to new, car dependent development on the
urban fringe, resulting in increased travel times (Vandersmissen et al., 2003). The cost of
increased travel times can be calculated as either lost time or wasted energy. They can be
accrued by each driver directly or impact the society as a whole, namely through higher costs
of production, lower productivity, and increased pollution and greenhouse gas emissions
(Urban Transportation Task Force, 2012). Time spent traveling is negatively associated
with life satisfaction (Hilbrecht et al., 2014), reduced productivity and increased absenteeism
(Van Ommeren and Gutiérrez-i-Puigarnau, 2011), and decreased self-reported health
(Oliveira et al., 2015). Transportation mode choice, however, can play a critical role in
mitigating these costs. For example, commuting by public transport increases physiological
energy expenditure and leads to weight loss without exposing people to additional risks such
as air pollution, particularly particulate matter (Cepeda et al., 2017; Morabia et al., 2010).

Understanding the factors influencing transportation mode choice is essential for identi-
fying and implementing potential solutions to improve public health and economic output.
Increased density and land use diversity can have an impact on transportation patterns and
lead to overall health benefits, in particular, through reducing non-communicable diseases
such as diabetes, cardiovascular diseases, and respiratory disease (Stevenson et al., 2016).
Land use planning decisions have a direct influence on demographics and the socio-
economic makeup of an area and, therefore, an indirect impact on temporal distribution,
volume, and makeup of traffic (Stewart, 1948). Stewart (1948) also showed that the effect of
land use change decreases with distance to a main street, while Aschwanden et al. (2012)
showed that increased entropy in land use leads to a reduction in commuting distances and
emissions. Santos et al. (2013) investigated factors influencing transportation modal split in
European cities and found that density and population size do not have an influence on
motorized mode share. However, a negative association was found between public transport
subsidies as well as the existing presence of light rail on motorized mode share.

A large body of research has investigated the relationship between the built environment
and pedestrian volume, most notably spatial aggregated parametric modeling methods. For
example, Cervero and Kockelman (1997) identified the parameters of density, diversity, and
design as key indicators for walking; Frank and Engelke (2001) showed the health impli-
cations; and Cerin et al. (2009) highlighted the impact of greenery and socio-economic status
on walking behavior. As this evidence shows, the parameters that might influence transport
volume and mode choices are manifold. Drawing causal inference between urban design
factors and outcomes is, therefore, challenging.

Common methods used to model transport patterns use parameters described above and
compare them with transportation data collected by government or other agencies. Data are
often collected through household surveys, automated traffic recorders (ATRs), and short-
term traffic counts (STTCs). ATRs are induction-based counters permanently installed in
the pavement and combined with STTCs to estimate average daily traffic, with a relative
high error of ATR averaging 24.6% (Gadda et al., 2007). McCord et al. (2003) showed that
a combination of aerial photographs and satellite images from highways and ground-based
estimates can reduce the error of estimates but can be expensive to implement. High error
and expensive collection methods highlight the complexity of the problem and the need for
better methods and techniques to estimate traffic volume and mode share.

Neural networks (NNs) can be used in image recognition to detect objects such as roads
(Mnih and Hinton, 2010) or vehicles from satellite images (Chen et al., 2014). The use of
NNs in transportation forecasting has been proven to yield better insights than traditional
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statistical models in volatile cases such as time series, traffic speed (Vlahogianni and

Karlaftis, 2013), short-term passenger flow (Wei and Chen, 2012), and vehicle traffic on

urban highways (Kumar et al., 2013).
Convolutional NNs are able to incorporate many features without making them a priori

explicit (Schmidhuber, 2015). This project, therefore, uses a supervised learning methodol-

ogy that deploys a NN in combination with labeled satellite images to train a model that

estimates transportation mode share. The labeled satellite images contain parameters that

would be available through GIS land use plans (e.g., street width, land use, and location of

bus shelters) as well as information not available in traditional maps (e.g., greenery, actual

building coverage, and building sizes and material). The output is a novel method for

incorporating the effect of multiple manifest and latent parameters on transport mode

use without limiting of input parameters.

Methods

A NN is trained with satellite images accessed from Google Maps (Google, 2017a) that are

labeled with transportation mode distributions from a geo-located trip data set. This section

will first introduce the NN methodology, then indicate the details of the training procedure,

and lastly explain the validation procedures.

Data

The study area is the state of Victoria, Australia. Victoria contains 6.3 million people

located across major cities and agricultural areas and is spread over more than 227,000

km2. This paper uses two data sets: georeferenced trips from the Victorian Integrated Survey

of Travel and Activity (VISTA) (Victorian State Government and Department of Economic

Development, Job, Transport and Resources, 2013) and satellite images from Google Maps.

VISTA data

Trip data were sourced from the Victorian State Government’s survey of household travel

activity. VISTA contains a random sample of 5780 households asked to complete a travel

diary for a specific day in 2013. A total of 14,520 people contributed to the data set. Each

household was asked to provide information about trips conducted by all members of the

household, the purpose, time, and choice of transportation mode, leading to 63,365 indi-

vidual trips (Victorian State Government and Department of Economic Development, Job,

Transport and Resources, 2013). Geographically, the majority of households in the survey

(4130 or 71.5%) are located in the metropolitan area of Melbourne, a representative sample,

as 75.1% of Victorians live in metropolitan Melbourne, removing the need to weight

trips spatially.
Each trip’s information was associated with the origin and destination Statistical Area

level 1 (SA1). Trips (origin or destination) are not always associated with the residential

location of the respondent. SA1 contain at least 200 residences and can have up to 800 per-

sons residing permanently in it (for details, see http://abs.gov.au). With an average of

400 permanent residences, the area of the SA1s range between 4000 m2 and 102 km2. A

sufficient number of trips are required to estimate the transportation mode distribution.

With outliers created in areas with a low number of trips, only SA1s with more than 10 trips

(origins or destinations) were taken into consideration, leading to a subset of 2177 SA1s out

of 13,339 across Victoria (see Figure 1).
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Environmental data

To capture the environmental characteristics of each SA1, satellite images were sampled.

Satellite images capture not only the coarse configuration of the urban fabric, such as street

width and building typology, but also minute differences such as tree coverage and differ-

ences in roof tiles. Both indicate differences in socio-economic makeup of the area, which

has a direct impact on the availability of different modes and the decision to use them.
To have a data set that is both large enough for training and evenly distributed across all

SA1s regardless of its extent, a random set of 1000 satellite images were downloaded from

Google (see https://cloud.google.com/maps-platform/) for each SA1. Each image is

�400m� 400 m. A distance of 400 m is used in several cities as a “rule of thumb” for

public transport network distances (Daniel and Mulley, 2013). The downloaded images were

320� 320 pixels. This �1 m2 per pixel strikes a balance between capturing the details while

including the wider makeup of an area. To accommodate for inconsistencies due to different

capturing times, shadows, etc., preprocessing steps were deployed for each image to increase

the robustness of the model (i.e., mirror, adjusting hue, saturation, and contrast). See the

“Training Procedure” section for details.

Neural networks

NNs are built from individual neurons that combine multiple inputs aðyÞx linearly by multi-

plying them with adjustable weights wx;y and creates an output parameter aðyÞ1 limited by a

bounded activation function. The individual neurons are combined in a network architec-

ture that consists of three basic parts: input, hidden, and output layers connected by weights

that are adjusted during the learning phase.
Two fundamental paradigms in machine learning exist: supervised and unsupervised

learning. Unsupervised learning is deployed in cases where no classification is available

and used to extract features. In this study, where the mode share of the SA1 and the

respective satellite images are known, supervised learning was deployed. Supervised learning

Figure 1. Map of Greater Melbourne, Australia, indicating the number of trips per SA1 (white< 10 trips)
with the large area of 30.3 km2 in the north containing the airport, an outlier of 393 trips.
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uses the input variables (i.e., satellite images) and compares the modeled output with the
labels (transportation mode share) to adjust the internal weights (wx;y) of the neurons via
backpropagation.

Three different computational toolkits were explored: DIGITS (NVIDIA, 2016), CNTK
(Microsoft, 2017), and TensorFlow (Google, 2017b). All of them require a similar workflow
that includes the labeling and classifying of the input images into discrete groups. Since the
transport demand of each SA1 is not discrete but follows a probabilistic distribution for
each mode choice, the NN’s output layer needs to be adjusted (i.e., labels were a probability
distribution rather than a binary category). TensorFlow was the platform used for the final
model since it allowed for the required customization.

This study uses an adapted network architecture based on a successful design for image
recognition (Schmidhuber, 2015) that includes max-pooling in intermediate layers and a
SoftMax layer output layer, namely Inception V2 (Szegedy et al., 2016). The Inception V2
and most image recognition NNs are designed to identify a single category from a set of input
parameters. Transportation mode choices cannot be classified into discrete states but follow a
probability distribution. Therefore, to use this network architecture, the distribution of mode
share labels is incorporated using the following adjustments (i.e., vehicle¼ 0.7593,
walking¼ 0.1557, tram¼ 0.0495, bicycle¼ 0.0166, bus¼ 0.0145, motorbike¼ 0.0023, and
other¼ 0.0023; see Table 1).

Probabilistic input and output labels have implications on how they are fed
into the model and the error calculation for the training process. This study uses
cross entropy (CE) to calculate the error between the labeled vector p and the inference
vector q. CE uses the unweighted mean absolute error for each transportation mode calcu-
lated as

CEðp;qÞ ¼ �
X

x2v
pðxÞlogqðxÞ

Training Procedure

After the data preparation, labeling the individual images with the transportation mode
shares at their location, the images are used to train the NN. To improve the model and its
training time, this study uses a pre-trained network with Inception V2 architecture that has
been used for image recognition. The network architecture was adjusted to incorporate the
probabilistic output layer indicating the transportation mode share and uses an error cal-
culation with CE in both the training and validation process.

Table 1. Transportation mode choice distribution and number of trips in the VISTA data set.

Mode of transportation Number of trips Share in Victoria (%)

Bicycle 1053 1.66

Motorcycle 148 0.23

Private vehicle 48,115 75.93

Walking 9866 15.57

Bus 903 1.45

Tram 3135 4.95

Other 145 0.23
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The training data set, containing 2,177,000 images, is split randomly into a training and a
validation data set in a 3:1 ratio. The individual images have a resolution of 320� 320 pixels.
To fit them into the network architecture, they are randomly cropped to 256� 256 pixels.
Additionally, random preprocessing steps are performed each time that an image is loaded
during the training, improving the robustness of the model to accommodate color and
azimuth variations in the satellite images. The preprocessing steps include random flipping
to accommodate for different shadow directions, randomly varying the brightness within
one-eighth of the total range, and randomly adjusting the color saturation and contrast by
�50% from the base image.

Training was performed using batches of 64 images, where the accuracy of the model was
evaluated by accumulating the error between labels and the classification of the model. This
ADAM algorithm (Kingma and Ba, 2014) uses the sign (þ/–), the scale of the gradient, to
update the weight every 40 epochs and two momentum functions to overcome local minima.
The momentum functions have an exponential decay value of 0.9 and 0.999, respectively.
A weight decay value of 0.00002, leading to 0 value for some weights over time, makes the
network sparser and therefore more robust. The learning rate, following a polynomial decay
function (factor 0.999), started at 0.01 with a minimal value of 0.001.

Three stages of validation were performed. The first compared the inferred mode shares
with the observations from the VISTA data set during the training of the model every 600
epochs. The training reached a CE of 0.5927. The second validation step compared the
modeled mode shares from a set of new images with a benchmark model, and the last step
compared the modeled mode shares with the mode share at their location.

Validation

To validate the NN’s modeling capability, the inferred values are compared to the values
from the VISTA data. Two sets of satellite images were extracted in two grids across
the state of Victoria at a resolution of 0.011 degrees (�1 km East–West and �1.25 km
North–South) and 0.05 degrees (�400 m East–West and �500 m North–South).

Validation against a benchmark model

The trained model is compared to a benchmark model. The benchmark model uses the
average of all mode shares found in the data set and infers the same ratio to all areas. To
measure the accuracy of both models, the CE is calculated between the VISTA data set
observations and the predictions of both models. Only predictions within SA1s with more
than 10 trips were considered, removing outliers generated by low numbers of observations.
The error of the trained model (CE error¼ 0.593) was 14.1% lower than the benchmark
model (CE error¼ 0.676).

Validation against local distribution mode share

Using the correlation of the modeled mode share and the VISTA data in each SA1 to
evaluate the predictive capabilities of the model for each mode share shows that the
model has skills in predicting vehicle (R2 ¼ 0.587) and walking (R2 ¼ 0.411) mode share,
but it is not suitable to infer the other modes accurately (e.g., bicycle R2 ¼ 0.244 and bus
R2 ¼ 0.031) (see Figure 2). Low skill in some modes results from a method that tries to
reduce the error. Since the underlying data have very low variance for some of the mode
shares, predicting the same value does not lead to the same high error. In short, since many
mode shares present a stable value (close to 0), the optimization cost, indicated by a high
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error, is greater where values of the variance are higher and explains why the model is better

in predicting vehicle and walking trips (see Figure 3).

Inference to places without underlying data

The data set containing gridded imagery of two different resolutions was also used for

inference. The results inferred from these are overlaid on the map showing the transporta-

tion mode choices across Victoria (see Figure 4, left) and metro Melbourne (see Figure 4,

right). The NN identified a high proportion of walking trips in high-density urban areas as

well as in nature reserves and forests.
The model’s inference capability was also deployed to disaggregate distributions within

areas where only an average/aggregated number is available despite the fact that only

aggregated information on SA1 level was used to train the model (for details, see http://

abs.gov.au). This highlighted the model’s ability to extract characteristics from satellite

images at a small scale. Figure 5 shows both the VISTA data (left), where each SA1 is

colored to show the share of walking trips, as well as the grid-based prediction of the model

(right). This shows that the methodology can be applied to problems where a smaller aggre-

gation level is required than the data provided. On average, the inferred mode shares are in

line with those of the full SA1.
By focusing on the extreme values for different modes, the extreme characteristics of the

urban fabric are amplified. To do so, we looked at two maps of clusters where either the

predicted grid points share of motorized trips are >95% or self-propelled (walkingþ cy-

cling) transportation modes are >30% (see Figure 6). Areas with a high density of high car

use in Greater Melbourne are, with a few exceptions, clustered just outside the ring road.

Areas with a high share of self-propelled trips are clustered around the CBD as well as the

inner north and south eastern suburbs.
Looking at the urban fabric where the highest predicted shares occur for the main trans-

portation modes, conclusions can be drawn regarding whether building structures and land

uses of the urban configurations are conducive to walking, bus, driving, and train (see

Figure 7). Walking mainly occurs in the CBD and its adjacent suburbs in the north and

south. These areas have high to medium population density and a narrow street grid with

trees. Areas where bus trips are common are in the middle suburbs close to major trans-

portation corridors. Train prevalence is incoherent geographically but is detected in areas

where a mix of large and small building footprints is prevalent. The share of trips conducted
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Figure 2. Comparisons of the values from the VISTA data set and the inferred values from the model
by SA1.
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with private vehicles is particularly high in areas where mainly green space can be found

(agricultural land use or nature reserve). It is difficult to find associations for the other

modes of transportation since the number of observations are low and their share in the

overall transportation is negligible (bicycle, motorcycle, and other).
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Bus
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Figure 3. Comparison of the variance in the data set and the accuracy of the model measured in R2 for
different transportation mode shares with a fitted line (blue) though them.

Figure 4. Map of Victoria (left) and Metropolitan Melbourne (right), showing modeled share of walking
trips from red (min¼ 1.2%) to purple (max¼ 35.3%).
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Discussion

This study assessed the impact of the urban fabric on transportation mode share. We have
demonstrated a parsimonious model that is able to infer transportation mode shares at an
unprecedented scale of granularity. The model infers the distribution of different modes
from satellite images where it extracts a wide range of input parameters. It has also shown
that the model can be deployed beyond the training and validation data set to provide finer
detail for aggregated data sets and to areas where no observation data exist to infer walk-
ing trips.

Even though the VISTA transportation survey is limited and is distributed across a small
area, the method and the resulting model have been shown to produce transportation mode
choice predictions that have high validity indicated by a low error term and the high R2.
Looking at the satellite images with the highest and lowest values for the individual trans-
portation mode share indicates the presence of distinct urban configurations in areas where
a mode share is more or less prevalent. These predictions are consistent with what might be
expected given a detailed analysis.

Figure 5. Share of walking trips in each SA1 with more than 10 trips (left) and modeled values (right).

Figure 6. Density of inferred areas with a high share of motorized trips (left) and self-propelled
trips (right).
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The presented method can predict, at a fine-grained scale, the likely transport mode share

of existing and new urban developments. Planners and designers now have a tool that allows

them to anticipate the impact of their intervention during the design phase without labori-

ous preparation, just by adjusting existing satellite images with images of the new design.

The method is highly efficient in evaluating changes with respect to mode share to the built

environment and negates the requirement for detailed and costly surveys implemented after

neighborhoods have already been established, when the implications of a non-walkable

neighborhood are too late or too expensive to change.
The underlying data used in this study are geographically specific, but the method in

combination with local transportation data sets can be applied globally. Satellite images are

available for all locations, and transportation data sets such as VISTA exist in many

countries: e.g. HITS (household interview travel survey) in Singapore; NTS (national

travel survey) in England; Mobility and Transportation Micro census in Switzerland; and

NHTS (National Household Travel Survey) in the United States. A limitation of our data

set is the use of aggregates of trips for a day in SA1s and does not consider the types of trips

since splitting it into smaller temporal or topical groups would reduce the data down to a

size that is insufficient for drawing inferences.
Since this project only uses satellite images, it is susceptible to all the limitations that they

contain. Individual images are collected once at different times over a large area. Their pixel

resolution is fixed, and they capture only the visible upper layer. The methodology can,

therefore, be augmented by including additional layers of information, including land use,

temporal changes and access to other modes of transportation such as public transport

or amenities.

Conclusion and future work

This paper showed that a NN was able to identify the urban patterns that are more con-

ducive for walking or other modes of transportation. To this end, two data sets were

Figure 7. Satellite images from Google on 17 March 2017 with the highest and lowest prediction value for
each transportation mode across the state.
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combined: satellite images and a transportation survey. Satellite images were labeled with

the transportation mode shares of the corresponding SA1 and used as a training data set. To

generate this model, the NN was trained with distributions rather than discrete groups of

labels. The resulting model was validated first with individual images linked to a distribution

as well as calculating the distribution error across a known area. The results show that

satellite images, despite their limited information density, can provide accurate estimates of

transportation mode choices.
Extending the work by comparing cities in different countries and their transportation

mode share highlights differences in preferences or could identify common drivers of trans-

portation mode share decisions worldwide. A related project deploying NNs to compare

cities larger than 300,000 people using NNs uses the confusion as a measure of similarity.

Another project looking at similar areas of a city found that depending on the training data

(satellite, maps, or Google Street View) used to train the NN, different characteristics will be

significant (Nice et al., 2018). These studies show that the combination of NNs and global

imagery data yields new insights not directly through the model but by creative interpreta-

tion and uses of them.
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