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LCZ Generator: A Web Application to
Create Local Climate Zone Maps
Matthias Demuzere*, Jonas Kittner and Benjamin Bechtel

Urban Climatology Group, Department of Geography, Ruhr-University Bochum, Bochum, Germany

Since their introduction in 2012, Local Climate Zones (LCZs) emerged as a new

standard for characterizing urban landscapes, providing a holistic classification approach

that takes into account micro-scale land-cover and associated physical properties.

In 2015, as part of the community-based World Urban Database and Access Portal

Tools (WUDAPT) project, a protocol was developed that enables the mapping of cities

into LCZs, using freely available data and software packages, yet performed on local

computing facilities. The LCZ Generator described here further simplifies this process,

providing an online platform that maps a city of interest into LCZs, solely expecting

a valid training area file and some metadata as input. The web application (available

at https://lcz-generator.rub.de) integrates the state-of-the-art of LCZ mapping, and

simultaneously provides an automated accuracy assessment, training data derivatives,

and a novel approach to identify suspicious training areas. As this contribution explains all

front- and back-end procedures, databases, and underlying datasets in detail, it serves

as the primary “User Guide” for this web application. We anticipate this development

will significantly ease the workflow of researchers and practitioners interested in using

the LCZ framework for a variety of urban-induced human and environmental impacts.

In addition, this development will ease the accessibility and dissemination of maps and

their metadata.

Keywords: local climate zones, WUDAPT, google earth engine, urban form and function, web application

1. INTRODUCTION

Urbanization and climate change may be the two most important trends to shape global
development in the decades ahead. On the one hand, cities serve as engines of change, drive
economic progress and pull more people out of poverty than at any other time in history. On the
other hand, climate change could undercut all of this by exacerbating resource scarcity and putting
(vulnerable) communities at risk from a myriad of environmental challenges (e.g., heat waves,
droughts, floods, air quality, etc.) (Baklanov et al., 2018). The magnitude of this risk will increase in
the coming decades as it is predicted that global urban land will increase significantly (Chen et al.,
2020), and by 2050, almost 70% of the world’s population will be urban dwellers (UN, 2019). On
top, as earth’s climate will continue to change over the coming decades, projected global warming
and aggravated hydro-climatic extremes will hit urban centers especially hard, being a major threat
to the health and well-being of human populations and urban ecosystems (Costello et al., 2009).

Successful mitigation and adaptation to climate change will depend centrally on what happens
in cities, as urban areas house the majority of people, assets and infrastructure, and are responsible
for about 70% of the world’s energy-related CO2 emissions (Lucon et al., 2014). At the international
level, cities are becoming of increasing concern: the new United Nations Agenda and Sustainable
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Development Goals have a clear focus on urban resilience,
climate, and environment sustainability of smart cities. The
Intergovernmental Panel on Climate Change (IPCC) held its first
“cities and climate change” conference in 2018, and announced a
special report on cities which will be part of the panel’s seventh
assessment cycle (Bai et al., 2018). Finally, of the four challenges
identified by the World Meteorological Organization (WMO)
World Weather Research Program, two are urban related: high-
impact weather, including impacts in cities, and urbanization
(Creutzig et al., 2016; Masson et al., 2020).

Despite this new focus on cities as a critical scale for climate
change management, we know very little about most cities
on the planet—being generally ignorant of their extent, how
they are constructed and how they are occupied (Demuzere
et al., 2020a). First and foremost, climate-relevant urban data
consistent in coverage, scale, and content are needed to support
risk assessment and its management and to enable effective
knowledge transfer between cities. The right data at the right scale
are an essential prerequisite for developing fit-for-purpose urban
planning policies (Georgescu et al., 2015). A number of projects
have mapped the global urban extent at finer and finer detail
(e.g., Pesaresi et al., 2013; Corbane et al., 2017; Esch et al., 2017;
Gong et al., 2020), but these efforts need to be complemented
by a wider range of information-rich intra-urban classes that
describe different types of urban land covers and land uses: the
Local Climate Zone (LCZ) typology is a good example of such
classification scheme (Stewart and Oke, 2012; Demuzere et al.,
2020a; Reba and Seto, 2020).

Local Climate Zones refer to a classification system that
exists out of 17 classes, 10 of which can be described
as urban (Figure 1). The system is originally designed to
provide a framework for urban heat island studies, allowing
the standardized exchange of urban temperature observations
(Stewart and Oke, 2012). The LCZ classes are formally defined as
“regions of uniform surface cover, structure, material, and human
activity that span hundreds of meters to several kilometers
in horizontal scale,” exclude “class names and definitions that
are culture or region specific,” and are characterized by “a
characteristic screen-height temperature regime that is most
apparent over dry surfaces, on calm, clear nights, and in areas
of simple relief” (Stewart and Oke, 2012). Its universality has
important advantages, as it allows a systematic comparability of
global intra- and inter-urban heat island studies (e.g., Bechtel
et al., 2019a), provides a common platform for knowledge
exchange and the description of urban canopy parameters in
urban ecosystem processes, and supports model applications,
especially for cities with little or insufficient data infrastructure
(Stewart and Oke, 2012; Ching et al., 2018; Brousse et al., 2019,
2020b; Demuzere et al., 2020a; Varentsov et al., 2020).

In the early 2010s, Bechtel (2011) and Bechtel and Daneke
(2012) first proposed mapping entire cities into Local Climate
Zones. This procedure was formalized by Bechtel et al. (2015),
relying on an “off-line” workflow that integrates training areas
(TAs, a set of LCZ labeled polygons) and Landsat 8 (L8) imagery
within the SAGA software package (Conrad et al., 2015) over a
limited spatial domain. More specifically, each TA is identified
using Google Earth images aided by the visual and numerical

information provided in Stewart and Oke (2012). The TA dataset
is then used to extract spectral information from L8 images,
which in turn is used in a supervised random forest classifier
to categorize the entire region of interest into LCZ types. This
procedure was afterwards adopted by the World Urban Database
and Access Portal Tools (WUDAPT) community project to
create consistent LCZ maps of global cities (Ching et al., 2018).

While this framework is valuable (currently ∼150 cities
mapped), it will not result in a database that could support
urban decision-making globally in a reasonable time frame.
Therefore, Demuzere et al. (2019b,c, 2020a) developed a number
of strategies to expand LCZ coverage rapidly. The first recognizes
that much of the information contained in TA data for one city
is transferable to other cities for which no TA data is available.
The second employs Google’s Earth Engine (EE)—a cloud-based
platform for planetary-scale analysis (Gorelick et al., 2017)—
to use its computational power, access to a range of geospatial
datasets (Landsat, Sentinel, and others) and a large number of
predefined algorithms. Among others, this cloud-based approach
resulted in high-resolution Local Climate Zone maps for global
cities, Europe and the continental United States of America
(Bechtel et al., 2019a,b; Demuzere et al., 2019a,b,c, 2020a,b;
Brousse et al., 2020a).

The LCZ Generator web application described here further
simplifies this process, as it provides an online platform that
maps a city of interest into LCZs, solely expecting a valid TA
file and some metadata as input. The application integrates
all of the above-mentioned developments and procedures, and
simultaneously provides an automated accuracy assessment, TA
data derivatives and a novel approach to identify suspicious TAs.
As this contribution explains all front- and back-end procedures,
databases and underlying datasets in detail, it serves as the
primary “User Guide” for this web application.

2. LCZ GENERATOR DESIGN

The LCZ Generator web application consists out of three major
steps (Figure 2). In a first step, personal and training information
needs to be submitted via the web application (section 2.1). Upon
successful submission, the LCZ classification and quality control
is launched in the back-end, to produce a quality-controlled
LCZ map, metadata statistics, and labels for suspicious polygons
(sections 2.2 and 2.3). In a third and final step, compressed results
are sent to the user via e-mail, and simultaneously added to the
online submission table (section 2.4). Each of these steps are
discussed in more detail in the following sections.

2.1. User Input
When accessing the LCZ Generator, the user is directed to a
submission form that consists out of two sections: personal
information and TA information (Table 1). The personal
information consists out of the author’s first and last name and
e-mail address. The name information refers to the primary
author of the TA file, which can be acknowledged in case it is
used by others. The e-mail is required since the results of the
LCZ Generator are sent via e-mail. If the author consents, the
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FIGURE 1 | Urban (1–10) and natural (A–G) Local Climate Zone definitions (Stewart and Oke, 2012; Demuzere et al., 2020a).
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FIGURE 2 | The LCZ Generator flowchart.

TABLE 1 | Overview of the front-end input fields.

Field Explanation

Personal information

First Name* First name of the author of the TA set

Last Name* Last name of the author of the TA set

E-mail Address* Author e-mail address. Required, since results are send by e-mail.

TA information

Continent* Drop down menu listing seven continents: Africa, Asia, Europe, North America, Oceania, South America

Country* Drop down menu with the world’s countries

City name* Official name of the city to be mapped.

Upload file* Button to upload a Keyhole Markup Language (.kml) file or its zipped version (.kmz). The back-end expects a file

with a format similar to WUDAPT’s official TA template1.

Date* Date for which the TA polygons are representative

Reference Reference for TA file:

- DOI of published paper if available

- if not, full reference including link that points to the online resource

- blank in case no reference is available

Remarks Additional information on potential co-authors for the TA file (firstname, lastname) or any other information that

supports the interpretation of the TAs.

Fields denoted with * are required.

author’s first and last name are displayed in the publicly accessible
submission table and factsheet (see section 2.4).

The second section of the submission form queries about the
TA file. A user can select the continent and country via a drop-
down menu, and provide the name of the city of interest. The
date field refers to the date for which the training polygons are

representative. This is not necessarily the date on which the TA
file is created, but rather the date of the imagery (e.g., in Google
Earth, see Bechtel et al., 2015) on which the labeled TAs are
developed. The non-required “Reference” and “Remarks” fields
allow the user to provide additional metadata about the TA file.
The former can be the Digital Object Identifier (DOI) in case the
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TA set is published in a (peer-reviewed) paper, a reference to an
online resource, or left blank if none of the previous are available.
The latter allows free text and can e.g., be used to list additional
authors that contributed to the creation of the TA file, or any
other information that is relevant to understand the content of
the TA file.

Key to the submission is the TA file itself, that can be uploaded
via a button and can have any name. Yet upon submission, a
file-check is done to make sure it has not been uploaded before
and is compatible with the remainder of the LCZ Generator.
First of all it is important that the file extension is .kml or .kmz
[Keyhole Markup Language (.kml) or its zipped version (.kmz)
respectively]. In case of .kmz, the file is unzipped to .kml. Second,
it is checked whether the TA file can be read, and contains one
or more LCZ folders, as provided in the default WUDAPT LCZ
.kml template1. This strategy is chosen as users can provide any
label to a LCZ class (e.g., “LCZ 2a,” “compact midrise 1,” “not
sure about this one,” . . . ), making it difficult for the application
to assign an appropriate LCZ label required for the classification.
If folders are available, the folder names are used to rename
their underlying polygons. Third, if present, empty polygons
are removed (e.g., “Style Place Holders” that were not deleted
from the .kml template). Fourth, each polygon is provided with
a unique ID, which is required to perform the automated TA
quality control (see section 2.3). Finally, also the size of the region
of interest (ROI) is checked. The ROI is defined as the outer
extent of the TA polygons, currently with an additional buffer on
all sides of 10 km. In order to maintain computational efficiency,
the maximum allowed ROI size is currently set to 2.5◦ x 2.5◦.

If any of the above checks fail, a red-framed message is
returned to the user upon submission, instructing about ways
to solve the issue. If all tests pass, a green-framed message is
returned, and the LCZ Generator is launched in the back-end.

2.2. LCZ Classification and Quality Control
Before the TAs are used in the classification procedure, they
undergo a final pre-processing step: the surface area of large
polygons (>1.5 km2) is reduced to a radius of approximately
350 m, in line with Demuzere et al. (2019b,c, 2020a) and the
minimum allowed surface area described in section 2.3. These
large polygons typically represent homogeneous areas such as
water bodies and forests, a characteristic that is neither needed
nor wanted, as it leads to more imbalanced TA data and
computational inefficiency of the classifier.

In addition to the TAs, one needs earth observation data and a
supervised classifier (Bechtel et al., 2015). The default WUDAPT
workflow relies on Landsat 8 data as input to the random forest
classifier, embedded as an “LCZ classification tool” in SAGA GIS
(Breiman, 2001; Bechtel et al., 2015; Conrad et al., 2015). Yet here,
the LCZ Generator builds further upon the findings of Demuzere
et al. (2019b,c, 2020a), Brousse et al. (2020a), in which additional
earth observations are used, in combination with the TAs, as
input to EE’s implementation of the random forest classifier.

1http://www.wudapt.org/wp-content/uploads/2020/08/
WUDAPT_L0_Training_template.kml

TABLE 2 | Earth observation input features currently available for the LCZ

Generator.

Sensor Band / Ratio / Indicator Reference

Landsat 8 Median composites for B2 (red), B3

(green), B4 (red), B5 (Near infrared), B6/7

(Shortwave infrared 1/2), B10/11 (Thermal

infrared 1/2)

See Demuzere et al.

(2019b) for details.

Median composites for BCI, NDBaI, EBBI,

NDWI, NDBI, NDVI

10 and 90th percentile composites for

NDVI

Sentinel 1 Single co-polarization (VV), dual-band

cross-polarization (VH), and their ratio

(VV/VH)

See Demuzere et al.

(2019b) for details.

Mean and standard deviation of VV and

VH combined

VVH indicator Li et al., 2020

Sentinel 2 Median composite Red edge bands (B5,

B6, B7)

Forkuor et al., 2018

Median composite NDVI Red Edge 1 and

2

Forkuor et al., 2018

Median composite S2REP, CSI, and SEI Kaplan and Avdan,

2018; Sun et al.,

2019

Other Global Forest Canopy Height (GFCH) See Demuzere et al.

(2019b) for details.

DTM, DEM, DSM

Landsat 8 and Sentinel 1/2 composites are derived over the period 01-01-2017 to 31-12-

2019. BCI, Biophysical Composition Index; NDBaI, Normalized Difference Bareness Index;

EBBI, Enhanced Built-Up and Bareness Index; NDWI, Normalized Difference Wetness

Index; NDVI, Normalized Difference Vegetation Index; S2REP, Sentinel-2 Red-Edge

Position Index; CSI, Combinational Shadow Index; SEI, Shadow Enhancement Index;

DTM, Digital Terrain Model; DEM, Digital Elevation Model; DSM, Digital Surface Model.

Currently, a total of 33 input features are available globally, on
a 100 m resolution, and are stored in EE’s online WUDAPT asset
folder (3 TB of data) (Table 2). They consist out of 16 features
derived from Landsat 8, 5 features from Sentinel-1, 8 features
from Sentinel-2, and four additional features reflecting terrain
and forest canopy height. Note that the list of input features used
in Demuzere et al. (2019b, 2020a) is expanded with Sentinel-2
red edge bands to improve the mapping of wetlands (Forkuor
et al., 2018; Kaplan and Avdan, 2018; Brousse et al., 2020a),
and a Sentinel-2-based combinational shadow index (CSI) and
shadow enhancement index (SEI) median composite (Sun et al.,
2019). The system is designed in such a way that, whenever
additional, new or improved global earth observation datasets
become available, they can easily be added to the asset folder and
activated in the classification procedure.

To ensure the quality of the resulting LCZmap, quality control
is a vital step (Verdonck et al., 2017). Hence, an automated cross-
validation approach using 25 bootstraps is applied (Bechtel et al.,
2019a). In each bootstrap, 70% of the TA polygons are used
to train and 30% to test; the polygons are selected by stratified
(LCZ type) random sampling, maintaining the original LCZ
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TABLE 3 | File structure and contents of the compressed (.zip) results send to the user via e-mail.

Folder File(s) Explanation

.

ID_factsheet.html Webpage containing visual summary of the results (section 2.3)

ID.tif Geotif with three bands: “lcz,” “lczFilter,” and “classProbability” (section 2.2)

qgis_lcz_colormap.txt /

arcgis_lcz_colormap.lyr

Colormaps to be used in QGIS / ArcGIS

data/

ID.kml Original TA file (converted to .kml in case of .kmz) (section 2.1)

ID_TA_statistics.csv TA geometry statistics (section 2.3)

ID_auto_qc_polygon.shp TA auto quality control (polygons) (section 2.3)

ID_auto_qc_point.shp TA auto quality control (points) (section 2.3)

ID_cm_average_formatted.csv Average formatted confusion matrix (section 2.2)

figures/

ta_freq.png Figure with number of TAs (section 2.3)

lcz_map.jpg Figure displaying final filtered LCZ map (section 2.2)

lcz_oa.jpg Accuracy boxplot figure (section 2.2)

factsheet_files/ Source files required to render the ID_factsheet.html page

ID refers to the unique identifier given to each submission (section 2.5.1).

class frequency distribution. This procedure is repeated 25 times
allowing us to provide confidence intervals around the accuracy
metrics. In addition, this approach also allows the creation of a
probability map, which indicates how often (in %) the mode was
mapped in the iterative procedure.

The resulting LCZ map provided to the user is based on all
TAs (100% of the TA polygons) and input features. A filtered
version is also provided using the morphological Gaussian filter
described in more detail in Demuzere et al. (2020a). This
is preferred over the WUDAPT’s traditional majority post-
classification, as it accounts for the distance from the center
of the kernel and differences in the typical patch size between
classes. For example, linear features like rivers are typically
removed by the majority filter. The LCZ map, its Gaussian-
filtered version and the probability map are provided to the
user as a single .tif with three bands: “lcz,” “lczFilter,” and
“classProbability,” respectively.

The accuracy metrics used follow previous work (see
Demuzere et al., 2020a, and references therein): overall accuracy
(OA), overall accuracy for the urban LCZ classes only (OAu),
overall accuracy of the built vs. natural LCZ classes only (OAbu),
a weighted accuracy (OAw), and the class-wise metric F1. The
overall accuracy denotes the percentage of correctly classified
pixels. OAu reflects the percentage of classified pixels from the
urban LCZ classes only, and OAbu is the overall accuracy of
the built vs. natural LCZ classes only, ignoring their internal
differentiation. The weighted accuracy (OAw) is obtained by
applying weights to the confusion matrix and accounts for the
(dis)similarity between LCZ types (Bechtel et al., 2017, 2020). For
example, LCZ 4 is most similar to the other open urban types
(LCZs 5 and 6), leaving these pairs with higher weights compared
to e.g., an urban and natural LCZ class pair. This results
in penalizing confusion between dissimilar types more than
confusion between similar classes. Finally, the class-wise accuracy

is evaluated using the F1 metric, which is a harmonic mean of the
user’s and producer’s accuracy (Verdonck et al., 2017). Accuracy
results are provided to the user in two ways: average confusion
matrix over the 25 bootstraps (_cm_average_formatted.csv),
including Overall, User and Producer Accuracy (in %) and a
boxplot figure (_cm_oa_boxplot.jpg) depicting the range of all
accuracy metrics over all bootstraps.

2.3. Automated TA Quality Control
Sections 2.1 and 2.2 are at the core of the LCZ Generator
application, explaining how a user’s TA dataset combined with
a wealth of earth observation input feeds the random forest
classifier, resulting in a quality-controlled LCZ map. Yet an
additional automated 3-step TA quality control is added, that
aims to facilitate the revision of the original TA submission and
resulting LCZ map, since previous work by Bechtel et al. (2017,
2019a) and Verdonck et al. (2019) highlighted that multiple
iterations can significantly improve the overall accuracy of the
LCZ map, and are thus recommended.

Stewart and Oke (2012) suggested that the typical horizontal
scale of a Local Climate Zone—reflecting an area of uniform
surface cover, structure, and material—spans hundreds of meters
to several kilometers. In addition, the number of TAs selected
for each zone can be an indicator for zones which are hard to
classify, and the WUDAPT protocol suggests to digitize compact
and simple TA sets, characterized by a shape ratio close to
one (Bechtel et al., 2019a; Verdonck et al., 2019). Therefore,
a summary table (_TA_statistics.csv) is added to the output,
providing, for each available LCZ class, the number of polygons
(Count, C), the average and total surface area (Avg. / Total
area, km2), the perimeter (km), the shape (-), and number of
vertices (-).

Subsequently, a 3-step automated quality control (QC) is
applied to label suspicious TA polygons. In a first step (qc_step1),
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FIGURE 3 | Factsheet example for Saint Petersburg. Note that in reality, the factsheet also contains a “Terms of Service” and “Attribution” section (see section 2.5.4).

These sections are omitted here for clarity.
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polygons with a surface area below 0.04 km2 (too small)
or a shape ratio 3 (too complex shape) are flagged. In a
second step (qc_step2), the non-parametric density-based spatial
clustering of applications with noise (DBSCAN) (Ester et al.,
1996; Schubert et al., 2017) is used to identify whether the
average spectral value of a polygon of LCZ class i is considered
as an outlier compared to the average spectral values of all
other polygons of that class i. The method requires two
parameters: ǫ, which is the maximum distance between two
samples for one to be considered as in the neighborhood of
the other, and MinPoints, the number of minimum samples in
a neighborhood for a point to be considered as a core point.
Here, ǫ is set to 0.3 and MinPoints to Ci/10, based on a
number of iterations and expert judgement. Since this method
is efficient on large, multi-dimensional datasets, it is applied
simultaneously on all earth observation input features discussed
in section 2.2.

A third and final QC step (qc_step3) considers all individual
pixel values of all polygons in each LCZ class i compared
to the polygon average approach from qc_step2. The same
parameter values for ǫ and MinPoints are used, and the
procedure is also applied on all available input features
simultaneously. The pixel’s latitude and longitude coordinates
here serve as an unique identifier to tag suspicious points
within polygons.

If polygons are identified as suspicious, the user receives
two shapefiles containing the results of the automated quality
control procedure. The first shapefile (ID_auto_qc_polygon.shp)
contains all polygons flagged as suspicious in at least one of
the tree steps. Since qc_step3 returns points, each polygon
that intersects with at least one of these flagged points is
added. All shapes in this file contain additional metadata fields
characterizing their geometry (area, perimeter, shape, vertices)
and a boolean value for each of the three QC steps: True
(1) / False (0) in case a TA passed / failed one of the three
QC tests. The second shapefile (ID_auto_qc_point.shp) contains
the individual flagged points, which might provide additional

insights into why certain polygons are flagged as suspicious.
In case no polygons or points are labeled as suspicious,
the same files are created yet only contain a point with a
dummy identifier and a geometry indicating the center pixel of
the ROI.

2.4. Generated Output
If the LCZ Generator successfully completes all processes, the
user is notified via e-mail, that contains a compressed (.zip)
archive as attachment. This archive (Table 3) contains the various
outputs described in sections 2.2 and 2.3.

The output is listed in an online search- and sortable
submission table including information about the city,
country, continent, date of the submission, overall
accuracy, and a button (Show Factsheet) linking to the
factsheet that provides a visual summary of all results.
In case a user did not agree to display his/her name
(see section 2.1), the Author field is left blank in both
the submission table and factsheet. By checking one or
multiple entries using the left-hand side check-boxes of the
submission table, one can also download the corresponding
.zip archive(s).

The submission table is structured as follows. If a user
submitted multiple TAs for one city, only the submission having
the best overall accuracy is displayed. In case multiple users
submit TAs for the same city, only the best result is displayed, but
this time for each individual user. A button (Show all submissions)
allows the user to view and download all submissions including
those where one author submitted multiple versions of TAs
for the same city. This structure ensures that only results with
the best possible quality are directly available for download,
but also that this web application can be used for learning
purposes and improving the TA creation technique without
adding multiple previous submissions of minor quality to
the table.

In the event the LCZ Generator fails after successfully
submitting the TAs, the user is notified via e-mail as well. In this

FIGURE 4 | Training areas for (A) Bamako, (B) Saint Petersburg, and (C) Havana. Color scheme as in Figure 1.
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FIGURE 5 | Information contained in the geotif output file, for all cities (columns): final LCZ map (Top), final filtered LCZ map (Middle), and probability map (Lower).

case, the developers automatically receive a message, and can use
the log stored in the back-end to solve the issue.

2.5. Technical Information, Terms of
Service, and Attribution Guidelines
2.5.1. Database
All data including the author and submission information, as
well as the processing outputs are stored with a unique ID in a

PostgreSQL database. The TAs are stored in a PostGIS table as
individual polygons.

2.5.2. Versioning
The LCZ-Generator code will be versioned according to
semantic versioning2: breaking changes to the application
programming interface (API)—including changes to the input
features (Table 2)—will be indicated by an incremented major

2https://semver.org/
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FIGURE 6 | Accuracies for (A) Bamako, (B) Saint Petersburg, and (C) Havana. The purple colors in the box plots refer to the overall accuracy metrics, while the LCZ

colored boxes reflect the class-wise F1 metric. Mean and median are depicted by a white dot and black line respectively, boxes indicate the interquartile range and

whiskers the 5 to 95th quartile range.

version. After the release of version 1.0.0, and for each next
release, all changes will be described in a changelog, available
on the issue page (section 2.5.3). The version used for creating
each LCZ map is stored for each submission and included in the
corresponding factsheet.

2.5.3. Support
Guidance in how to use the LCZ Generator is provided via
the “Getting started” and “Frequently Asked Questions (FAQ)”
pages, accessible via the navigation bar of the web application.
If users run into issues while using the LCZ Generator, they
can open a public issue on the application’s Github issue
tracker3. In case security bugs are found, we ask the user to
not create a public issue but instead reach out to us directly via
lcz-generator@rub.de.

2.5.4. Terms of Service and Attribution Guidelines
The web application uses the CC BY-SA 4.0 license4 for
all submissions made. The terms of service5 need to be
accepted upon submission. In addition, attribution guidelines6

are provided on how to acknowledge the materials produced
by the LCZ Generator, the authors of the TAs or any of
the underlying methods used in the Generator’s classification
procedures. This information is also embedded at the end of the
factsheet (see also section 3.1).

2.6. Test Samples
In this paper, the performance of the LCZ Generator web
application is demonstrated via three new TA samples, compiled
by three student assistants at the Ruhr University Bochum
(Germany). The samples are from different urban ecoregions—
which stratify urban areas based on general climate and

3https://github.com/RUBclim/LCZ-Generator-Issues
4https://creativecommons.org/licenses/by-sa/4.0/
5https://lcz-generator.rub.de/tos
6https://lcz-generator.rub.de/attribution

vegetation characteristics, regional differences in urban topology,
and the level of economic development (Schneider et al., 2010)—
and include Saint Petersburg (Russia, “Temperate forest in Asia”),
Bamako (Mali, “Tropical, sub-tropical Savannah in Africa”), and
Havana (Cuba, “Tropical broadleaf forest in South America”).
The TAs are a first version, and did not undergo a manual review
by an experienced operator (Bechtel et al., 2019a).

3. RESULTS

This section presents and discusses all contents of the resulting
.zip archive in more detail. Note that all LCZ results in this paper
are displayed with labels 1–10 for the urban classes, and A to
G for the natural classes, in line with Stewart and Oke (2012)
(Figure 1). However, all underlying files output by the LCZ
generator use integers, with labels 11 to 17 for the natural classes.

3.1. Submission Table
Figure 3 provides a factsheet example for the city of Saint
Petersburg. It summarizes author, submission, TA and LCZ
map & accuracy information. In addition to the author’s
input discussed in section 2.1, the submission information also
contains the submission date, the software version, and the ID.
The software version tag is linked to the software’s version in
GitHub, so that at any point in time it is clear with which code and
parameters each submission is produced (section 2.5.2). The TA
information section lists the content of the ID_TA_statistics.csv,
that is also linked. In addition, a figure is added that displays the
number of TAs per available LCZ class. This figure is stored as
ta_freq.png. Finally, the LCZ map & accuracy section provides
quick access to all four overall accuracy scores, together with an
image of the actual filtered LCZ map (stored as lcz_map.jpg).
Hyperlinks to all underlying data files are provided as well, e.g., by
clicking the “boxplot figure with accuracies” link, the author can
directly see the full accuracy assessment, including information
from all bootstraps and class-wise F1 scores.
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FIGURE 7 | All TA polygons tagged as suspicious during the first quality control step, for Saint Petersburg. Color scheme as in Figure 1.

3.2. LCZ Map and Accuracies
Feeding the random forest in a bootstrapping manner with
the submitted TAs (Figure 4) and the earth observation input
features (Table 2) results in a raw and filtered LCZ map, a
pixel probability map (Figure 5) and overall accuracy metrics
(Figure 6). Combined with the information from the factsheet
(Figure 3) and the ID_TA_statistics.csv file, one can directly
assess the amount and distribution of TA polygons. For
Saint Petersburg, a total of 310 TA polygons are available,
with the highest / lowest frequencies for LCZ 6 (Open

lowrise) and 14 (Low plants) / LCZ 9 (Sparsely built) and 10
(Heavy industry).

The raw and filtered LCZ maps (Figure 5) differ mainly in
their fine-scale heterogeneity: as single pixels do not constitute
an LCZ class, the Gaussian filter procedure is able to remove this
granularity. Since the Gaussian parameters (standard deviation
and kernel size) are currently derived by experts, and expected
to differ between cities and continents (Demuzere et al., 2020a),
they deserve further attention and potential adjustments in future
versions of the LCZ Generator. The probability maps in Figure 5
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FIGURE 8 | A selection of TA polygons tagged as suspicious during the second quality control step, for Bamako. Color scheme as in Figure 1.

indicate how often (in %) themode LCZ class wasmapped during
the bootstrapping procedure. In general, areas covered by TAs
are often mapped as the same LCZ class more than 80% of the
time (>20/25 iterations). Areas at the boundaries of the ROI, e.g.,
southern edge of theHavana domain, or east of Bamako, are often
characterized by lower probability scores. Such information helps
authors to identify where confusion exists in their ROI.

Finally, the accuracy of the lcz map can be assessed using
the accuracy metrics discussed in section 2.2 and displayed in
Figure 6. For all three cities, the average overall accuracy metrics
reach values above 0.5, a minimum accuracy level proposed by
Bechtel et al. (2019a) to pass the automated quality control.
Lowest class-wise F1 metrics can be seen for LCZs 9 and 10
in Saint Petersburg (corresponding to the LCZs with the lowest
TA polygon frequencies), and LCZ 6 in Havana. Note that
no F1 metric is available for LCZ 7 in Bamako, even though
one TA polygon is available in the TA set (Figure 4A). This is
because a single polygon does not suffice to perform a quality
assessment due to the stratified random sampling of the TAs
in training and test data. This is in line with the results of
the HUMan INfluence EXperiment (HUMINEX, Bechtel et al.,
2017; Verdonck et al., 2019) indicating that, when the number of
TAs for a specific zone is low, the representativeness of this TA

might be low, leading to lower accuracies. This is often caused
by (inexperienced) authors spending a lot of time searching for
TAs for all seventeen LCZs, even though some of the zones are
not large enough or occur too sparsely in the city to constitute
a LCZ.

3.3. Automated TA Quality Control
In total, 36 (25%), 80 (25%), and 27 (16%) polygons are flagged as
suspicious in at least one of the quality control steps, for Bamako,
Saint Petersburg, and Havana, respectively. Some examples from
all cities and for each quality control step are described in more
detail below.

Figure 7 displays all polygons from Saint Petersburg flagged
as suspicious during the first quality control step. Two polygons
are flagged because they have a surface area below the 0.04 km2

threshold (Figures 7C,H), the remainder because of their shape
exceeding the maximum allowed value of 3. The latter polygons
typically correspond to linear (narrow and very long) shapes,
often pointing to rivers (LCZ 17, Figures 7E,G,I) or complex
shapes not adhering to the guidelines of digitizing simple block
shapes (Figures 7A,B). While these are not necessarily wrong,
complex shapes may lead to a suboptimal sampling of the satellite
input features, or may lead to a mixed spectral signature in
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FIGURE 9 | Normalized polygon-averaged spectral input values (gray dots), for all LCZ classes shown in Figure 8, for Bamako. Pink circles denote the mean over all

polygons, other markers in corresponding LCZ colors refer to the polygons shown in Figure 8.

case polygons are too narrow and/or are close to other land
covers/uses (Verdonck et al., 2019). More information on best
practices for digitizing TAs is available in Verdonck et al. (2019)
and on the WUDAPT webpage7.

Some examples for the second quality control step are shown
in Figure 8. They are all natural LCZ classes consisting out of
LCZ 11 (or A, Dense trees), 12 (or B, Scattered trees), 16 (or
F, Bare soil or sand) and 17 (or G, Water). The true color
RGB satellite information reveals that the dense tree polygon
(Figure 8A) might be closer to LCZ B (Scattered trees). This is
supported by the spectral profiles in Figure 9A, with e.g., lower
values for the forest canopy height (GFCH), and higher values for
Landsat’s red (L8_B4) and thermal infrared (L8_B10/B11) bands,
when compared to the expected spectral value space for all LCZ
11 polygons. For the LCZ 12 polygons (Figures 8B,C), the true
color satellite imagery reveals a rather heterogeneous landscape,
covered by patches of dense and scattered trees, agricultural
fields, bare soils, small settlements or sparsely built areas, and
a small (seasonal) river. The latter two are captured by the
higher than expected value for Landsat’s NDWI (L8_NDWI) and
a lower than expected enhanced built up and bare soil index
(L8_EBBI), where lower EBBI values refer to built-up areas (As-
syakur et al., 2012) (Figure 9B). The polygon in Figure 8D is
labeled as bare soil or sand, even though the man-made land
use pattern suggest this area to be farm land, which should
thus be labeled as LCZ 14 (or D, Low plants). This is also

7http://www.wudapt.org/create-lcz-training-areas/

visible from Landsat’s median, 10 and 90th percentile normalized
difference vegetation index values (L8_NDVI(_P10/_P90) being
higher than the expected LCZ 16 values (Figure 9C). Lastly, the
LCZ 17 polygons in Figures 9E,F represent two sections of the
Niger river, characterized by strong fluctuations in water levels
according to the rainy and dry seasons. Using the Global Surface
Water Explorer8 (Pekel et al., 2016) or Google’s timelapse tool9,
one can infer that these polygons are mapped in sections of the
river that are seasonal and thus only have water for some time
of the year. This is supported by the Landsat’s NDVI and NDWI
values for the LCZ 17 polygons (Figures 9D, 10): while all LCZ
17 polygons are sampling from the Niger river (Figure 4A), the
NDWI values for the polygons in Figures 8E,F are significantly
lower than those from the other polygons. The same but opposite
observation can be made for the NDVI values.

The third quality control step performs a similar analysis as
the second step, yet this time on the pixel level. Figure 11 displays
a selected number of polygons over Havana, together with the
pixels flagged as suspicious. The first polygon (Figure 11A)
is labeled as LCZ 9 (Sparsely built), reflecting the small or
medium-sized buildings widely spaced across a landscape with
abundant vegetation. Yet the polygon also includes a water
body large enough to be detected by the 100 m input feature
pixels. Visualizing the NDWI values of these pixels against e.g.,
the combined shadow index derived from Sentinel-2 (S2_CSI)

8https://global-surface-water.appspot.com/map
9https://earthengine.google.com/timelapse/
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FIGURE 10 | Average Landsat’s NDVI and NDWI values for all LCZ 17

polygons, for Bamako. Suspicious polygons from subplots E and F in Figure 8

are shown in red.

reveals the outlier position of these pixels (Figure 12A). A similar
analysis can be done for the other selected polygons: the LCZ 14
polygon in Figure 11B mostly constitutes agricultural land, yet
also contains a farm flagged as suspicious. The compact lowrise
LCZ 3 polygon in Figure 11C contains a park in the middle
surrounded by trees, being flagged as suspicious. Figure 11D
is labeled as LCZ 13 (Bush and scrub) even though it should
probably be LCZ D (Low plants). The flagged dots in this
case refer to areas with seasonal waters, which can again be
visualized using Google Earth’s historical imagery tool. Finally,
Figures 11E,F are two additional examples of compact lowrise
polygons. And even though some of the spectral signatures tend
to be outliers compared to all other pixel values for this LCZ
class (Figures 12E,F), it is not self-evident to pin-point the exact
reasons for the polygons to be flagged. In Figure 11E, a pixel is
flagged with abundant vegetation, yet elsewhere in the polygon
similar areas can be found that are not flagged. The polygon in
Figure 11F represents a homogeneous neighborhood in terms
of urban form, yet here the flagged pixel is on top of a large-
scale warehouse, potentially large enough to influence the pixel’s
spectral values with its different radiative characteristics.

4. DISCUSSION AND CONCLUSIONS

Since their introduction in 2012 (Stewart and Oke, 2012),
Local Climate Zones (LCZs) emerged as a new standard
for characterizing urban landscapes, providing a holistic
classification approach that takes into account micro-scale land-
cover and associated physical properties (Demuzere et al., 2020a).

This is reflected by the growing number of scientific publications
having “LCZ” or “Local Climate Zones” listed as keywords:
according to Web of Science, as of February 4 2021, a total
of 139 papers were published, 38 of them in 2020 alone. The
default LCZ mapping procedure, adopted as Level 0 (lowest
level of detail) by the WUDAPT grass-root effort, and relying
only on open-source data (Landsat 8) and software (SAGA
GIS, Conrad et al., 2015), was certainly instrumental to this
success (Bechtel et al., 2015; Ching et al., 2018). However, some
features of this default procedure inhibit global up-scaling in
a reasonable time, e.g., the need to download and pre-process
Landsat 8 data from the United States Geological Survey (USGS)
Earth Explorer, the processing of the LCZ classifier embedded
in SAGA GIS on your local computer, the unavailability of
an automated cross-validation, and the manual review by an
experienced operator before the data is made publicly available
(Bechtel et al., 2015, 2019a).

The LCZ Generator addresses these shortcomings, by
adopting well-tested and -documented cloud-based LCZ
mapping strategies using Google’s earth engine (Gorelick et al.,
2017; Brousse et al., 2019, 2020a,b; Demuzere et al., 2019b,c,
2020a,c; Varentsov et al., 2020). The result of this is an online
platform, that maps a city of interest into LCZs, solely expecting
a valid TA file and some metadata as input. The web application
simultaneously provides an automated accuracy assessment,
in line with the cross-validation procedure detailed in Bechtel
et al. (2019a). To date, this bootstrap-based accuracy assessment
was not available in the SAGA GIS context, often leading to
insufficiently robust accuracy assessments during the production
of LCZ maps (Verdonck et al., 2017). In addition, the novel
3-step TA quality control facilitates the revision of the original
TAs, allowing the user to revise the initial submission, and
re-submit to the LCZ Generator, as previous work highlighted
the importance of additional iterations (Bechtel et al., 2017,
2019a; Verdonck et al., 2019). Results in this study reveal for
example that users should be more careful when digitizing TAs
(e.g., compact shapes, scales, and borders), and should take into
account seasonal properties of the underlying land cover/use.
Note however that this TA quality control implementation is still
experimental, and was successfully tested on a limited number of
TA samples only. The LCZ Generator can assist in this respect
to gather more TA samples in order to populate a spectral LCZ
library across urban (eco)regions (Jackson et al., 2010; Schneider
et al., 2010; Demuzere et al., 2019c), enabling a better assessment
of spectral outliers.

The LCZ Generator should be considered as a dynamic
application, that will be updated whenever new scalable
mapping techniques and globally-available input features become
available. In case updates occur in the future, they will be
tracked via the software version number and described in the
changelog available on the Github Issue page. For example,
some successfully tested the use of object-based image analysis
(Collins and Dronova, 2019; Simanjuntak et al., 2019), others
obtained promising results using (residual) convolutional neural
networks (Qiu et al., 2019, 2020; Yoo et al., 2019; Liu and Shi,
2020; Rosentreter et al., 2020; Zhu et al., 2020). Yet to date, the
feasibility of such procedures for large-scale LCZ mapping has
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FIGURE 11 | As Figure 8, but for the third quality control step, for Havana. White circles refer to the centroids of the actual pixels flagged in this quality control step.

not yet been demonstrated (Demuzere et al., 2020a). Many others
have developed GIS-based approaches using datasets from e.g.,
city administrations or derived from crowd-sourced cartographic
services such as OpenStreetMap (Lelovics et al., 2014; Quan
et al., 2017; Samsonov and Trigub, 2017; Wang et al., 2018;
Hidalgo et al., 2019; Quan, 2019; Oliveira et al., 2020; Zhou
et al., 2020). The latter study also proposes an extension to
the default WUDAPT accuracy assessment, by integrating GIS
data (e.g., building footprints and heights, and pervious surface
fraction). While all these efforts are considered valuable, they
have one thing in common limiting their implementation into
the LCZ Generator: the underlying datasets are to date not
globally available.

We anticipate that the LCZ Generator will ease the
production, quality assessment and dissemination of LCZ maps
and related products. This easy-to-use and accessible online
platform should therefore continue to support researchers
and practitioners in using the LCZ framework for a variety
of applications, such as urban heat (risk) assessment studies
(Demuzere et al., 2020a, and references therein), climate
sensitive design and urban planning (policies) (Perera and
Emmanuel, 2016; Vandamme et al., 2019; Maharoof et al., 2020),
anthropogenic heat and building carbon emissions (Wu et al.,

2018; Santos et al., 2020), quality of life (Sapena et al., 2021),
multi-temporal urban land change (Vandamme et al., 2019;
Wang et al., 2019), and urban health issues (Brousse et al., 2019,
2020a). This development will in addition accelerate the key aim
ofWUDAPT, that is “to capture consistent information on urban
form and function for cities worldwide that can support urban
weather, climate, hydrology and air quality modeling” (Ching
et al., 2018, 2019). Examples of modeling systems currently
using LCZ information are the Surface Urban Energy and Water
Balance Scheme (SUEWS, Alexander et al., 2016), ENVI-met
(Bande et al., 2020), the urban multi-scale environmental
predictor (UMEP, Lindberg et al., 2018), MUKLIMO_3 (Bokwa
et al., 2019; Gál et al., 2021), COSMO-CLM and the WUDAPT-
TO-COSMO tool (Wouters et al., 2016; Brousse et al., 2019,
2020b; Varentsov et al., 2020), and the Weather Research and
Forecastingmodel (WRF, Brousse et al., 2016; Hammerberg et al.,
2018; Wong et al., 2019; Patel et al., 2020; Zonato et al., 2020).
While WRF currently uses the WUDAPT-to-WRF tool to ingest
LCZ information (Brousse et al., 2016), its next release expected
in spring 2021 should offer this compatibility by default (A.
Zonato, personal communication).

To conclude, and in line with the assessment of Creutzig
et al. (2019), we firmly believe that this LCZ Generator
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FIGURE 12 | Spectral values for all pixels in one LCZ class, corresponding to the subplots of Figure 11 (gray dots). Pixels flagged as outliers by DBSCAN are shown

in red. Remaining pixels from the pixel’s parent polygon are shown in green.

has the potential to become a key part in mainstreaming
and harmonizing urban data collection, upscale urban climate
solutions and effect change at the global scale.
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Determining Building Natural
Ventilation Potential via IoT-Based
Air Quality Sensors
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Natural ventilation (NV) represents the most energy-efficient way to operate buildings
and, in an attempt to reduce the built environment’s global carbon footprint,
represents a resource, the usage of which has to be maximized. This study
demonstrated how a combination of an IoT environmental sensing network
implemented locally outdoors and indoors can help to determine the NV potential
and actual utilization throughout the year with the consideration of outdoor climate
variance, air pollution levels, and window open/closed status. An NV potential index
was developed by analyzing indoor and outdoor PM2.5, and outdoor air temperature
and air speed throughout the year at different spatial (from room scale to building
level and local weather stations) and temporal (instantaneous, season, and annual)
scales. The index was applied on a case building located in Berkeley, California,
during the period of August 2018 to the end of 2019. Compared to the potential NV
availability, the actual window opening time in typical rooms was less than 35%.
These results point out that the actual window usage behavior was the key limiting
factor in NV potential utilization. Even during periods when climate- and pollution-
wise outdoor conditions allowed use of the NV, many occupants kept their windows
closed. Keeping windows open or closed was significantly affected by outdoor
climate condition and air pollution levels, especially during the wild-fire period.

Keywords: natural ventilation, IoT-Internet of things, indoor–outdoor Pollution, thermal comfort, occupant activities,
occupant actions

INTRODUCTION

People spend nearly 90% of their daily lives indoors and rely on mechanical heating, ventilation,
and air-conditioning (HVAC) systems to maintain indoor environments comfortable. The
building sector accounts for 40% of total energy use and around one-third of CO2 emission in
major economies such as Europe (Commission, 2010), the United States (EIA, 2021), and China
(Xiong et al., 2015). A large proportion of this energy was consumed by HVAC systems, which
is particularly true in cold and tropical climate zones where the outdoor climate intensifies the
HVAC usage. In response to the high energy consumption of mechanical HVAC systems, there
has been an increase in research on natural ventilation (NV), and alternative indoor
environment conditioning strategies for residential (Oropeza-Perez and Østergaard, 2014)
and commercial buildings (da Graça et al., 2004).
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Natural Ventilation
NV refers to the process of supplying air to and removing air from
an indoor space without using mechanical systems. Taking
advantage of pressure differences arising from natural forces,
for example, wind-driven force and buoyancy-driven force, the
external air flows into an indoor space, while the internal air flows
out (Asfour, 2015). With a proper design, NV can replace cooling
systems in the milder months of the year, reducing ventilation-
and cooling-related energy demand (Dutton et al., 2013). The NV
strategy can also be integrated with the mechanical HVAC
system, forming a mixed-mode strategy that allows alternatives
between the HVAC and NV throughout the day or the year
depending on weather conditions (Luo et al., 2015). The
advantages of applying the NV strategy in buildings include
but are not limited to 1) reducing operation costs, 2)
increasing occupants’ thermal comfort, and 3) improving air
quality due to more fresh air.

While many studies emphasize the advantages of NV, the
actual NV use can be affected by many external factors such as the
outdoor climate and pollutant levels (Zhou et al., 2015; Costanzo
et al., 2019). The results of the study by Martins and Carrilho da
Graça (2017) showed that using NV in moments when the
outside weather is favorable can result in HVAC energy
savings of 25–80%. However, limiting NV use to moments
with outdoor particle levels below 12 μg/m3 decreases this
energy-saving potential to 20–60%. In the majority of the
cities analyzed in the study by Martins and Carrilho da Graça
(2017), the use of NV led to an increase in indoor exposure to
PM2.5 of outdoor origin of 400–500%. Additionally, building
occupants’ habits and altitudes in interacting with building
openings like the windows will also affect the NV performance
by a large margin. Therefore, understanding how these factors
would limit the NV usage and how to consider these factors in
real-building NV operation are of great value.

On the one hand, many studies have investigated the
correlations between window status and the outdoor climate
conditions. Raja et al. (Raja et al., 2001) studied the
relationship of windows, doors, blinds, fans, etc. with indoor
and outdoor temperatures in 15 naturally ventilated office
buildings in Oxford and Aberdeen, in the UK, during a
summer period. It is found that proportion of open windows
increases with an increase in indoor and outdoor temperature.
Only few windows are open when the outdoor temperature is
below 15°C, whereas most windows are open when the
temperature exceeds about 25°C. Nicol and Humphrey (2001)
surveyed the window usage in naturally ventilated buildings in
the UK, Sweden, France, Portugal, Greece, and Pakistan. They
found that occupants started to open windows at a temperature
above 10°C, and as the temperature rises, there is an increased
probability that a window will be open. Based on the observations
in the literature, the percentage of open windows, opening hours,
and the frequency of opening or closing windows depend on
seasons, outdoor temperature, indoor temperature, time of the
day, and the presence of the occupants. For a well-designed
building with low internal gains, user-controlled windows may
be opened for outdoor temperatures for as low as 10°C (Raja et al.,
2001). The typical maximum outdoor temperature for NV use in

an office is 28°C (de Dear and Brager, 2002); above this
temperature, the indoor environment tends to become
uncomfortably warm.

On the other hand, few studies have considered outdoor
particle levels as limiting factors of NV use. When the
building operates in the NV mode, windows will be opened to
promote the large outdoor airflows that are required for
ventilated cooling so that indoor exposure to outdoor
particulate matter (PM) can be significant, with I/O ratios that
are close to one (Martins and Carrilho da Graça, 2017). To avoid
this problem, a building connected to an outdoor PM2.5 sensor
network must close the NV openings and revert to conventional
HVAC during periods of high PM2.5. This requirement reduces
the number of hours when NV can be used and requires HVAC
energy consumption during these periods. It is likely that the
magnitude of this impact will depend on the local weather
condition and particle source patterns, as particles suspended
in the outdoor air are in an unstable state and their concentration
can be changed by meteorological conditions, such as
precipitation and wind sweeping. In the majority of urban
environments, outdoor air is a source of pollutants that have a
detrimental impact on indoor air quality (IAQ). There is strong
evidence of adverse health effects from exposure to airborne
particles that are small enough to be inhaled (diameter below
10 μm (Fenger, 2009; Talbott et al., 2015)). Limiting airborne
particle exposure has long been a priority of the World Health
Organization (WHO), leading to continuously updated
guidelines for maximum short-term and annual mean
exposures to airborne particles (WHO Regional Office for
Europe, 2013). Continued exposure to PM2.5 in amounts that
are just above the natural background concentration of 3–5 μg/m3

can cause adverse health effects (Nicol and Humphrey, 2001).
The combination of a mostly anthropogenic origin and an
increased exposure risk makes PM2.5 the preferred indicator
for assessing health impacts from outdoor particles.

The Emergence of IoT Sensing Technology
Internet of Things (IoT) environmental sensing platforms
for the measurement of various environmental parameters
are deployed on the urban and building scale. Low-cost
sensing platforms provide higher measurement granularity
than the government-owned and operated air quality
station on an urban scale (Morawska et al., 2018). On a
building scale, a number of different environmental sensing
platforms are deployed to enable visibility of indoor
conditions to building managers and potentially
occupants (Parkinson et al., 2019). These two fields of
science and engineering are currently kept entirely
separate, with a single publication showing the potential
of integrating indoor and outdoor data for effective
building operations during wildfire (Pantelic et al.,
2019). There is a clear gap in understanding of how to
use available information to better operate buildings or to
understand key aspects of how buildings work, especially
naturally ventilated buildings that are dependent on
outdoor conditions, indoor conditions, and the behavior
of occupants.
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Objectives of This Study
This study aimed to demonstrate how a combination of an IoT
environmental sensing network implemented locally outdoors
and indoors can help to determine NV potential and actual
utilization in the building throughout the year. NV potential is
evaluated by considering outdoor climate variance and air
pollution levels, and the actual NV use was evaluated using
environmental data and occupant behavior with respect to the
use of windows. In doing this, we analyzed indoor and outdoor
PM2.5, indoor CO2, and outdoor air temperature throughout the
year at different spatial (from room scale to building level and
local weather stations) and temporal scales (instantaneous and
long-term) to demonstrate the application of NV assessment
tools. We used an NV case building located in Berkeley
(California) during the period of August 2018 to the end of
2019. By reliance on an NV potential index considering outdoor
PM2.5, temperature, and wind speed, the study sought to quantify
the NV availability throughout the year.

MATERIALS AND METHODS

Experimental Design
The IoT sensing network was deployed in Wurster Hall, a 9-
floor mixed-mode operated building in Berkeley, CA. During
the spring, summer, and autumn, the building is operated in
the natural ventilation mode, while in winter there is
mechanical heating. When the building operates in the NV
mode, it relies on operable windows for ventilation and
cooling. The building has a high level of infiltration, as
shown by typical CO2 levels below 550 ppm during normal
operation. The building has multiple function rooms, such as
a classroom, conference room, private, and open offices, with
approximately 300 full-time occupants.

The IoT sensing network was deployed on July 19, 2018, and
the study ended in December 2019. During this time period, the
town of Berkeley was affected by the Chico Camp wildfire from
November 18, 2018 to November 25, 2018. This offered a great
opportunity to investigate how high outdoor particulate
pollutants would affect the NV use and how building
occupants would respond to these episodes. When doing the
test, the building level of outdoor temperature and PM2.5

concentration, room level of indoor CO2 and PM2.5

concentrations, and window status were monitored. The
indoor sensors were installed in 15 rooms (the room number
and room functions are listed in Table 1), including classrooms,
meeting rooms, and office rooms. Figure 1 shows the locations of
installed sensors on the third floor. The window closure sensors
were installed at the bottom or on the side of the frame of
openable windows. The CO2 and PM2.5 sensors were installed on
the walls ∼1.2 m from the floor.

The study also contained surveys of building occupants about
their motivations or reasons for open windows. Detailed survey
questions can be found in the Appendix. Questions could be
classified into several categories of which there are three main
aspects related to thermal comfort, air quality, and psychological
motivations.

Experimental Apparatus
The study utilized two types of indoor PM2.5 sensors (Clarity Inc.,
and Senseware) and outdoor PM2.5 sensor (Clarity Inc.). The
outdoor sensors were installed at the top of Wurster Hall, a 9-
floor building. Indoor sensors were placed in different spaces in
Wurster Hall (see Figure 1 as examples). Both Clarity and
Senseware PM2.5 nodes count the particle number using the
principle of light scattering. The accuracy of all the sensors
was the same—within ± 10 μg/m3 in the range of 0–100 μg/m3

and ±10% in the range of 100–1,000 μg/m3. Data were collected at

TABLE 1 | Available data amount for different variables.

Room no Room
function

Room
area
(m2)

CO2

h (%)
PM2.5 h

(%)
Window
opening
h (%)

Window
closed
h (%)

Outdoor
temperature

(%)

Beginning
and ending

dates

170a Classroom 108 1,171 (51.9%) NA NA NA 100 7/19/2018–10/20/2018
172 Classroom 105 2061 (97.6%) NA (NA) NA (NA) NA (NA) 7/19/2018–10/15/2018
232 Office 69 6,064 (71.8%) NA (NA) NA (NA) NA (NA) 10/20/2018–7/10/2019
250a Office 10 5,239 (95.7%) NA (NA) NA (NA) NA (NA) 10/22/2018–6/7/2019
270 Classroom 31 246 (85.4%) 5,136 (93.9%) 810 (14.8%) 543 (9.9%) 10/20/2018–11/1/2018
272b Office 18 2,793 (94.6%) NA (NA) NA (NA) NA (NA) 2/4/2019–6/7/2019
348 Office 16 5,003 (91.4%) 2,601 (88.1%) 474 (16.1%) 2,376 (80.5%) 10/22/2018–6/7/2019
353 Office 12 4,949 (47.4%) 5,004 (91.4%) 45 (0.8%) 1,323 (24.2%) 10/22/2018–12/31/

2019
373a Office 15 5,989 (94.9%) 5,109 (48.9%) 225 (2.2%) 817 (7.8%) 10/21/2018–7/11/2019
373b Office 13 2,240 (95.2%) NA (NA) 385 (6.1%) 818 (13.0%) 3/1/2019–6/7/2019
373c Office 39 5,054 (91.6%) 2,236 (95.1%) 3 (0.1%) 2,219 (94.3%) 10/20/2018–6/7/2019
382b Office 15 2,997 (92.5%) 4,873 (88.3%) 241 (4.4%) 888 (16.1%) 1/23/2019–6/7/2019
388 Office 15 3,918 (71.6%) 3,006 (92.8%) 76 (2.3%) 2,990 (92.3%) 10/23/2018–6/8/2019
390a Office 15 3,134 (29.9%) 3,961 (72.4%) 855 (15.6%) 3,152 (57.6%) 10/20/2018–12/31/

2019
390d Meeting room 15 5,574 (53.3%) 3,135 (29.9%) 72 (0.7%) 861 (8.2%) 10/21/2018–12/31/

2019

aThe first number refers to the floor. For example, room 170 and room 270 are on the first floor and the second floor, respectively.
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15 min intervals for Clarity nodes and 1 min intervals for
Senseware nodes. Clarity and Senseware PM2.5 nodes are
factory-calibrated with Arizona Test Dust (ATD). To
accurately measure PM2.5 concentrations, the Clarity nodes
apply colocation of nodes and post-processing correction
factors based on referencing government air quality stations.
We colocated all sensors and adjusted readings. Indoor CO2

levels were measured by Senseware CO2 sensors with an accuracy
of ±50 ppm from 400 ppm to 2000 ppm. The CO2 sensors were
paired with PM2.5 measurements.

Window status was monitored with Senseware contact sensors
(Model COZIR-LP) placed on the windows. The detection was
binary (i.e., open/closed) and did not provide information on the
opening area or window angle. The on/off signals from the
sensors enable us to know generally if the window was open
or closed, but not to which extent the window was open. All the
windows in the buildings were awning type, opening outward for
up to 45°. Friction hinges on the windows were able to maintain
the angle after they were open. The contact sensors sensed status
information through Senseware IoT platform every 5 min.

Weather conditions including outdoor temperature and wind
speed were collected from the Weather Underground webpage
from the Oakland-9925 International Boulevard, which is 16 km
fromWurster Hall. Outdoor PM2.5 concentrations were collected
from California Air Quality Board webpage from the Oakland-
9925 International Boulevard (station 1), Berkeley Aquatic Part
(station 2), and Oakland-Laney College stations (station 3), which
are 10, 16, and 9 km away fromWurster Hall, respectively. PM2.5

and CO2 concentrations were also measured at the edge of the
roof of Wurster Hall.

Data Analysis
Missing Data and Quality Control
All the data collected were averaged by hour, and then, the
number of hours in each room was counted. The sum of the
total hours for each room equals the length of effective time of

each room. Therefore, the interval between recording data can be
ignored (data are recorded in different intervals by two nodes of
sensors). The starting and ending dates of each room are
different, and in some rooms, data were recorded only
partially. This means that the period with valid data is often
less than the whole monitoring period. The total duration of the
data is 12,744 h. The median percentage of valid data for CO2,
PM2.5, and window closure is 31, 35, and 69%, respectively. The
amount of data recorded when the window is closed is
significantly higher than that of data recorded when the
window is open, and their medians are 55.6 and 12.9%,
respectively. Data on outdoor temperature are available
throughout the study period.

The percentage of valid data varied between rooms. For
example, the room with the largest amount of valid data of
CO2 is room 172, while the room with the smallest amount of
CO2 is room 390a. The percentage of valid data of PM2.5 in each
room is similar to that of valid data of CO2. For room 170, room
172, room 232, and room 373a, the PM2.5 and window closure
data were not recorded. With these data, we developed and
evaluated tools to quantify and assess the building’s NV
potential throughout the year.

Evaluation Method
Indoor PM2.5 concentration threshold. The World Health
Organization (WHO) guidelines for PM2.5 of 25 μg/m3 for
24 h mean exposure were chosen to evaluate building
operation. WHO guidelines have the strictest concentration
limit and the best health outcome for the exposed occupants.
Alternative guidelines such as those of the Environmental
Protection Agency (EPA) may be used in other local regions
of the world. When doing the comparison, the median hourly
indoor PM2.5 concentration (i.e., median value from all indoor
sensors) was compared to WHO 24 h mean exposure guideline
using the Exceedance index (E-index), as shown in Eq. 1. The
E-index is a unitless value that is informed by how much hourly

FIGURE 1 | The locations of the indoor sensors installed on the third floor. There are other indoor sensors on the first and the second floors (see Table 1 for more
information). The 9-floor case building is located in Berkeley, California, the United States.
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PM2.5 concentration exceeds the recommended level. Using this
index, percentage of hours that indoor PM2.5 concentration
exceeds specified levels during the air pollution episode can be
calculated so that it can evaluate occupant exposure to extreme air
pollution events across buildings or on a space-by-space basis
within the same building.

E � Cmeasured PM2.5

25 μg/m3
. (1)

In addition to indoor PM2.5 exposure evaluation, it is also
important to know how outdoor pollution levels would affect
indoor pollutions. The I/O ratios, shown in Eq. 2, were applied to
quantify building resilience to penetration and infiltration of
outdoor PM2.5.

I/O � Cin(t)
Cout(t). (2)

The I/O ratio was calculated for each indoor sensor location
using hourly mean indoor and outdoor PM2.5 concentration (Eq
2, where Cin(t) and Cout(t) are the hourly means). To calculate the
whole building instantaneous I/O ratio, the median hourly mean
PM2.5 from the indoor sensors was compared to the hourly mean
outdoor PM2.5 concentrations. The median values were used
instead of the mean values because they were robust to outlier
instances.

Indoor CO2 levels were compared with the 700 ppm
thresholds for sedentary activities plus the typical outdoor
value that is 400 ppm for Berkeley, CA.

When doing the analysis, working hours were from 8:00 am to
18:00 pm, while other hours were nonworking hours. Weekdays
include Monday, Tuesday, Wednesday, Thursday, and Friday,
while Saturday and Sunday were weekends. The time periods
from 2018-8-15 to 2018-8-28 and from 2018-11-08 to 2018-11-25
were marked as “wildfire,” and other periods were noted as “non-
wildfire.”

NV Potential Index
The NV potential was defined as a measure to check if the
outdoor weather and air quality condition were favorable for
NV. It can be derived from outdoor meteorological data and air
pollution level. Detailed methodologies regarding NV availability
calculation can be seen in previous studies (Yin et al., 2010; Chen
et al., 2017).

Regarding the outdoor temperature, two common methods
were employed to determine whether it is favorable for NV. The
first approach is to set fixed upper and lower limits throughout
the year. As shown in Eq. 3, 12.8°C and 26°C were set as the lower
limit and the upper limit, respectively, which means that NV is
assumed to be available when outdoor temperature is between
12.8°C and 26°C (Herkel et al., 2008; ASHRAE Standard 55-2013
Thermal Environmental Conditions for Human Occupancy
(ANSI Approved), 2013). Another approach is to take
advantage of the adaptive comfort model proposed by de Dear
and Brager (de Dear and Brager, 2002), which allows the upper
limit (Tup) to vary by month. Eq. 4 shows the calculation of the
upper temperature limit, where Tout is the monthly average

outdoor temperature determined from weather data. ΔT80% is
the 80% acceptability comfort zone band, which is equal to 7°C,
while the 90% acceptability comfort zone band should be 5°C.
Favorable temperature thresholds are when the outdoor
temperature is below the upper limit (Tup) but greater than
lower limit (Tlow) of 12.8°C.

12.8°C≤Tout ≤ 26°C, (3)

Tup � 0.31Tout + 17.8 + 1
2
ΔT80%. (4)

The maximum outdoor wind speed (uout,max) was derived by
Eq. 5 that was developed by Phaff et al. (1980), whereas the
maximum allowable indoor air velocity uin,max is 0.8 m/s
(ASHRAE Standard 55-2013 Thermal Environmental
Conditions for Human Occupancy (ANSI Approved), 2013).
ΔTmax is the hourly maximum temperature difference between
the outdoor temperature and indoor temperature during NV
hours. Here, ΔTmax was approximated as the difference between
the upper temperature limit (Tup) and the lower temperature
limit (Tlow). C1 is the wind speed coefficient, C2 is the buoyancy
coefficient, and C3 is the turbulence coefficient. Their values are
C1 � 0.001, C2 � 0.0035 (ms−2 K−1), and C3 � 0.01 (m2·s−2) (Phaff
et al., 1980).

uin,max �
����������������������
C1u2out,max + C2hΔTmax + C3

√
. (5)

As for the outdoor particle pollution level, PM2.5

concentration was selected to reflect the outdoor air quality. It
is assumed that when the outdoor PM2.5 is below or equal to
25 μg/m3, that is, the limit set by both the WHO and EPA, the
outdoor air quality is favorable for NV.

Statistical Tools Used
The IoT sensing and occupant survey data were analyzed using R
version 3.6.1 software (The R Foundation, 2021). Statistical
analysis was performed on the measured sensor data to
compare between sensor locations (i.e., among different rooms
and different regional weather stations) and to compare survey
responses between typical pollutant conditions (i.e., wildfire and
non-wildfire periods). The data under consideration were not
normally distributed, so the nonparametric tests were adopted.
To assess statistical significance between the measured PM2.5

concentrations or outdoor temperatures at different locations, a
two-sided Wilcoxon rank-sum test, also known as the
Mann–Whitney test, was used.

RESULTS

Indoor/Outdoor PM2.5, CO2, and
Temperature
Figure 2 shows the overall distribution of hourly average
indoor and outdoor PM2.5, indoor CO2, and outdoor
temperature during the period from July 19, 2018 to the
end of 2019. During this period, the median outdoor PM2.5

concentration was 3.5°μg/m³, slightly higher than the 1.4 μg/m3 of
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indoor PM2.5. A majority of the PM2.5 concentration values,
97.3% for outdoor and 95.5% for indoor, were lower than the
recommended value of 25 μg/m3. With a median value of
437.2°ppm, the measured indoor CO2 concentration was low,
94.0% of the time was lower than 500°ppm and 72.3% of the time
was lower than 450°ppm. The outdoor temperature ranged from
11.5°C (lower quartile) to 17.4°C (upper quartile), with a median
value of 14.0°C. But there were also few extreme weather
conditions with outdoor temperatures lower than 10°C or
higher than 30°C.

To see how these parameters varied with time, Figure 3
presents them in the time series view. Most of the time, both
indoor and outdoor PM2.5maintained at a level lower than 25 μg/m3.
But there were some short periods, for example, August 15 to
August 28 and November 8 to November 25 in 2018, and the
PM2.5 concentrations climbed up to as high as over 200 μg/m3.
This sudden change in the pollutant level was caused by wildfire,
which will be discussed in the later analysis. Different from the
PM2.5, the CO2 concentration fluctuated over the study period,
while the temperature was mainly affected by the season.

FIGURE 2 | Hourly averaged indoor and outdoor PM2.5, CO2, and temperature.

FIGURE 3 | Time variance of indoor and outdoor PM2.5, CO2, and temperature.
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Figure 4 shows the E index and I/O ratio of the PM2.5 and CO2

concentrations, respectively, for each room. When there was no
wildfire, the indoor PM2.5 concentrations were usually lower than
25 μg/m3 so that the E indexes were smaller than 1, and only 1.9%
of E indexes were larger than 1. When there was a wildfire, the
indoor PM2.5 increased significantly, resulting in higher E
indexes, and 93% of those are larger than 1. The observation

can be validated by the I/O ratio which compares the indoor and
outdoor PM2.5 concentrations. For non-wildfire periods, the
room level I/O ratios were usually below 0.5, with only 0.6%
of spikes higher than 0.5. During the wildfire period, the I/O
ratios climbed to 0.5–1 range. Different from PM2.5, the indoor
CO2 concentration in different rooms was not significantly
affected by extreme events like the wildfire.

FIGURE 4 | Evaluation of indoor PM2.5 and CO2 concentration in different rooms.

FIGURE 5 | Window usage at different levels.
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Use of Windows
To investigate how the building occupants interacted with the
windows, Figure 5 shows the use of windows at three levels.
First, the building-level chart compares the night-time and
working-time window usage during the wildfire period and
that in the non-fire period. 21% of windows were open
during the non-fire period, while all of the windows were
closed if there was a wildfire. The window usage were similar
in nighttime and working time. 24.3% windows were open
during working hours, close to the 21.5% of night hours.
Second, different room functions may have different window
usage rates. The classroom with 63.1% of window open time
used the windows more frequently than the meeting room and
office room. Third, the window usages for each room varied
significantly during the non-wildfire period. Some rooms
opened the windows for over 50% of the time, while some
others kept the window closed all the time. This observation
suggests that usage pattern of the windows depends on the
occupants’ behavior and also on the number of occupants in

the room. Some occupants opened and closed the window
actively, some did not.

Figure 6 shows window usage during different outdoor
conditions. The visible outdoor pollutants like the PM2.5

significantly affect the window usage. Occupants tended to
close windows when the outdoor pollutant level was “heavy”
(PM2.5 > 100 μg/m3) and open windows more when the outdoor
pollutant level was “low” (PM2.5 < 25 μg/m3). At the same time,
the outdoor temperature can also affect the window usage. As
the outdoor temperature increased from “cold” (<10°C) to “hot”
(>26°C), there was an increasing percentage of opening
windows.

The survey depicted in Figure 7, asked occupants about their
motivations and reasons for opening windows and shows that
the primary reason was to improve their thermal comfort and
indoor air quality. A significant body of knowledge already
exists on the use of NV for thermal comfort and indoor air
quality. These reasons are intuitive, and often adopt the
perspective of occupants. People open windows if they want

FIGURE 6 | Window usage at different a) outdoor PM levels and b) outdoor air temperatures. The “low,” “medium,” and “heavy” PM2.5 levels are <25 μg/m3,
25–100 μg/m3, and >100 μg/m3, respectively. The “cold,” “neutral,” and “hot” outdoor air temperatures are <10°C, 10–26°C, and >26°C.

FIGURE 7 | Analysis of the reasons why occupants open windows.
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to feel cooler or they feel that air is stuffy and needs to be
refreshed. Psychological reasons like feeling connected to the
outdoors ranked third in this survey. This is a very important
finding that points out the third most important group of drivers
that cause people to use windows. These groups of reasons are
responsible for the significant amount of time windows are
actually used when compared to the total amount of hours
windows are open.

The results depicted in Figure 7 also show that energy
conservation or energy savings ranked as fourth in this survey
with 5% responses. This suggests that energy saving does not play
a very important role in the occupant’s decision-making process
when it comes to keeping windows open or closed. Details of the
survey can be found in the Appendix.

Effects of Window Status on Indoor Air
Quality
Figure 8 shows the effects of window status on indoor PM2.5 and
CO2 concentrations. When outdoor air was polluted, the median
of I/O and E-index were much higher. Although the I/O ratio is
higher due to equilibrium between indoor and outdoor
conditions, E-index is important to show if those levels have
impact on occupant’s health. Desired building operation would
be to have the I/O ratio ∼1, indicating that windows are open and
outdoor air is entering indoor environment but keeping E-index
< 1 suggesting that air is clean. During the wildfire period,
although the windows were kept closed, the median I/O
(about 0.48) and median E-index (about 1.1) were much
higher than those of non-wildfire periods with open and
closed windows. The median I/O ratio and E-index were both

close to 0.1 during the non-wildfire period. CO2 concentration
varied with the occupancy of the rooms but did not change
significantly with the window status. During the non-wildfire
period, CO2 was 424 and 428°ppm when windows were closed
and open, while it grew slightly to 453°ppm when there were
wildfires outside the building. During the wildfires, although the
windows were closed, only partial occupancy was in the building.
To this end, the CO2 concentrations were similar to those during
the open-window periods.

Figure 9 shows the hourly deviation between the room-level
PM2.5 and CO2 and the building-level median values. Both
during the wildfire period and the non-fire period, the PM2.5

and CO2 deviations were around 0, and they all have very small
quartile numbers, indicating that the difference between the
median of each room and the median of the whole building was
very small. Given this, every room can be used as a partial study
of the whole.

Comparison Between Building-Scale and
Urban-Scale Environmental Measurements
Over a Year
Figure 10 shows the comparison of outdoor temperature, wind
speed, and PM2.5 concentration at different weather stations from
January 2019 to January 2020. For outdoor temperature, the
variation and the distribution are similar from three weather
stations. For wind speed, the violin plot shows that the three
weather stations had approximately the same temperature
distribution with similar medians. The p values from
Wilcoxon tests show no significant difference among weather
stations. For outdoor PM2.5 concentration, data from three

FIGURE 8 | Window status and indoor PM2.5 and CO2 concentrations.
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weather stations are close to each other, and the outdoor PM2.5

concentration measured at the top of Wurster Hall (the case
building) was almost the same as those from the three weather

stations, all in a very low level. Overall, it can be seen that outdoor
temperature, wind speed, and PM2.5 concentration from different
weather stations show little difference.

FIGURE 9 | Hourly room PM2.5 and CO2 deviation from the building-level median.

FIGURE 10 | Comparison of outdoor temperature and PM2.5 concentration at different weather stations. p values were calculated using the two-sided Wilcoxon
rank-sum test. Wurster Hall is the case building.
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FIGURE 11 | NV availability according to Eq. 3 (upper row) and Eq. 4 (bottom row). Red color represents that PM2.5 concentration is higher than 25 μg/m3.
Brown color represents that outdoor temperature is higher than the upper limit. Blue color represents that outdoor temperature is lower than the lower limit. Gray color
represents that outdoor wind speed is too strong for NV. Green color represents that the outdoor climate condition and pollution level are favorable for the use on NV.

FIGURE 12 | NV example: room 272.

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 63457011

Luo et al. Natural Ventilation and IoT

33

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


DISCUSSION

NV Evaluation
Figure 11 shows the NV potential index throughout the study
period. The red color represents periods when outdoor PM2.5

pollution was above 25 μg/m3, periods caused by episodic events
like the wildfire. The blue and brown colors represent cold and
hot outdoor conditions, respectively. The gray color marks
periods when mean outdoor wind speed is higher than the
upper limit calculated using Eq. 5. The green color depicts
periods when outdoor conditions are favorable and NV
potential is available. Results show that the high outdoor
PM2.5 concentrations mostly occurred during the hot and dry
seasons, usually from August to November. The hot outdoor
temperatures mainly occurred from August to October, while the
cold outdoor conditions mostly happened from November to
March of the next calendar year. Throughout the year of 2019,
5,075 h out of 8,287 h (with valid data), resulting in 61.2% of time,
were favorable for the use on NV.

Table 2 compares the potential NV availability and the actual
window opening hours in typical rooms. There is a huge gap
between the actual NV usage and the potential availability. Even
using the more conservative method (Eq. 3), the actual usage
rate was less than 34.5%. This significant gap can be attributed to
the occupant’s behavior. In an earlier study, Gao et al. (2014)
showed that indoor conditions are better when manually
opening windows is replaced with automatic window
opening. A breakdown of the multiple motives for opening
the windows is shown in Figure 7. Opening the windows or
keeping them closed was always based on the occupant’s
perception of conditions and without knowing if conditions
outside are suitable for utilization of NV or if indoor conditions
can be improved with the use of NV. Informing occupants
that NV is available and should be used can potentially reduce
the gap between actual NV use and available potential. A
previous work that focused on CO2 and classroom pointed
out that visual signals were effective means of increasing NV
use (Wargocki, 2015).

Figure 12 takes room 272 (a classroom) as an example to
show the actual NV usage. It can be seen that occupants in that
room frequently interacted (open/close) with the windows.
From February to May, the windows were frequently opened
to take advantage of the NV when the room was occupied. The
indoor CO2 and PM2.5 were very low during the measured

period. CO2 was typically below 600 ppm, while the PM2.5 was
below 25 μg/m3.

Limitations of This Study
This study shows how to integrate indoor and outdoor
information to better describe building operation. Previously,
the study by Pantelic et al. (2019) demonstrated how IoT
sensing can be used to describe building resilience to
episodical pollution events. The current study builds on that
knowledge and extends it to demonstrate how environmental
and occupant behavioral data can be combined and quantify
available natural potential and level of utilization of the
potential. Results in this study indicate that IoT sensing
information needs to be communicated with the building
occupants to improve their use of NV. This is a new and
largely unexplored field. When doing this, there are some
limitations that could be noteworthy for future studies. First,
the percentage of missing data in this study (Table 1) is
relatively high for quantifying the window usage and indoor
air quality throughout the year. Second, if the outdoor weather
conditions, including outdoor temperature, relative humidity,
wind speed, and direction can be monitored, they could provide
useful information when comparing with nearby weather
stations. The current study used information from the
weather station 5 km away from the buildings and omitted
the microclimate effects which may induce errors. Third, there
are other important factors that can influence the NV
availability. For example, humidity can affect the building
occupant’s perception, changing their sense of a comfortable
temperature range (Zhang et al., 2014). In addition to PM2.5,
nitrogen dioxide (NO2) can be a major air pollution source that
affects the NV usage, particularly in areas that are close to major
roads (Zhang and Batterman, 2013).

CONCLUSION

Previous studies have shown that air temperature or air
pollution level are limiting factors, reducing available NV
potential compared to the theoretical level. This study
employed a combination of an IoT environmental sensing
network monitoring indoor and outdoor climate (temperature
and wind speed), air pollution level (PM2.5 and CO2

concentrations), and window use behaviors (open and

TABLE 2 | Potential NV availability and actual window opening hours in typical roomsa.

Rooms Data available period Actual window opening
hours (h)

Potential NV available hours (h)

Fixed temperature limit
(Eq. 3)

Adaptive temperature limit
(Eq. 4)

272b 2/4/2019–6/7/2019 474 1,372 1,434
373b 3/1/2019–6/7/2019 3 1,349 1,461
382b 1/23/2019–6/7/2019 76 1,464 1,489
388 10/23/2018–6/8/2019 85 2,251 2,343

aThe rooms in this table were selected because their window usage data availability was higher than 80% during the monitored period.
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closed status) throughout the year. Indexes have been applied
to evaluate the indoor air quality and NV usage potential of the
buildings on different temporal and spatial scales and during
episodic pollution events. The following findings are
noteworthy:

1) With the help of an IoT sensor network, an NV availability
tool with consideration of outdoor temperature, wind
speed, and outdoor PM2.5 concentrations was applied
in the case building located in Berkeley, California. The
tool can identify when the conditions are favorable for NV
use and visualize the unfavorable factors via color
variance.

2) By applying the NV potential index to the case building,
61.2% of time throughout the year of 2019 was
determined to be favorable for NV usage. However,
its actual NV usage was much less (<35%) than the
potential availability. This suggests that human
behavior is responsible for the gap and represents
additional factors that should be considered when the
NV strategy is planned and designed.

3) The actual window usage behavior (open/closed status)
was significantly affected by outdoor climate condition
and air pollution levels. Occupants tend to open windows
when outdoor temperature is comfortable (neutral to
warm) and air pollution is low.
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GLOSSARY

ATD Arizona Test Dust

CO2 Carbon dioxide

IAQ Indoor air quality

IoT Internet of Thing

HVAC Heating, ventilation, and air-conditioning

NO2 Nitrogen dioxide

NV Naturally ventilated buildings

WHO the World Health Organization

EPA Environmental Protection Agency

I/O Indoor/outdoor ratio

E index Exceedance index

PM2.5 Particulate matter that have a diameter <2.5 μm

Cmeasured PM2.5 Measured PM2.5 concentration (μg/m3)

Cin(t) Hourly mean indoor PM2.5 concentration (μg/m3)

Cout(t) Hourly mean outdoor PM2.5 concentration (μg/m3)

uin,max The maximum allowable indoor air speed (m/s)

uout,max The maximum allowable outdoor air speed (m/s)

C1 Wind speed coefficient

C2 Buoyancy coefficient (m·s−2·K−1)
C3 Turbulence coefficient (m2·s−2)
Tup Upper temperature limit (oC)

Tlow Lower temperature limit (oC)

ΔTmax Maximum difference between indoor and outdoor temperatures (oC)
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The Potential of a Smartphone as an
Urban Weather Station—An
Exploratory Analysis
Aly Noyola Cabrera1, Arjan Droste1,2*, Bert G. Heusinkveld1 and Gert-Jan Steeneveld1

1Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands, 2Hydrology and Quantitative Water
Management Group, Wageningen University, Wageningen, Netherlands

The ongoing urbanization requires enhanced understanding of the local meteorological
and climatological conditions within the urban environment for multiple applications,
concerning energy demand, human health, and spatial planning. Identifying areas with
harmful meteorological conditions enables citizens and local authorities to take actions to
optimize quality of life for urban dwellers. At the moment cities have (in general) limited
networks of meteorological monitoring stations. To overcome this lack of observations, the
use of non-traditional data sources is rapidly increasing. However, the use of such data
sources without enough prior verification has become a controversial topic in the scientific
community. This study aims to verify and assess one of the main non-traditional data
sources, i.e. smartphones. The goal is to research the potential of smartphones (using the
Samsung Galaxy S4 as an example phone model) to correctly sense air temperature,
relative humidity, and solar radiation, and to determine to what extent environmental
conditions negatively affect their performance. The smartphone readings were evaluated
against observations from reference instrumentation at a weather station and a mobile
measurement platform. We test the response time of the smartphone thermometer and
hygrometer, and the light sensor’s cosine response. In a lab setting, we find that a
smartphone can provide reliable temperature information when it is not exposed to direct
solar radiation. The smartphone’s hygrometer performs better at low relative humidity
levels while it can over-saturate at higher levels. The light sensor records show substantial
correlation with global radiation observations, and short response times. Measurements
along an urban transect of 10 km show the smartphone’s ability to react to fast changes of
temperature in the field, both in time and space. However, a bias correction (dependent on
wind speed and radiation) is required to represent the reference temperature. Finally we
show that after such a bias correction, a smartphone record can successfully capture
spatial variability over a transect as well.

Keywords: smartphone, urban heat island, urban meteorology, crowdsourcing, citizen science, opportunistic
sensing, weather station, urban climate
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1 INTRODUCTION

Urban meteorology has been studied for nearly 200 years,
including the “Urban Effects’” on temperature (Oke, 1982;
Arnfield, 2003) and humidity (Hage, 1975). Howard (1833)
was the first to show that air temperature is generally higher
within a city (∼ 2°C higher) compared to its surroundings, known
as the urban heat island (UHI). The intensity of the UHI and
other “Urban Effects” depend largely on local climate,
surrounding geography, extent of urban environment, urban
geometry, type and quantity of anthropogenic emissions
(Rydin et al., 2012; Oke et al., 2017) and population density
(e.g., Steeneveld et al. (2011); Shi et al. (2019); Li et al. (2020)).
Anthropogenic heat production is another key concept in urban
meteorology, defined as the heat flux generated by vehicular
emissions, heating and cooling of buildings, industrial
processing Sailor (2011) and metabolic heat release by people
(Santamouris and Kolokotsa, 2016).

The impacts of the UHI on society are diverse and
interdependent, ranging from negative effects on human
health to increased energy consumption. During warm spells
the UHI can intensify health problems like heat strokes, and
dehydration: especially to those with diabetes (Kovats and
Bickler, 2012). Increased exposure to high temperatures shows
an increment in morbidity and mortality rates (Höppe, 2002;
Laaidi et al., 2006; Tertre et al., 2006; Baccini et al., 2008;
Gasparrini et al., 2015). The IPCC (2014) states that by the
end of the 21st century, heat-waves might double their
frequency (in the worst case scenario RCP8.5), which will
strongly impact the urban environment.

The urban microclimate also influences energy demand
related to heating and cooling of buildings (Allegrini et al.,
2012). This rising energy demand potentially increases both
anthropogenic heat production and greenhouse gas emissions,
creating a positive feedback loop. Several studies have found high
correlations between temperature and energy demand (Keirstead
and Sivakumar, 2012; Fazeli et al., 2016). These findings are
already being considered by the urban design community
(Svensson and Eliasson, 2002; Pijpers-van Esch, 2015; Klemm
et al., 2017) whilst some governmental agencies are working on
ways to minimize the negative effects of the UHI. All the
mentioned problems can be reduced or even mitigated by
early warning systems together with the identification of the
most susceptible areas within a city.

The understanding of urban meteorology is of paramount
importance as illustrated above. Gaining a better understanding
of urban meteorological phenomena will allow meteorological
institutes to develop better and faster weather forecasting systems,
which consequently will facilitate timely and precise warning
mechanisms to prevent adverse health problems and casualties.
Many countries already implemented Heat Health Warning
Systems, which have been promoted by the World Health
Organization and the World Meteorological Organization.
However, these warning systems are commonly based on
simplified thermal assessment procedures. More detailed
forecasting methods could offer more precise warnings in the
near future (MacLeod et al., 2016; Di Napoli et al., 2020). A higher

spatial density of these forecasting systems is necessary to
determine local effects of urban meteorology phenomena
including the UHI (Rydin et al., 2012; Ronda et al., 2017).
Even though there are some networks of professional in-situ
meteorological stations in several cities around the world, this is
still not enough to research UHI at a finer scale.

To overcome the lack of spatiotemporal availability of
meteorological observations in cities, crowdsourcing and
citizen science projects might offer an alternative data source
Meier et al. (2017); Chapman et al. (2017); Nipen et al. (2019);
Masson et al. (2020); Cheval et al. (2020); Bárdossy et al. (2020).
Muller et al. (2015) define crowdsourcing as: “obtaining data or
information by enlisting the services of a potentially large number
of people and/or sensors, generally transmitted via Internet”.
Chapman et al. (2017) discuss whether using crowdsourcing
weather observations is part of a paradigm shift in
observational techniques in the atmospheric sciences. They
conclude crowdsourcing has potentially far-reaching
consequences for the way in which measurements are
collected and used in the field. A large amount of data is now
being obtained from such sources, and the quantity is
substantially increasing Krennert et al. (2018); Uteuov et al.
(2019). Zhu et al. (2020) summarized the crowdsourcing
efforts at meteorological and hydrological services and
categorized the use of crowdsourced data in relationship
discovery, knowledge generalization and systemized service.
Nazarian et al. (2021) provide a thorough showcase of the use
of wearable devices (smartphones, smartwatches etc.,) to study
biometeorology and (urban) heat exposure. Such devices are
typically worn close to the skin, making them excellent choices
for heat stress studies. The potential of using cars and other
vehicles as sensor platforms has been acknowledged for a time
now (Mahoney and O’Sullivan, 2013; Abdelhamid et al., 2014),
and though the techniques are still being developed, recent results
seem promising for e.g., improving precipitation forecasts based
on windshield wiper data from cars (Siems-Anderson et al.,
2020).

Nowadays, many people around the world carry smartphones,
which are potential data acquisition devices. Several projects have
been developed to take advantage of many smartphone features
and sensors: among others, Madaus and Mass (2017) used
smartphone pressure records harvested via crowdsourcing to
assimilate in numerical weather prediction models to enhance
the forecast of severe weather events. Overeem et al. (2013) used
smartphone battery temperature records taken in eight different
metropoles across the globe to estimate the air temperatures on a
daily-mean and city-wide scale. Thereto they developed a linear
heat-transfer model that accounts for heat conduction between
the smartphone to the human body on one hand and to the
atmosphere on the other hand. With about 800 smartphones
records per day, they were able to successfully estimate air
temperatures. Using São Paulo as testbed, Droste et al. (2017)
refined this method towards smaller (hourly) scales and showed
that this method also allows for estimating differences in the UHI
effect between neighborhoods. A lab-test to refine this technique
was performed by He et al. (2020), which reduced the
temperature bias to around 1°C. In addition, de Vos et al.
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(2020) show the potential of the combined crowdsourcing of
temperature, humidity, rainfall and radiation illustrated for
Amsterdam (the Netherlands), using among others 3.14
million smartphone records collected over just 1 month. Also,
Mandement and Caumont (2020) successfully applied low cost
personal weather stations to monitor the evolution of deep
convection.

Data from such unorthodox sources require a stringent quality-
control to ensure its usefulness, since the devices are typically not
built to measure the environment at high accuracy. Hamdi et al.
(2020) mention the need to identify the signal-to-noise ratio in
crowdsourced observations. Machine learning is often applied as a
way to reduce this noise; e.g., Trivedi et al. (2021) successfully use
machine learning to use smartphone records for estimating indoor
temperatures, and Li et al. (2021) devised a bias-correction method
for smartphone pressure data based on a machine learning
approach. Napoly et al. (2018) and Meier et al. (2017) have
developed a quality-control procedure for personal weather
stations measuring temperature, and similar procedures have
been developed for rainfall (de Vos et al., 2019) and wind
observations (Droste et al., 2020).

Despite these research efforts, the accuracy and response times of
smartphone sensors are poorly known. Some disadvantages of using
smartphones asmeasurement equipment have been brought to light,
but those mostly relate to the phone and its usage as a whole, not the
sensors themselves. Examples are uncertainGPS location (indoors vs
outdoors); unknown elevation; or the influence of human behavior
on the readings. Knowledge about the performance of the most
useful sensors for urban meteorology inside smartphones and
identifying the variables that affect accuracy and reliability will
enhance the potential of this crowdsourcing data. This study
aims to investigate the accuracy and response times of
smartphone temperature, humidity and light sensors, during
different usage conditions. The goal of this work is to establish
what the potential of the smartphone as a measurement platform is,
in terms of response times and accuracy. To that end, we specifically
focus on direct smartphone sensor measurements, and not of
derived quantities using the battery temperature, for instance. We
also aim to identify potential error sources that influence
smartphone sensor readings. We make use of a specific type of
smartphone: the Samsung Galaxy S4, a relatively older model which
contains several environmental sensors, to answer the following
research questions:

1. How do smartphone readings of air temperature, relative
humidity and solar radiation compare (in accuracy and
response time) to reference sensors specifically designed for
meteorological observation? In particular, under weather
conditions that are favorable for high UHI, as well as for
different usage conditions (battery charging, intensive CPU
usage etc.,)

2. Which variables and environmental conditions affect
smartphone readings of ambient temperature and relative
humidity, and to what effect?

While we do use a specific type of smartphone, we expect the
type of error sources and typical response times to be illustrative

for not just the specific sensor types in the S4, but rather for any
smartphone used as a measurement platform. While values of
response times might change between sensor brands, the errors
and typical responses are expected to be more universal, related to
how a smartphone is built and used. This paper is organized as
follows: Section 2 presents our methodology and utilized
observations, and section 3 presents the results for the
temperature, humidity and light sensor. Section 4 discusses
our findings and conclusions are drawn in section 5.

2 METHODOLOGY AND DATA

2.1 Smartphone Records
Air temperature, relative humidity and light intensity readings
are obtained with a Samsung Galaxy S4 GT-I9515 smartphone
(running Android 5.0.1). This smartphone has been selected for
its wide global distribution, since more than 40 million devices
were sold. This device incorporates the SHTC11 digital humidity
and temperature sensor developed and manufactured by
Sensirion. Furthermore, the smartphone contains a CM3323E
light sensor, which is primarily used to sense RGB and white light
to automatically adjust brightness and color temperature of the
device screen. All sensor data is retrieved from the phone using
the Android application “AndroSensor v1.9.6.3”. The main set of
experiments was performed during September 2017 through to
March 2018. A second field experiment under summer
conditions was executed during a hot spell in June 2021.

2.2 Mobile Reference Observations
Smartphone temperature (Ts), relative humidity (RHs), and light
(Ls) are compared against in-situ measurements and (over a
trajectory) against instrumentation mounted on a custom
measurement-tricycle developed by Heusinkveld et al. (2010).
The micrometeorological observations on the tricycle consist of a
shielded thermometer-hygrometer (model CS215L, Campbell
Scientific, United States), an ultrasonic 2-D anemometer (Gill
WindSonic, Gill Instruments, United Kingdom) six
pyranometers (Hukseflux) and six pyrheliometers, and a GPS
system (Figure 1). In addition the wheel speed is recorded to
estimate the true wind speed by correcting the sonic anemometer
record with the wheel speed. Further details about the tricycle and
its use in urban climate research are available in Heusinkveld et al.
(2014) and Koopmans et al. (2020).

2.3 Reference Weather Station
The experiments took place in and around Wageningen (the
Netherlands) which is a mid-size town of about 3 × 3 km, and
with ∼ 39,000 inhabitants. The site is located in a temperate
climate [Cfb in the Köppen climate classification, Kottek et al.
(2006)]. The urban morphology of Wageningen consists of
typically two to three stories tall residential buildings.
Observations from the Veenkampen weather station2, run

1https://wikidevi.wi-cat.ru/Samsung_Galaxy_S4_(SHV-E300S)
2https://ruisdael-observatory.nl/veenkampen/
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by the Meteorology and Air Quality section of Wageningen
University, are used to evaluate the accuracy of Ts, RH and Ls
readings under diverse meteorological conditions. The
weather station is located to the west of Wageningen
(51.981°N, 5.622°E), and consists of a flat well-watered and
regularly mowed grass field over a 0.5 m clay soil on top of a
1.5 m peat soil layer. The site has a Stevenson screen to
measure temperature and humidity at 1.5 m level by a
Väisälä-HMP155 sensor, containing a heated humidity
sensor, and a PT100 temperature sensor. The measurement
accuracy amounts to 0.2 K for temperature and 2% for RH (for
10 < RH <100%).

2.4 Time Response Analysis
The first step in the research quantifies the response time of Ts,
RHs and Ls. Time response is defined as the amount of time it
takes to a sensor to respond to a rapid change of a variable, and
reach the new value. To quantify this response the calculation of a
time constant (τ) is needed. τ is the time for the system (sensor)
needed to reach 63.2% or 1—(1/e) of its final asymptotic value
(the expected value). To determine τ of the sensors, they have to
reach an equilibrium state and then get exposed to a step change.
The following series of experiments are designed to obtain (τ) for

Ts and RHs (Table 1 contains the overview of the different
experimental setups of this study):

1. To quantify the response time of Ts and RHs, the smartphone
records data in a room at a constant temperature and constant
relative humidity.

2. After reaching equilibrium the device is situated in a new place
with different but also stable levels.

3. The experiments to calculate the response time have been
designed in both directions (from warm to cold, from dry to
humid, and vice versa) and starting from different steady
states. The experiment has been repeated 12 times in each
direction.

For instance, the device is placed at room temperature/
humidity (∼18°C and 60% RH), and then the smartphone is
quickly placed into a freezer, which has a lower temperature and
higher RH (∼ −8°C and 75% respectively) until equilibrium is
reached. Precise details of starting and environmental
temperature and RH are provided in the Supplementary
Material. At all times the device is positioned on top of a
platform which only has 3 contact points to minimize heat
transfer. After some time, the equilibrium is reached, and the

FIGURE 1 | The measurement cargo tricycle (A) and the smartphone setup in the Stevenson screen at the Veenkampen weather field (B). The smartphone is
positioned horizontally with minimum contact points to prevent conduction.

TABLE 1 | Overview of the different experiments performed for this study.

Measuring variable Type of experiment Number of repetitions

1) Temperature response time from cold to warm Lab experiment 12
2) Temperature response time from warm to cold Lab experiment 12
3) Temperature response time from cold to warm with wind influence Lab experiment 6
4) Temperature response time from warm to cold with wind influence Lab experiment 4
5) Relative humidity response time from humid to dry Lab experiment 12
6) Relative humidity response time from dry to humid Lab experiment 12
7) Light response time from light to dark Lab experiment 2
8) Light response time from dark to light Lab experiment 2
9) Cosine response analysis of smartphone light sensor Lab experiment 12
10) Temperature comparison against reference instrumentation at meteorological station Field experiment . 5 sets during winter 2017–2018

. 2 sets during summer 2021
11) Relativehumidity comparisonagainst reference instrumentationatmeteorological station Field experiment . 5 sets during winter 2017–2018

. 2 sets during summer 2021
12) Temperature, relative humidity, and light Urban transect experiment 12 routes at different times of the day during autumn 2017
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device is put outside the freezer until a new steady state is
attained. In order to include more step-changes from different
temperature levels, the device in some cases is also positioned
below an incandescent light, which generates stable high
temperatures (around 40°C). The selected sampling rate for
these tests is 1 s with a resolution of 0.01°C and 0.01% RH.
Furthermore, it is also important to understand the effect of wind
on Ts and RHs response times. Hence, the previously explained
experiment has been repeated while varying the wind speed. For
these cases, a fan is used to generate wind, measured by a cup
anemometer. This experiment variation has been repeated
10 times.

The response time of the light sensor is not specified by the
manufacturer, but usually this type of sensor responds fast to a
step change. To quantify τ of Ls:

1. The device is located in a dark room.
2. The light sensor is suddenly exposed to an intense

concentrated light source, using a lamp.
3. The procedure is performed in the opposite way (from light to

darkness).

Considering that a light sensor tends to have a relatively small
τ, 10 milliseconds is the selected sample rate, which is the fastest
rate available by the AndroSensor application.

2.5 Measurement Accuracy
Measurement accuracy of the smartphone is tested using the
Veenkampen weather field reference instruments. Four different
experiments are designed and executed to test the sensor accuracy
under various conditions:

1. The smartphone is placed at the weather field, inside a
Stevenson screen (Figure 1) next to the reference
hygrometer and thermometer, at 1.5 m height. Data is
recorded for 5 blocks of 12 daytime hours.

2. The smartphone is placed outside the Stevenson screen,
around 0.5 m away at 1.3 m height.

3. The smartphone battery is being charged and smartphone’s
CPU is under heavy workload. The experiment runs for
60 min and is executed under stable and constant room
temperature.

4. Ts and RHs are compared against instrumentation installed in
the tricycle (described in section 2 and Figure 1). The
objective of this comparison is to analyze the accuracy of
the smartphone readings across an urban transect, and to
evaluate the characteristics and understand the general
features of the data.

Data from the experiment outside the Stevenson screen, and
the experiments mounting the smartphone on the tricycle are
used to assess the accuracy of Ls. In addition, we test the response
of the light sensor to radiation incident at an angle with respect to
the surface. The sensor’s response to radiation incident at
different angles is a parameter widely used to understand its
capacity and overall quality. The response of such sensors to
radiation incident at an angle θ, with respect to the horizontal

plane is called cosine response. We calculate the cosine response
by directing a light beam towards the sensor from different
angles, always maintaining the same distance and light
intensity. The ideal cosine response is proportional to θ, and
any deviation from this ideal value causes underestimations
(Martínez et al., 2009).

3 RESULTS

This section presents the results of the analyses for the sensor
response time, accuracy and bias identification of the
temperature, relative humidity and light sensors in a lab
environment (in sections 3.1–3.3, respectively). Subsequently,
the spatial/temporal performance of the smartphone sensors will
be compared against reference instruments, as well as a bias-
correction procedure following this verification (section 3.4).

3.1 Temperature Sensor
3.1.1 Response Time Analysis
As previously described, τ equals the time required by the
thermometer to register 63.2% of a step change in air
temperature (WMO, 2014). According to the manufacturer3,
the SHTC1 sensor installed in the Samsung S4 has a τ
between 5 and 30 s. However, as shown in Supplementary
Table S1 and Supplementary Table S2, such values are
difficult to achieve because the sensor is enclosed inside the
device, and the ventilation is poor. The average τ estimated
for the negative step-change in temperature amounts to 188.25
and 161.76 s for a positive step-change, with a standard deviation
of 27.13 and 56.68 s, respectively (Supplementary Table S1 and
Figure 2). The WMO states that for routine meteorological
observations there is no advantage in using thermometers with
very small τ. Instead, they recommend the use of thermometers
with a τ of approximately 20 s (WMO, 2008; Burt and de Podesta,
2020). However, thermometers with large time constants can
introduce errors in cases where air temperature changes at a fast
rate (e.g., during urban transect measurements). Since τ is the
time required for the sensor to reach 63.2% of a step change, five
times τ is the time required to get a near full reading (99.3%).
Therefore, during an abrupt change in temperature the
smartphone might take around 15 min to get a correct reading
compared, where 1.6 min is recommended for conventional
meteorological observations with a thermometer.

The difference between the time responses can be explained
since a relatively warm smartphone in a cold environment will
induce turbulent convection which is an efficient transport
mechanism for heat. On the contrary, when a relatively small
cold smartphone is located in a warm environment, a stable layer
will form over the smartphone, and turbulent transport in stable
conditions is suppressed, which inhibits the heat exchange and as
such results in a longer response time. The temperature response
curve appears to behave like a second order system, with an

3https://www.mouser.com/datasheet/2/682/Sensirion_Humidity_Sensors_
SHTC1_Datasheet-1511754.pdf
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overshoot (peak) in the temperature measured as consequence of
the step change. However, after the overshoot, the response time
appears to return to equilibrium as a first order system instead of
having an oscillation effect.

The origin of the behavior previously described is difficult to
identify, the measurements were taken alongside a calibrated
Digital thermometer (GTH 175/Pt), and such behavior was not
present in the thermometer readings. It seems that Sensirion (the
sensor manufacturer) put in place a software algorithm which
calibrates the air temperature readings by using “information
from other areas of the device”, presumably battery temperature
readings. This is called “The Sensirion Compensation Engine”,
and according to them, the algorithm is specially calibrated for
the Samsung S4 smartphone4. The same posts suggests that the
post-processing algorithm helps to improve temperature
response time. So, perhaps this compensation algorithm
generates the measurement errors previously described. The
latter might happen since ambient air is also supplied to the
battery temperature sensor (due to wind exposure) warming it up
at a faster rate than the assumed by the compensation-algorithm,
therefore, generating the observed sudden increase in the sensed
air temperature. Without further details on the functioning of the
algorithm it is impossible to confirm this hypothesis. Such a
“black box” algorithm is likely present in most mobile devices,
where the manufacturers do not always detail how these
algorithms are set up. As such, they could be considered
inherent to such mobile devices which needs to be taken into
account when using these devices to gather environmental data.

All the lab experiments described above were executed with
airflow close to 0 ms−1. However, as stated by theWMO (2008), τ

depends on the airflow over the sensor, which required some
experiments to assess how wind affects τ. In theory, wind might
help to reduce response time, since it helps to refresh the sensor
with ambient air temperature and more efficiently dissipate heat.
A separate set of experiments (not shown here) simulated the
effect of low wind speeds (between 0.5 and 4 ms−1 generated by an
electric fan) on τ. The τ for the experiments with wind was
consistently higher than a wind-less environment. This could be
caused by condensation of water vapor on the smartphone when
moving into a warmer environment: this moisture requires
energy to be evaporated again (a latent heat flux). Since this
energy needs to be provided by the smartphone, this prolongs the
time before temperature equilibrium is reached. All the ten
experiments performed under these conditions exhibit the
same behavior.

3.1.2 Sensor Accuracy
The air temperature measurements from the smartphone Ts are
compared and validated against the air temperature readings
from the Veenkampen meteorological station (Tref). One set of
experiments was performed under relatively cold autumn and
winter conditions (afternoon temperatures around 10°C;
Figure 3) and another during a warm spell in summer
(afternoon T above 25°C; Figure 4). The smartphone was
placed inside the same Stevenson screen for 5 days, at the
same height (1.5 m) as the calibrated thermometer, as
described in section 2. The results show a cold bias for the
smartphone both for the autumn and summer experiments
(Figures 3,4, respectively). The mean error including day and
night measurements amounts to −2.0°C. The timeseries is very
similar to the reference, with the smartphone exhibiting a cold
bias, even during much hot conditions. Part of the summer
experiment also included a duplicate measurement with

FIGURE 2 |Observed temperature response for a positive (A) and negative (B) temperature exposure for one of the 12 experiments performed (see text). The time
axis represents time since start of the measurements (s). Dashed lines indicate the estimated response time (τ).

4https://www.sensirion.com/en/markets/sensor-solutions-for-smart-home-
applications/
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another smartphone of the same model, measuring at the same
location. Differences between these duplicate measurements were
not statistically significant (MAE of 0.1°C and RMSE of 0.13°C;
results not shown), which indicates that this bias is systematic and

not due to a single faulty sensor. Additionally, since the autumn
and summer experiments were 3.5 years apart yet find a nearly
identical bias, it suggests the sensors have not been subject to
degradation due to aging. We find that the distribution of the

FIGURE 3 | Time series of observed air temperature from the smartphone and reference weather station Veenkampen. During this experiment the smartphone is
located inside the Stevenson screen. The experiment was executed from January 27th 2018 10:00 UTC till January 28th 2018 10:00 UTC.

FIGURE 4 | Time series of observed air temperature from the smartphone and reference weather station Veenkampen during a follow-up experiment in June 2021.
During this experiment the smartphone is located inside the Stevenson screen. The experiment was executed from June 3rd 2021 08:00 UTC till June 4th 2021 06:
00 UTC.
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observed temperature between the smartphone and the
temperature sensor at Veenkampen meteorological station is
very similar (Figure 5). Ts and Tref correlate very well: results
show a strong positive linear relation with a Pearson correlation
coefficient of 0.99 with a p-value < 0.05. The mean error was
similar for the temperature range during the observations from
inside the Stevenson screen, pointing at a good performance for
sensitivity.

3.1.3 Temperature Readings Error Sources
Heat generated by the smartphone battery and electronics when it
is under heavy CPU/GPU workload has proven to be a major
source of error for temperature measurements, and it is a source
that is not directly related to external weather conditions. Ts can
easily give readings twice as warm as the actual air temperature:
one experiment resulted in Ts reading 35°C when the actual room
temperature was 15°C. For this particular experiment the
smartphone was placed directly over a textile padding for
60 min, it was covered by a cotton cloth (simulating being
inside a pocket), thus, hindering the heat exchange between
the smartphone and the atmosphere. Such conditions would
portray a common usage of the phone.

Even providing the best possible conditions for the
smartphone to dissipate the heat by itself (smartphone placed
over a platform with a negligible contact area), Ts was 20°C in
contrast with the 15°C room temperature, with a temperature
increase rate of 1°C per minute after the workload simulation
started (results not shown). In section 3.1.1 the mean response
time was calculated for both positive and negative step changes
(under lab conditions), but these values are not valid when Ts

increases due to internal heat generation since the temperature

changes are not fast enough to be considered step changes. For
comparison a pseudo response time is calculated. The pseudo
response time for the smartphone to cool down after heavy CPU/
GPU workload amounts to 27 min, which might be a relatively
long period for many meteorological applications, and is nearly
double the τ previously found. This experiment was performed
under conditions without wind, and thus with limited turbulent
exchange of heat between the smartphone and the air, which
explains the relatively long response time. In real-world
applications the phone might be subject to air flows, which
would make heat transfer much more efficient, as shown in
section 3.1.1.

For the case when the smartphone battery is charging, the
error proved difficult to characterize. During the charging, Ts

decreases in sudden jumps. The most viable explanation for this
behavior resides in the post-processing algorithm, which
apparently tries to compensate for the increase in temperature
caused by the battery being charged.

One of the main external sources of temperature measurement
errors (for conventional thermometers) is the incoming solar
radiation. Its effects become more prominent in cases where a
sensor is directly exposed to solar radiation without proper
ventilation. An effective ventilation system supplies a constant
flow of ambient air to the sensor, thus preventing overheating
issues. As shown in section 3.1.2, when the smartphone measures
temperature inside a properly built Stevenson screen,
measurement errors as consequence of global radiation (direct
+ diffuse solar radiation) are not relevant. However, during active
outdoor use, the smartphone will likely be exposed to direct
sunlight, hence it is necessary to quantify the relation between
solar radiation and temperature error. This research took place
mostly in winter; therefore, higher radiation values were
artificially created using a heat lamp. Figure 6 shows the
smartphone mean temperature bias as a combined function of
wind speed and global radiation. The values are obtained from
the experiments performed outside the Stevenson screen. The
higher the radiation levels are at low wind speed, the more the
device overheats, and the lack of ventilation prevents the ambient
air from outside to quickly reach the sensor, thereby,
increasing Ts.

Note that when the smartphone is exposed to more than
600 Wm−2 the wind speed appears to play a relatively larger role.
Lack of ventilation appears to worsen temperature
measurement errors at relatively high values of global
radiation, whereas at low levels of radiation it is less
dominant. During nighttime (global radiation ≤0 Wm−2) the
smartphone showed readings with an average of 4.2°C lower
than the reference value, this is a net difference of 2.1°C colder in
comparison with the smartphone inside the temperature screen.
This difference suggests that the smartphone outside the
Stevenson screen emits net more long-wave radiation which
is not corrected for. The glass of which a smartphone has been
composed of has a surface emissivity typically between 0.92 and
0.94, which is substantially smaller than the emissivity of the
atmosphere. This process of rapid cooling is similar to the
relatively rapid cooling of a car’s windshield on a clear
calm night.

FIGURE 5 | Box-plot comparing 1.5 m height air temperature
observations from the smartphone and Veenkampen meteorology station
thermometer (for the autumn and winter experiments). Smartphone is placed
in the same Stevenson screen. Each box ranges from 25th to 75th

percentile (interquartile range IQR), median is denoted as the horizontal line
inside the box, arithmetic mean is represented by the cross, whiskers have a
maximum length of 1.5 * IQR.
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3.2 Relative Humidity Sensor
3.2.1Response Time Analysis
For the capacitive relative humidity sensor found in the Samsung
S4, Sensirion specifies that τ � 8 s5, though this value corresponds
to a stand-alone sensor at 25°C and an airflow of 1 ms−1. Twelve
experiments were performed: the first ten experiments to
calculate τ for a positive step-change involved an actual
change of humidity in the air, while the last two, represent τ
where the humidity remains constant but temperature decreases.
The experiments show a much slower response time compared to
manufacturer specification. When a change in humidity occurs,

the average τ amounts to 13.4 min and when a change in relative
humidity is only driven by a temperature change, τ is faster, with
4.7 min (details in Supplementary Table S3 and Supplementary
Table S4). In the case of the negative step-change experiments
(Figure 7), the results show an interesting phenomenon. When
the smartphone is exposed from a cold and humid
environment (inside the freezer) to a warmer and drier one
(room temperature), the water vapor present in the
surrounding air condenses outside and inside the
smartphone. The condensation generates an abrupt increase
in relative humidity, producing measurement errors and
delaying the real response time of the sensor (see peak in
Figure 7). Note that the abrupt initial decrease in RHs is an
expected behavior: the hygrometer is reacting to the sudden
change in temperature. In two cases, τ of RHs surpassed

FIGURE 6 | Radiation bias of smartphone temperature readings Ts as a function of wind speed and global radiation.

FIGURE 7 |Negative step-change of relative humidity. The time axis represents time since the start of the measurements (s). The peak present around 1,300 s is a
result of a measurement error generated by the condensation of water vapor present in the air surrounding the smartphone, this effect prolongs the response time of the
sensor to a step-change in relative humidity.

5https://www.mouser.com/datasheet/2/682/Sensirion_Humidity_Sensors_
SHTC1_Datasheet-1511754.pdf
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30 min. However, without condensation occurring in the
experiment, the average response time amounts to 2.04 min
(Supplementary Table 3). WMO (2008) states that ideal τ for
relative humidity sensors is between 1 and 50 s.

3.2.2 Measurement Accuracy
Relative humidity measurements from the smartphone (RHs) are
compared against reference observations from the Veenkampen
meteorological station (RHref). The results show a mean positive
bias of 7.42% RHwhen taking all the measurements into account.
However, as shown in Figure 8, generally when RHref is greater
than 90%, RHs reaches 100% RH, suggesting an oversaturation of
the sensor. For this reason, a more accurate bias is calculated
where RHs values of 100% are excluded, resulting in a mean bias
of +8.16% RH. The Pearson correlation coefficient between RHs

and RHref is 0.69, suggesting a moderate positive linear relation
(p < 0.05). Possible causes of the errors are discussed in the
following section.

3.2.3 Relative Humidity Error Sources
To assess relative humidity measurements and quantify biases
is a challenging task for many reasons. First, the sensor in the
smartphone is a relatively inexpensive electrical capacitive
hygrometer, which is not individually calibrated (the
phones are mass-produced). Thus, the calibration process is
not perfect, and the sensor might have significant systematic
biases. For the case of the SHTC1 smartphone sensor, the
accuracy is within ±4.5% RH (where the % unit is in RH units
and not a percentage of the measurement) for RH between 20
and 80% at 25°C, and the accuracy might decrease to ±7.5%
with RH < 20% and RH > 80%. Since the accuracy of relative
humidity also depends on air temperature, typical RH

accuracy values are evaluated at different temperatures and
RH levels (note that the maximal tolerance accuracy values can
still be ±3% RH). Sensirion6 explicitly states that the long-time
exposure to conditions >80% may offset the RH signal, causing
the sensor to recalibrate itself. Given the long duration of the
experiments at fairly high humidity values, it is possible that
this happened during the oversaturation periods, which offset
the sensor. Given the errors present in the air temperature
readings (section 3.1.3), the smartphone RH readings will
have an additional level of uncertainty caused by the
smartphone temperature sensor.

3.3 Light Sensor
The light sensor in the smartphone is designed to measure light
intensity (lux), rather than radiation. Nevertheless, obtained lux
values correlate well with the pyranometer recording global
radiation at the weather field (Pearson correlation values
above 0.9 for all the field experiments).

The time response analysis gave a near-instant response to the
change in light level: as fast or faster than the measurement
frequency (10 ms). This fast response can be useful in certain
weather conditions, e.g. rapid change in cloud cover. This might
occur in the reported observations (Figure 9) just after 900 s,
though cloud-cover observations are not available at the weather
station. In addition, the fast response is also useful for traverse
observations in streets in order to accurately trace sunlit shaded
locations in street canyons.

FIGURE 8 |Observed RH by the smartphone sensor (red line) and the reference observations (blue line) for a 24 h period at the Veenkampenweather station. In this
experiment, the smartphone was located inside the Stevenson screen for January 27th 2018 10:00 UTC—January 28th 2018 10:00 UTC.

6https://www.mouser.com/datasheet/2/682/Sensirion_Humidity_Sensors_
SHTC1_Datasheet-1511754.pdf
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Figure 10 shows the sensor cosine response to the incident
light from angles −90° to 90°. The experiment to calculate the
cosine response of the light sensor was replicated more than 10
times, with similar results. For comparison, a second class
pyranometer (like the Hukseflux LP02 installed on the
tricycle) has a mean ± 2% deviation from the optimal cosine
response for all zenith angles from −90 to 90°, while the

smartphone light sensor mean deviation is −33.87%. Only
between −45 and 45° the smartphone light sensor performs
within the accepted range of ±5% deviation of the ideal cosine
response of standard pyranometers. This has consequences for
use of actual smartphone data, since those will likely not be angled
towards the Sun, which will reduce their accuracy at estimating
direct incoming radiation.

FIGURE 9 |Observed light sensor signal from Samsung S4 (red line) and observed global radiation at the surface at the Veenkampen reference station (blue line) for
a period of nearly three quarters of an hour. Measurements taken on October 19th 2017.

FIGURE 10 | Observed cosine response of the light sensor in the smartphone Samsung S4 as function of zenith angle (red line) and ideal cosine response (blue
line).
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3.4 Spatial Analysis
In this section air temperature from the smartphone is compared
against the instrumentation on the tricycle. One-hour data of
temperature, relative humidity, wind speed and global radiation
retrieved by instrumentation installed on the tricycle was
compared against the one retrieved by Veenkampen
meteorological station at the same day as the transect
measurements from Figures 11,12 (calibration results not
shown). The comparison was made to double-check the
data quality retrieved by the bicycle instrumentation and
thus, being able to further use it for assessment and
comparison against the smartphone data. Data from the

tricycle shows a mean temperature bias of 0.02°C with
respect to the Veenkampen weather station. However, for
cases when global radiation is greater than 300 Wm−2,
temperature shows a stronger positive bias of 0.43°C. All
measurements were recorded with 1.4 ms−1 average wind
speed at 2 m height. For relative humidity, the results (not
shown) display a mean error of −3.4 %RH. For wind speed, no
fully direct comparison is possible since the wind at the
Veenkampen weather station and on the tricycle are
measured at different heights, 1.5 and 2 m respectively.
Nonetheless, the observations are between the expected
values for a 0.5 m height difference between them, with the

FIGURE 11 | Smartphone measurements uncorrected for temperature bias and reference tricycle measurements. Measurements took place across a predefined
path on October 17th 2017, in the evening, to ensure low radiation bias. The time axis represents the start since the experiment: the cut-off part was setting up the
measurement devices.

FIGURE 12 | Bias corrected transect measurements of air temperature, measured from smartphone observations (A) and the measurement tricycle (B). Data was
measured on the same instance as Figure 11, and has been bias corrected before plotting.
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sonic anemometer averaging a mean error of −0.3 ms−1.
Finally, when comparing global radiation, the pyranometer
on the tricycle showed a mean error of −3.8 Wm−2, which
meets the manufacturer specifications. This confirms that the
tricycle instrumentation serves as a proper reference to
compare the smartphone data against over a transect.

For transect measurements made during the day (results not
shown), the downwelling solar radiation impacts the device
directly, causing large occasional errors when the phone is
exposed to the Sun. Spikes in Ts are preceded by higher levels
of downwelling radiation, resulting in an overall correlation
coefficient of 0.69. On the other hand, when the experiment is
executed during the evening (Figure 11, the air temperature
readings from smartphone and the ones from the tricycle
instrumentation correlate better with one another, with a total
correlation coefficient of 0.86, though the absolute difference is
substantial still (3 K).

In scenarios with low levels of solar radiation, the bias
correction to the smartphone temperature readings is a
straightforward process, using linear regression analysis.
However, the preconditions are the following:

1. Smartphone is not close to an external heat source.
2. The phone is not being charged.
3. The phone is not under heavy CPU/GPU workload (app

usage).

The time series in Figure 11 has also been detrended,
assuming an overall linear change in temperature between
start and finish, to identify solely spatial differences in air
temperature. When this data is plotted across the map
(Figure 12), it is possible to see similar temperature patterns
with both instruments (smartphone and calibrated thermometer
on tricycle). This shows that the smartphone, even with its
delayed reaction time, is capable of making meteorological
measurements that vary on the urban scale. The various open
and sunlit areas around the center of Wageningen that receive
more solar radiation are well-represented by the smartphone
data, as are some of the more shaded cooler locations. While a
detrending and correction procedure are necessary, this does
show that smartphone temperature data has the potential to
represent even small-scale variability in time and space, even
though the fairly large τ values for Ts would have initially
suggested otherwise (section 3.1.1).

4 DISCUSSION

This section addresses the significance of this research within the
context of urban meteorology, and approaches the opportunities
crowdsourcing from smartphones may offer for urban
meteorology.

The results of this exploratory research topic show the
capabilities of a smartphone (illustrated by use of a Samsung
S4) as a meteorological data acquisition device, although
smartphones have not been designed nor manufactured to be
accurate at measuring meteorological variables. Nonetheless,

many smartphone types able to sense air temperature, light
intensity and some devices even measure ambient humidity.
Even though a single smartphone cannot record accurate
measurements under all environmental conditions, the true
potential is the large amount of data already available,
together with the wide spatial and temporal distribution of the
measurements. The two keys to fully take advantage of the
amount of data already available is: firstly, to understand
under which scenarios/circumstances the measurements are
useful, and secondly, to identify, develop and test procedures
to improve the data quality as in Meier et al. (2017), and Droste
et al. (2020).

We find the outdoor smartphone temperature and relative
humidity readings relate very well during periods of relatively
small levels of downwelling solar radiation. This might be
particularly useful to detect the UHI, which normally peaks
several hours after sunset. Still, the device usage has to meet
the right conditions to be useful and reliable for meteorological
data acquisition. For instance, the device battery should not be
charging, the smartphone CPU is not heavily used, and the device
should not be influenced by the human body temperature. With
information from about the battery status, light and/or proximity
sensor, the right conditions can be selected for our analysis.
Computing power increases rapidly and it might already be
enough to evaluate big datasets and to identify reliable data in
them. Since the thermometer and hygrometer sensor are
encapsulated inside the smartphone, the response times exceed
the WMO recommendations. WMO requires 20 s while our
analysis finds a response time of around 120 s (though the RH
sensor can oversaturate and take >20 minutes to get to
equilibrium). In addition we would like to remark that we
tested only the responses of a single smartphone. Of course,
repeated experiments with multiple phones of the same brand
and type would have resulted in more robust statistics, though the
general source of errors and time responses will likely be
the same.

Moreover, it is illustrative to compare the estimated time
constants for our experiment with the earlier estimates as in
Droste et al. (2017). They estimated the cooling rate of a
smartphone with power P which is surrounded with
clothing of heat conductivity κ and heat capacity mc. In
their approach the typical time scale at which the
temperature responds to a temperature change is estimated
by κ/(mc), and amounts to 0.8 W/m/K/(0.13 kg * 600 J/kg/K) �
98 s. This value is slightly smaller, though still relatively close
to our value of 170 s as reported in Supplementary Table 1,
despite their estimate is an a priori estimate based on material
properties. For comparison we report that Cao et al. (2020)
found a time constant of 9.7 s for a basic temperature sensor
built on IoT technology. Their study calculated this time
constant during their transect measurements: we see in our
Figures 11,12 that the time constant over the urban transect
appears lower than in the lab, and more similar to Cao et al.
(2020)’s findings.

Considering that our research found a typical temperature
bias of about 2 K, Niforatos et al. (2017) studied the potential
of participatory sensing for weather estimation, by developing
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the crowdsourcing weather app Atmos that periodically
samples smartphones’ weather-related sensors. Their
approach also allows users to enter their own estimates of
both current weather conditions. Using 32 months of
observations they found a temperature bias of 2.7°C based
on the pure sensor data, which is close to our findings. Their
bias dropped to 1.9°C when manual user input was allowed as
well. Trivedi et al. (2021) show that this bias could be reduced
by using machine learning and multiple phone records (they
report 0.5°F).

Also, it is interesting to address the temperature differences in
smartphones in case different sensors are employed. Gavin and
Sidhu (2015) report on a lab study that compares two
temperature sensor types to measure ambient temperatures
with a smartphone. Both sensors were placed in a sheltered
location and were left to take a series of readings at regular
intervals. No significant difference between the readings taken
from a smartphone temperature sensor and a established sensor.
Their histogram shows that differences between the two sensors
do not exceed 0.04 K, which is accurate for our application.

We have been positively surprised about the performance of
the light sensor, which illustrates its enormous potential for
smartphones to be used as “economic pyranometers”. Initially,
more work is needed to be able to distinguish the light source
detected by the light sensor (detect if solar light or artificial light).
However, for specific, well defined experiments (during fast
changes in cloud cover, or for fog observation/detection) the
light sensor from smartphones is a good choice for research.

However, despite all the experiments performed and the data
analyzed, the results represent the behavior of a single
smartphone model. The duplicate measurement confirmed
that other devices of the same brand and model behave in
similar manner, but the use of other smartphones is
recommended to check and increase the confidence of the
findings presented in this research. The Samsung Galaxy S4 is
used in this research, since there are already available datasets
containing data from this smartphone, however it may be
necessary to also work on more updated models. An earlier
study by Breda et al. (2019) estimates indoor air temperatures
by smartphones and found an error of 1.4%. They also estimate
the time responses for the smartphone in modes of screen, CPU,
network and charging activities. Most interesting for our
application is their observed response time of about 1,000 s in
a phase when the smartphone is cooling. Although this is slightly
higher than in our case, and this may depend on the particular
phone type (Google Pixel phone in their case), the order of
magnitude is rather similar.

It is important to mention that despite this study provides a
verification of the accuracy of smartphone records for UHI
studies with respect to a professional weather station, in many of
our applications in urban meteorological research, the human
behavior remains a substantial player in the records that are
obtained. Droste et al. (2017) and Overeem et al. (2013) utilize
massive amounts of smartphone records, filter a substantial
amount based on the proximity sensor and the charging status
of the battery, though full control of the smartphone

environment (in a hand, in a pocket, in a hand bag) remains
unknown.

A particular problem with the use of smartphones is the
gradual reduction of sensors in popular smartphones. In order
to e.g., the recently released Samsung A50 does not have a
temperature, humidity, or pressure sensor. On the other hand,
the Covid-19 pandemic initiated the introduction of a
temperature sensor again in the Honor Play4. Additionally,
smartphones will maintain to be employed by battery
temperature sensors for monitoring the health of the phone.
To overcome the limited presence of air temperature sensors,
Chau (2019) developed an approach in which air temperature
data are estimated based on the recorded smartphone battery
sensor, either from in pocket or out pocket readings. However
their method was based on lab tests with a limited number of
smartphone copies and models, and therefore an experiment to
prove the wider and outdoor applicability needs to be
developed.

5 CONCLUSION

Crowdsourcing, i.e., the harvesting of a large number of sensor
data via internet has increased interest as data source for
weather and climate studies, in particular in cities where
traditional observation techniques are difficult to
implement. Earlier studies showed that massive amounts of
pressure, temperature, humidity and light observations by
smartphones can offer successfully information of local
weather conditions, provided a proper data quality
assessment and selection is performed. To enhance our
understanding of the value of these smartphones records,
here we evaluate the quality of weather observations by
smartphones (using a Samsung S4 in this case) with respect
to automated weather station observations and traverse
observation on a cargo bike. Under lab conditions, we find
the smartphone observations have a time constant of about
180 s for temperature and between 120 and 650 s for relative
humidity (depending on the direction of change and provided
no condensation occurs). We show that smartphone
temperature observations are subject to a bias that depends
on wind speed and solar radiation, but this bias can be
corrected for. After applying this bias correction during
traverse observations, smartphone temperature observations
can successfully replicate temperature observations by a
professional weather station. The smartphone light sensor
appears to have a cosine response with substantial data loss
for angles >45°, though after a scaling correction the light
sensor shows high potential for atmospheric research due to its
immediate response.
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Intra-Urban Microclimate
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William Morrison6 and Kit Benjamin6

1ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, Australia, 2School of Built
Environment, University of New South Wales, Sydney, NSW, Australia, 3City Futures Research Centre, University of New South
Wales, Sydney, NSW, Australia, 4ARC Centre of Excellence for Climate System Science, University of New South Wales,
Sydney, NSW, Australia, 5Climate Change Research Centre, UNSW, Sydney, NSW, Australia, 6Department of Meteorology,
University of Reading, Reading, United Kingdom

The spatial variability of land cover in cities results in a heterogeneous urban microclimate,
which is often not represented with regulatory meteorological sensor networks.
Crowdsourced sensor networks have the potential to address this shortcoming with
real-time and fine-grained temperature measurements across cities. We use
crowdsourced data from over 500 citizen weather stations during summer in Sydney,
Australia, combined with 100-m land use and Local Climate Zone (LCZ) maps to explore
intra-urban variabilities in air temperature. Sydney presents unique drivers for spatio-
temporal variability, with its climate influenced by the ocean, mountainous topography, and
diverse urban land use. Here, we explore the interplay of geography with urban form and
fabric on spatial variability in urban temperatures. The crowdsourced data consists of 2.3
million data points that were quality controlled and compared with reference data from five
synoptic weather stations. Crowdsourced stations measured higher night-time
temperatures, higher maximum temperatures on warm days, and cooler maximum
temperatures on cool days compared to the reference stations. These differences are
likely due to siting, with crowdsourced weather stations closer to anthropogenic heat
emissions, urban materials with high thermal inertia, and in areas of reduced sky view
factor. Distance from the coast was found to be the dominant factor impacting the spatial
variability in urban temperatures, with diurnal temperature range greater for sensors
located inland. Further differences in urban temperature could be explained by spatial
variability in urban land-use and land-cover. Temperature varied both within and between
LCZs across the city. Crowdsourced nocturnal temperatures were particularly sensitive to
surrounding land cover, with lower temperatures in regions with higher vegetation cover,
and higher temperatures in regions with more impervious surfaces. Crowdsourced
weather stations provide highly relevant data for health monitoring and urban planning,
however, there are several challenges to overcome to interpret this data including a lack of
metadata and an uneven distribution of stations with a possible socio-economic bias. The
sheer number of crowdsourced weather stations available can provide a high-resolution

Edited by:
Christos H. Halios,

Public Health England,
United Kingdom

Reviewed by:
Saumitra Mukherjee,

Jawaharlal Nehru University, India
Costica Nitu,

Politehnica University of Bucharest,
Romania

*Correspondence:
Negin Nazarian

n.nazarian@unsw.edu.au

Specialty section:
This article was submitted to

Environmental Informatics
and Remote Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 04 June 2021
Accepted: 24 August 2021

Published: 13 September 2021

Citation:
Potgieter J, Nazarian N, Lipson MJ,
Hart MA, Ulpiani G, Morrison W and
Benjamin K (2021) Combining High-

Resolution Land Use Data With
Crowdsourced Air Temperature to

Investigate Intra-Urban Microclimate.
Front. Environ. Sci. 9:720323.

doi: 10.3389/fenvs.2021.720323

Frontiers in Environmental Science | www.frontiersin.org September 2021 | Volume 9 | Article 7203231

ORIGINAL RESEARCH
published: 13 September 2021

doi: 10.3389/fenvs.2021.720323

54

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2021.720323&domain=pdf&date_stamp=2021-09-13
https://www.frontiersin.org/articles/10.3389/fenvs.2021.720323/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.720323/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.720323/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.720323/full
http://creativecommons.org/licenses/by/4.0/
mailto:n.nazarian@unsw.edu.au
https://doi.org/10.3389/fenvs.2021.720323
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2021.720323


understanding of the variability of urban heat that is not possible to obtain via traditional
networks.

Keywords: crowdsourcing, air temperature, urban microclimate, coastal cities, land use data, Sydney (Australia),
local climate zones

INTRODUCTION

With more than half of the world’s population living in urban
areas, future development and planning rely on a complete
understanding of the relationship between built environment
characteristics and local climate. Air temperature, one of the
key parameters of urban microclimate, is significantly influenced
by the radiative and thermal properties of built materials, as well
as anthropogenic heat released due to human activities (Masson
et al., 2020). This temperature increase is further exacerbated by
global climate change, leading to negative impacts on urban
energy loads, local emissions, and citizen health and wellbeing
(Masson et al., 2020).

The elevated temperature in cities exhibits a high spatial
variability due to differences in urban form and fabric.
Similarly, urban microclimate is temporally variable and is
affected by meso- and synoptic-scale processes, as well as
extreme and high-impact weather events. Such variabilities
motivate fine-grained and continuous monitoring of
microclimate across a range of urban characteristics,
particularly to understand the role of urban design and
planning. Furthermore, expansive and real-time monitoring of
urban climate is critical during extreme weather events such as
heatwaves, which have been increasing in intensity, frequency,
and duration (Perkins et al., 2012). Thus, datasets with fine spatial
and temporal resolutions are required to understand a city’s local
climate, assess the effectiveness of heat mitigation strategies, and
most effective plans for future development. However, scientific
meteorological stations used for climate monitoring are
traditionally installed for the purpose of assessing synoptic-
scale weather conditions and as such, the siting aims to
minimise the impact of urbanisation. In response, urban
monitoring stations have been established to better understand
microclimate characteristics in different cities (Rotach et al., 2005;
Schroeder et al., 2005; Poutiainen et al., 2006; Basara et al., 2011;
Christen et al., 2013; Warren et al., 2016). These weather stations,
although pivotal for gaining a fundamental understanding of
urban climate, are expensive to set up and maintain by experts,
leading to sparse coverage and insufficient detail to fully analyse
the intra-urban variability in climate (Muller et al., 2013).

Over the last decade, the emergence of internet-enabled,
wireless, and lay person-friendly solutions have enabled a
range of environmental sensor networks that can address the
need for real-time and fine-grained temperature measurements,
covering a wide range of spatial and temporal distributions in
cities (Pantelic et al., 2021). The “Internet of things” (IoT) has
enabled crowdsourcing and ubiquitous sensing of urban data,
where data is gathered from and by the public using citizen-
science solutions as opposed to centrally-managed measurement
campaigns. Several studies have used crowdsourced data collected

through consumer-grade weather monitors, or citizen weather
stations, to assess the urban thermal climate of large cities such as
London (Chapman et al., 2017; Benjamin 2019), Berlin (Fenner
et al., 2017), Oslo (Venter et al., 2020) and Moscow (Varentsov
et al., 2020). Crowdsourced data from over 50,000 citizen weather
stations across Europe has also been compared to satellite data for
measurement of urban heat island (UHI) indicating that satellite
data overestimated UHI measurements by six times compared to
crowdsourced data, which is more relevant for public health
(Venter et al., 2021). These studies indicate that crowdsourced
data achieves a higher spatial resolution than otherwise possible
with regulatory monitoring networks, while highlighting the
importance of data filtering and quality control to overcome
accuracy concerns of low-cost sensing. Thorough quality control
is required to remove any data that may be unrepresentative of
local external conditions or caused by human interferences.
Accordingly, several quality control procedures have been
proposed, such as Meier et al. (2017) that removes outliers
based on a comparison to reference data and Napoly et al.
(2018) which removes readings based on the possible errors in
data collection.

In addition to spatial microclimate data, clear metadata on
urban characteristics is key to identifying the drivers of intra-
urban variability. Using crowdsourced data, the location of each
citizen weather station is known but, quite often, there is no
specific information regarding the characteristics of the local
environment (such as urban density, built materials, vegetation
cover). One way to address this is to combine crowdsourced data
with Local climate zone (LCZ) classifications that provide a
landscape classification system for urban surface structure and
cover, consistent across global cities (Stewart and Oke 2012). This
classification in combination with crowdsourced temperature
data can provide a thorough understanding of how local
climate is impacted by different urban land-use and land
surface characteristics. A study in Berlin assessed the intra-
and inter-LCZ variability in urban temperature during the day
and overnight (Fenner et al., 2017) and observed that within each
LCZ, the temperature variance during the day was generally
smaller than at night, and higher in summer than in winter.
Inter-LCZ variability showed significant differences between not
only urban and rural sites, but also between most common LCZs
found within the city. Additionally, crowdsourced data used to
assess the urban heat island (UHI) and identify intra-urban
temperature variability in London observed cool anomalies
near greenspaces (Chapman et al., 2017). This cool anomaly
near urban parks was also reported in Moscow, while the areas
still exhibited warmer temperatures than rural areas (Varentsov
et al., 2020). These findings indicate that in addition to LCZ
classifications, there is a need for a higher-resolution dataset on
urban form and fabric (such as detailed vegetation cover and
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street canopy characteristics) that can assist with interpreting the
inter- and intra-LCZ variability in urban temperature.

The current study is motivated by these emerging
crowdsensing efforts addressing the need for high-resolution
data monitoring in cities, while exploring overlaying datasets and
urban classifications (such as LCZs and building-level urban
data) that can identify key drivers for intra-urban temperature
variability. Additionally, we focus on Sydney, Australia, which
extends previous analyses to a coastal city with unique mesoscale
processes and synoptic scale circulations that dominate urban
ventilation throughout the city (Hirsch et al., 2021). When
analysing the urban heat island (UHI) in Sydney, Santamouris
et al. (2017) found that a strong UHI effect was observed to the
west of the central business district, beyond the reach of sea
breezes from the east. The reference station used to quantify the
UHI at other stations was adjacent to the central business district
and Sydney Harbour, and close to the coast. Therein lies one of
the difficulties in quantifying an urban heat island for Sydney.
The complex nature of the city, with its substantial geographical
differences between coastal and inland suburbs, and the lack of
non-urbanised sites reflective of these differences, make it
difficult to calculate an accurate UHI intensity across the city.
Further, a calculated UHI intensity may not always provide data
that is of relevance for urban heat mitigation (Martilli et al.,
2020). Therefore, in the current study, we leverage the
crowdsourced monitoring stations to focus on how urban
heat varies in Sydney both geographically-taking into account
distance from the coast and topography- and in different local
climate zones.

A variety of other studies have assessed Sydney’s climate. A
link has been identified between synoptic conditions, in particular
those associated with heat waves, and air pollution, leading to
increased adverse health impacts at higher temperatures (Dean
and Green 2018; Vaneckova et al., 2008; Jiang et al., 2017). The
relationship between land surface temperature and green
infrastructure has also been investigated and the temperature
differences between green infrastructure classes were found to be
more evident during summer and daytime, although the effect of
impervious surfaces was found to dominate over the cooling
effect of vegetation and water (Bartesaghi-Koc et al., 2019).
Sydney temperatures are generally increasing over time
(Livada et al., 2019), and an analysis of heat waves and urban
overheating found that the urban overheating magnitude
increased with the distance from the coast despite a reduced
population density and increase in nonurban surfaces further
inland (Khan et al., 2021).

These studies demonstrate the high spatial variability in urban
temperature across the Greater Sydney region that is brought
about through a combination of urban design and local climate
factors, and in turn, the importance of urban climate monitoring.
In this paper, we use crowdsourced data to obtain temperature
observations of higher spatial resolution in Sydney. We then
investigate the impact of both geography, via distance from coast
and elevation, and urban fabric and form, via LCZs and other
urban characteristics (such as eave height and surface cover), on
temperature. By using high-resolution temperature observations
combined with urban datasets, we aim to understand the

interplay of geography and land use on urban heat in a
complex coastal city, and further assess the validity of
crowdsourced measurements as a method for analyses of
urban heat.

Details of the collection and quality control of the
crowdsourced data, urban data sets used, and analyses
undertaken are explained in Data and Methods. Results and
Discussion compares the crowdsourced data to the reference data
from scientific meteorological stations, analyses the impact of
geography, land use and land cover on the data, and explores the
benefits and challenges of using such data in urban climate
studies. Future directions for the use of crowdsourced urban
temperature are discussed in The Applicability of Crowdsourced
Data and High-Resolution Land Use Data.

DATA AND METHODS

Study Area and Time Period
This study focuses on the city of Sydney, Australia, which has a
population of approximately 4.8 million. Sydney sits mostly
within a basin between mountains and the coast, resulting in a
complex interaction between mesoscale land and sea breezes. The
metropolitan area is more densely populated in the east near the
coast, with Greater Sydney extending almost 100 kmwest into the
Blue Mountains. Beyond the mountains further west of Sydney
lies grassland and arid shrubland. According to the modified
Köppen classification system developed by the Bureau of
Meteorology (BoM) based on a standard 30-years climatology,
Sydney’s climate classification is temperate with a warm summer
and no dry season. The study area includes most of the Greater
Sydney region (Figure 1).

The sea breeze has a significant impact on cooling the coastal
regions of the metropolitan area, while being deficient in reaching
the western regions particularly at the base of the mountains,
leading to extremely high temperatures. The western regions of
Sydney are those most impacted by increasing urban
development and therefore it is critical that detailed and high-
resolution observations are available to assess the impact of urban
heat in order to plan subsequent measures to ensure liveability in
the future.

The time period assessed in this study is the 2020–2021
summer, from December to February. During this period,
Sydney experienced slightly above average rainfall due to La
Niña, and temperatures much cooler than recent summers.
The daytime temperatures across Greater Sydney were 1–2°C
below the average of recent decades. However, this time period
also included several heatwaves with the highest temperature
recording of 41.6°C recorded at Sydney Airport on Jan 26, 2021
(Bureau of Meteorology 2021).

To fully represent urban structure and land use across Sydney,
we used two datasets. A map of local climate zones (LCZ), at
100 m resolution obtained by World Urban Database and Access
Portal Tools [WUDAPT] (Ching et al., 2018; Bechtel et al., 2015)
is used to provide a standardised landscape classification system
to consistently compare different regions in urban areas across
Sydney (Figure 1). There are thirteen LCZs in Sydney with three
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dominating categories: dense trees, sparsely built, and open low-
rise (Figure 3A).

Since LCZ maps are determined through supervised machine
learning applied to satellite imagery (Demuzere et al., 2021), there
is no direct spatial or building height data informing their
creation. Therefore, characteristics for these locally derived
LCZ areas can differ from “typical” values presented in
Stewart and Oke 2012. To provide additional information on
the urban landscape not given by LCZ, an independent dataset of
landcover and building characteristics (Geoscape) was used to
categorise impervious fraction and vegetation as well as ground
elevation and building height at a 100 m resolution (PSMA
Australia, 2020). Figure 2 shows the processed Geoscape data
at a 500 m resolution for Sydney while Table 1 summarizes the
characteristic values for locally derived LCZs. Eave height refers
to the height from the ground to where the wall and roof intersect.
Sydney eave height is for the most part below 20 m, with small
CBD areas having mean eave heights up to 50 m. Sydney
elevation varies between 0 and 500 m (Figure 2B). Surface
cover fraction data was available as bare earth, roads and
paths, grass, trees, other vegetation, built area, buildings, and
water. To simplify analysis, here an aggregate vegetation category
has been used, defined by the sum of the grass, trees and other
vegetation fractions (Figure 2C). Similarly, an impervious
category has been defined by the sum of the roads and paths,
built areas and buildings fractions (Figure 2D).

Measurements: Crowd-Sourced
Atmospheric Data
Crowdsourced air temperature and humidity data were collected
from 551 Netatmo “Smart Home Weather Stations” across

Sydney. The Netatmo stations consist of an indoor and
outdoor module. The outdoor module collects real-time
weather data including temperature, humidity, and barometric
pressure which, should the user agree, is displayed on the
Netatmo Weathermap web portal. Historical data is not
available; data for this study has been collected via quarter-
hourly scraping of the Weathermap over the 2020–2021
summer (Dec 2020–Feb 2021), leading to over two million air
temperature readings collected.

The outdoor temperature and humidity sensors have accuracy
of ±0.3°C (over a range of −40°C–65°C) and 3%, respectively. The
temperature accuracy has been validated and confirmed by Meier
et al. (2017) using a climate chamber over the temperature range
0°C–30°C. However, the placement conditions of the outdoor
module can have a significant impact on the temperature readings
(Quality Control) (Varentsov et al., 2020).

Ideally, sensors would be distributed across built LCZs
corresponding to the distribution found in the city. However,
more than half of the locations at which data is collected represent
the open and compact low-rise zones, with only a small number
representing dense trees and sparsely built zones (Figure 3B).

Quality Control
While stations placed correctly in shaded areas have reasonable
accuracy, those kept in direct sunlight or even indoors or other
inappropriate locations can report a range of inaccurate readings
(Varentsov et al., 2020). The quality of each reading has therefore
been checked and the data filtered according to the four main
steps (M1 to M4) defined in the framework by Napoly et al.
(2018).

The first main step, M1, removes stations with identical
latitude and longitude as this indicates incorrect set up of the

FIGURE 1 | Local Climate Zone (LCZ) map of Sydney, Australia. The land fraction of each LCZ is given in the legend as a percentage. The central business district
(CBD) is noted.
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station. Based on unique ID numbers for each station, no
stations in Sydney had repeated coordinates. Rather, in some
cases a request had been made to the server before the next
readings had been recorded and updated on the Weathermap,
leading to duplicate recordings. As such, identical readings
from each station with the same timestamp have been
removed.

Step M2 of this framework finds and removes outliers based
on each hourly distribution. The main purpose of this step is to
remove significantly high readings likely from stations in direct
sunlight. The data was separated into hours, and a “Z-score” for
each reading was defined as:

Z � T −median(T)
Qn(T) (1)

where T is air temperature (°C) and Qn is a robust estimator for
variance given by the 0.25 quantile of the distances {|xi – xj|; i < j}
(Rousseeuw and Croux 1993). Following Napoly et al. (2018),
readings with a Z-score outside the range −2.32 to 1.64 were
removed, leaving 92.45% of data remaining.

In step M3, at each station if step M2 removed more than 20%
of readings during 1 month, then the entire month is removed.
This reduced the data to 85.58%.

The final step M4 targets indoor stations by comparing the
Pearson correlation between each station and the median of all
stations in each month. If the correlation was less than 0.9, all
readings from the station were removed for said month. This left
a remaining 81.74% of data for analysis after step M4, similar to
values reported in Napoly et al., 2018 (82.21 and 81.45%).

Between steps three and four the data was reorganised into 30-
min intervals (using mean values wherever a station had multiple
readings in a half-hour period), which simplified finding the
Pearson correlation and mean temperatures, and all later
processing. This was completed after steps M1 to M3 so that
specific outliers could be removed prior to averaging. Quality
control reduced the number of stations from 551 to 492.

Site Decomposition and Data Aggregation
Warm and cool days were defined based on daily maximum of
mean half-hourly temperatures of all stations. The median of daily
maximum of 25.7°C then set the threshold, evenly dividing days

FIGURE 2 | (A) Mean eave height (m) and (B) ground elevation (m), and (C) vegetation and (D) impervious fractions across Sydney.
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between warm and cool days. The timeseries of warm and cool
days can be seen in Figure 4. Compared with 30-years climate
averages for Sydney, 2020–2021 was a slightly cooler summer with

above average rainfall. Additionally, data from BoM
meteorological stations indicate that cool days mostly occurred
under rainy or overcast conditions (Bureau ofMeteorology, 2021).

TABLE 1 | The characteristic values for locally derived LCZs for grids containing Netatmo stations, formatted for comparison with values presented in Stewart and Oke, 2012
(S&O: where impervious surface fraction does not include building fraction). Here the 25th–75th percentile ranges are shown, with mean values bracketed.

Building surface
fraction (%)

S&O impervious
surface fraction

(%)

Pervious surface
fraction (%)

Eave height
(m)

LCZ1 Compact high-rise 17–54 (36) 8–15 (12) 30–72 (52) 7–10 (9)
LCZ2 Compact midrise 44–51 (45) 19–29 (27) 23–32 (28) 7–20 (17)
LCZ3 Compact low-rise 34–45 (38) 21–34 (28) 24–41 (33) 4–7 (6)
LCZ4 Open high-rise 30–40 (35) 26–40 (32) 29–43 (33) 20–22 (20)
LCZ5 Open midrise na na na na
LCZ6 Open Low-rise 21–35 (27) 16–27 (22) 39–61 (51) 4–5 (5)
LCZ7 Lightweight low-rise 42–57 (46) 33–38 (34) 6–22 (19) 3–3 (3)
LCZ8 Large low-rise 35–44 (38) 27–40 (38) 18–29 (24) 6–12 (10)
LCZ9 Sparsely built 5–25 (16) 5–29 (17) 45–87 (66) 3–5 (4)
LCZ10 Heavy industry 44–48 (44) 25–40 (33) 12–32 (23) 8–12 (10)

FIGURE 3 | (A) Distribution of LCZs across Sydney, Australia, and (B) distribution of Netatmo stations across Sydney LCZs. The number of stations per LCZ is
given at the top of each column.
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To understand the crowdsourced data in the context of urban
climate monitoring and how it may be interpreted, a comparison
has been made with weather station data from the BoM. To help
explore the impacts of both geography and urbanisation on urban
heat the metropolitan area has been divided into three regions
(inland, central, and coastal) running approximately parallel to
the coast (Figure 7, detailed in Geographical Influences on Urban
Temperature). The warm and cool aggregate day representations
of these regions are shown in Figure 8.

RESULTS AND DISCUSSION

In this section, we use crowdsourced data to detail the impacts of
urban form and fabric (indicated by LCZs as well as surface cover
and building height data) as well as local geography on intra-
urban temperature variability in Sydney.

Difference Between Crowdsourced Data
and Reference Stations
Crowdsourced temperature data across Sydney, Australia, is first
compared with reference weather stations established by BoM.
There are approximately 600 BoM weather stations across
Australia, sited according to the World Meteorological
Organization guidelines to measure synoptic scale conditions
rather than the local or micro scales (Bureau of Meteorology
1997). The key differences in siting are that BoM weather stations
are installed within approved shelters at a height of 1.1 m above
ground level, within a 30 by 30 m buffer of low natural vegetation
(e.g., grass), and taller obstructions outside the buffer being at a
distance of up to 10 times their height. These requirements make
the placement difficult in highly urbanised areas. Netatmo
sensors, however, are placed where people live (e.g., in
backyards or on balconies).

The location of BoM sites compared to Netatmo stations is
shown in Figure 5. A total of 10 BoM weather observation
stations were identified within the study area (Greater Sydney
Region) marked as black triangles in Figure 5 and their readings

were compared with Netatmo stations identified within the 3 km
radius. A threshold of at least three Netatmo stations was
implemented for this comparison, which reduced the number
of BoM stations to five (named in Figure 5). The comparison is
further divided into aggregate warm and cool days detailed in Site
Decomposition and Data Aggregation.

A comparison of Netatmo measurements with neighbouring
reference stations (not shown) showed a high correlation between
crowdsourced and reference station observations (Pearson
regression correlation ranging between 0.75–0.99), with no
clear pattern of change observed between day- and night-time
or cool/warm days. Therefore, we focus our analyses on
comparing the diurnal evolution of air temperature recorded
by both monitoring networks (Figure 6).

When compared with reference measurements during the day,
the citizen weather stations consistently observed higher daytime
temperatures on warm days and cooler daytime temperatures on
cool days. For both warm and cool days and across all stations,
Netatmo readings were higher at night. The consistency of results
across locations, and persistent elevated temperatures at night
(i.e., without direct sunlight confounders) indicate a robust
difference in typical microclimate conditions between BoM
and Netatmo sites.

Elevated urban temperatures can be caused by a range of
factors, including greater absorption and retention of solar and
thermal radiation by urban materials and geometries, lower levels
of evapotranspiration, and greater release of heat from
anthropogenic sources (Stewart and Oke, 2012). Additionally,
the high heat capacity and increased surface area of urban
structures can reduce the amplitude of diurnal temperature
variation (Wang et al., 2018). Netatmo measurements have
both elevated temperatures (particularly during warm days)
and reduced amplitude diurnal patterns (particularly on cooler
days) compared with BoM measurements.

Other studies have observed similar patterns. For example, in
London a similar comparison found that the reference stations
measured slightly lower mean daily maxima and minima on
warm days, and a slightly increased or similar diurnal
temperature range as compared to Netatmo stations

FIGURE 4 | . Timeseries of mean half-hourly air temperature (solid black line) and standard deviation error (shaded range around mean) during summer (Dec
2020–Feb 2021). Days with maximum temperature above median daily maximum are highlighted in red, while days with maximum belowmedian daily maximum in blue.
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(Benjamin 2019). In Berlin, reference stations observed increased
daytime and decreased overnight temperatures as compared to
crowdsourced data (Fenner et al., 2017), indicating a relationship
more similar to that seen on cool days in the current study.

The sites located at Campbelltown, a sparsely built suburban
location approximately 50 km west of the CBD, showed the
largest warm day overnight difference of 3.6°C at 3am,
whereas Sydney Olympic Park and Sydney Airport, both

FIGURE 5 | Spatial distribution of reference weather stations established by the Bureau of Meteorology: BoM (black triangles, labelled only if used in analysis)
compared with Netatmo sensors across the Greater Sydney region. The number of stations in each category is indicated in brackets in the legend.

FIGURE 6 | Comparison of measurements obtained from reference weather stations (BoM) (grey) and nearby Netatmo recordings (blue) and standard deviation
error (shaded range around means) of the temporal distribution for aggregate warm and cool days. The number of Netatmo stations within 3 km of the BoM station is
given in brackets in the legend.

Frontiers in Environmental Science | www.frontiersin.org September 2021 | Volume 9 | Article 7203238

Potgieter et al. Crowdsource Temperature Compared to Land-Use

61

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


located close to water bodies, showed the smallest differences at
3am of ∼0.5°C. A large overnight difference is also observed at
Campbelltown on cool days.

At Campbelltown, large consistent differences between BoM
and Netatmo stations may be due to the impact of local siting
(i.e., direct interaction with nearby built form) and of more
regional interactions (i.e., lack of sea breeze in Western
Sydney leading to less local mixing, compounding
microclimate differences). The other stations are located in
open low-rise and large low-rise zones, and closer to the
ocean. These areas are more densely built than Campbelltown,
which means the BoM stations are likely more affected by larger-
scale urban warming effects from more densely built areas, and
more vigorous mixing of air by sea breezes, reducing differences
with Netatmo stations.

During the day on warm days, Sydney Airport showed the
largest difference in maximum temperature, where crowdsourced
air temperature at 2pm was approximately 2.5°C higher than
reference measurements. The specific attributes of this site are
likely the cause of this increased discrepancy. The reference
station is located very near the airport grounds and the coast,
thus is exposed to increased ventilation and higher sky view factor
due to the openness, affecting convective and radiative heat
transfer. The Netatmo stations, however, are located within
the suburb around the airport, where cooling mechanisms
associated with wind and radiation are weaker.

On cool days, a wider diurnal range is recorded by the
reference sensors compared to the citizen weather stations.
Our investigation of the BoM dataset indicates that cool days
during this period occurred on overcast sky conditions or
received light-moderate rainfall. With lower shortwave
radiation during the day, the convection and conduction from
surrounding surfaces dominate heat transfer balance, and
consequently air temperature, in the urban canopy.
Accordingly, it is likely that the lack of built materials with
high thermal inertia near the BoM stations has led to a wider
range in temperatures.

Similar to warm days, Campbelltown had the largest overnight
discrepancy of 3.2°C between 4:30 to 5:30 am. During the day,
Observatory Hill, located in the Sydney central business district
and adjacent to Sydney Harbour, had the largest discrepancy of
1.9°C at 2:30pm.

This comparison has identified differences between stations
due to their location, including the LCZ and the distance from the
coast. It is clear that the local climate near the coast is strongly
influenced by the sea breeze and as such, stations near and far
from the coast cannot be directly compared. Assessing stations
within regions of increasing distance from the coast allows each
region to be analysed individually, as well as comparison between
regions.

Geographical Influences on Urban
Temperature
For analysing intra-urban temperature variability in a coastal city,
it is critical to account for the intertwined nature of urban
topography and the distance from the coast combined with

urban design characteristics (such as urban density and
sprawl). The distance from the ocean has a strong impact on
temperature in Sydney (Hirsch et al., 2021) as also observed in
other coastal metropolises like Los Angeles (Vahmani and Ban-
Weiss 2016). Accordingly, we divide the crowdsourced datasets
based on regions (inland, central, and coastal shown in Figure 7)
before assessing the impact of urban design and land cover on
temperature variabilities (Land Use and Land Cover Influence on
Urban Temperature). The regions are divided using an
approximately uniform width, slightly shifted to maintain a
sufficiently large number of Netatmo stations per region
(particularly inland).

As anticipated, temperature distribution (particularly on a
warm day), is highly influenced by the geographic region
(Figure 8), which is in turn affected by the distance from the
coast as well as elevation due to proximity to mountain ranges in
the south and west. We observe that the inland region
experienced the largest diurnal range with an average of
11.7°C and 4.6°C on warm (Figure 8A) and cool days
(Figure 8C), respectively, compared to 7.8°C and 3.3°C in the
coastal region.

Accordingly, in order to focus on intra-urban variabilities
brought about by urban design characteristics, the impact of
elevation was removed using the lapse rate, defined as

T′ � T + 0.0065(z −mean(z)) (2)

where z is the elevation of each station in metres (Napoly et al.,
2018). Temperatures were adjusted to an equivalent temperature
at a constant elevation of 63.3 m (the mean elevation of the
stations). The impact of this elevation adjustment is more evident
on cool days than warm, showing a clearer increase in diurnal
range with distance from the coast (Figure 8).

With higher elevations generally found further from the coast,
elevation and coastal impacts are correlated. After adjusting for
the elevation, the remaining differences between regions are
primarily land cover differences and distance from the coast.
To ascertain how the impact of land use and cover differs across
the city, maximum and minimum temperatures have been
compared between classes of the urban design characteristics,
and between regions in the following analyses (Figures 9–12).
Dividing the area into regions aims to separate out the impact of
the coast, however interpretation of data from the coastal region
still remains a challenge due to the varying impact of the ocean in
this region. The moderating influence of the ocean and the
cooling effect of the sea breeze may be more impactful nearer
to the coast. Whereas for the central and inland regions the
influence of the distance from the coast is fairly consistent which
allows for individual comparison of other urban design
characteristics.

Land Use and Land Cover Influence on
Urban Temperature
To investigate the impact of urban design and land cover on
intra-urban variability of air temperature, we compare
crowdsourced measurements with LCZ and Geoscape data for

Frontiers in Environmental Science | www.frontiersin.org September 2021 | Volume 9 | Article 7203239

Potgieter et al. Crowdsource Temperature Compared to Land-Use

62

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Sydney (Study Area and Time Period). For this analysis, the
station mean maximum and minimum temperatures in warm
and cool days have been assessed. Between regions, these values
have the largest differences (Figure 8) and thus will give an
indication of the significance of the impact of each urban design
characteristic. The maximum temperature of the mean warm day
has been calculated by finding the maximum temperature for
each warm day for each station, and then taking the mean over
days. Similarly, the maximum and minimum of mean cool or
warm days were found. Accordingly, the datapoints in Figures
9–12 represent the distribution of maximum/minimum
temperature across different stations.

Figure 9 shows the boxplot distribution of air temperature in
each region categorised by LCZ. In this analysis, we focus on
urbanised LCZs which also include the highest number of
Netatmo stations (Figure 3B): open and compact low-rise,
lightweight and large low-rise, compact midrise, and open and
compact high-rise. Only LCZs with at least three stations in a
region were assessed. As shown in Figure 1, fewer urban LCZs are
represented in the inland and central regions compared to coastal
areas. In general, compact LCZs recorded a smaller diurnal range
than open LCZs, with lower maxima and higher minima, except
for the compact high-rise LCZ. Increasing minima and

decreasing maxima were observed with increasing height,
again excluding the compact high-rise LCZ. In general, we
expect to see smaller temperature diurnal ranges in more
densely built areas because of increased thermal inertia (Wang
et al., 2018).

Considering the low-rise LCZs, open low-rise recorded higher
maxima and lower minima than compact low-rise. In the open
LCZ, a higher sky view factor (SVF) leads to higher solar radiation
penetration, increasing the maximum temperature. Overnight,
on the other hand, more ventilation and higher SVF in the open
LCZ result in a lower minimum (Oke, 1981; Skarbit et al., 2017).

On the contrary, the high-rise LCZs observed a wider diurnal
range in the compact zone compared to the open zone. The high-
rise LCZs are only present near the coast, and recorded the lowest
maxima. However, when comparing the minima, open high-rise
recorded the highest minima while compact high-rise recorded
the lowest minima across all urbanised LCZs. Since the main
difference between these LCZs is the density, the impact on
temperature is likely due to the interaction between
convective, conductive, and radiative heat fluxes affected by
density. In the compact zone, higher density results in
increased shading due to the deeper canyons (Johansson, 2006;
Masson et al., 2020), whereas in the open zone, a higher SVF

FIGURE 7 | Locations of Netatmo stations across Sydney, Australia. The site has been divided into three regions: inland, central, and coastal. The number of
stations per region is indicated in brackets in the legend.

Frontiers in Environmental Science | www.frontiersin.org September 2021 | Volume 9 | Article 72032310

Potgieter et al. Crowdsource Temperature Compared to Land-Use

63

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


allows more solar radiation to be absorbed during the day.
However, it is expected that during the night, radiative cooling
and sensible heat flux increase with decreasing density (Nazarian
and Klessil, 2015), resulting in lower surface and air temperatures,
which is not observed with crowdsourced data. As for maxima,
compact subzones recorded the worst overheating episodes rather
than open subzones. In this case, the shadowing effect in canyons
is countervailed by reduced wind speeds and ventilation as well as
by additional heating mechanisms that typify dense clusters of tall

buildings, such as multiple solar inter-reflections bouncing
between overlooking facades (Battista et al., 2021). The
compound effect may be the cause of the increased maximum
temperatures.

Across all land use and land cover comparisons, there was
reduced variability in the cool day maxima as compared to the
warm day maxima. This indicates that local conditions and
micro/mesoscale phenomena have a reduced influence on the
maximum temperatures over cool periods, governed by

FIGURE 8 | Mean aggregate warm and cool day temperature comparison of raw temperatures and temperatures adjusted to a constant elevation of 63.3 m in
different regions in Sydney. Raw temperatures are shown for (A) warm days and (C) cool days. Elevation adjusted temperatures are shown for (B) warm days and (D)
cool days. Shaded areas (centred around corresponding lines) indicate the spatial standard deviation. The number of stations per region is indicated in brackets in the
legend.
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larger-scale dynamics. This is likely due to the increased cloud
cover on cool days which reduced both the incoming solar
radiation and the transparency in the atmospheric window,
which enables radiative cooling. As such, the effect of optical
properties (e.g., albedo, emissivity) and thermal inertia of
materials is mitigated and moderated across LCZs, thus
reducing the range intemperatures otherwise observed.

Another important result of this analysis is the range of
temperatures observed within a single LCZ, namely the intra-
LCZ range shown by each box. For warm days, a wider range of
temperatures within each LCZ is observed for the maximum
temperatures than the minimum temperatures, whereas for cool
days a similar range is observed between maximum and
minimum temperatures. These observations are contrary to
those seen in Berlin and Szeged, where intra-LCZ daytime
temperatures in general varied less than overnight, and LCZs

with a larger number of stations had the widest temperature
ranges (Fenner et al., 2017; Skarbit et al., 2017). This variability
was attributed to microscale differences in exposure, surface
cover, and anthropogenic heat sources near the measurement
sites, as well as due to the grouping of LCZ classifications
regardless of location, neglecting meso-scale effects. In this
study however, some meso-scale effects have been included by
the division of regions.

Despite covering a relatively small area with few stations, the
open high-rise LCZ had the widest interquartile range for warm
day maximum temperatures of approximately 3.3°C. For
minimum temperatures however, this LCZ had one of the
smallest temperature ranges of 0.7°C. This may be due to
variable shading in the canyon during the day causing highly
varying recordings, while overnight heat release from materials
affects all stations and moderates temperatures.

FIGURE 9 | Urbanised LCZ comparison of station mean maximum and minimum temperatures on warm and cool days. Mean maximum temperatures are
represented for (A) warm days and (B) cool days, and mean minimum temperatures are represented for (C) warm days and (D) cool days. Data has been divided into
regions (along the x-axis) and LCZ classifications (via colour coding shown in legend). The number of stations per LCZ classification in each region (n) is given along the
x-axis in (C).
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The open and compact low-rise LCZs have fairly consistent
temperature ranges across the regions. The coastal and inland
maximum temperatures in the open low-rise zones have the
largest difference in temperature ranges with a range of 1.5°C
inland and 2.4°C near the coast. This indicates that within these
LCZs there is some variability in local climate, however this
variability is consistent across the regions and thus is likely not
due to the influence of the coast.

The intra-LCZ ranges indicate that there are other urban
factors at play which influence the local temperature

distribution. Further comparison with more specific urban
design characteristics has been made in order to identify their
individual impacts.

As noted in Study Area and Time Period, LCZ maps are
determined through supervised machine learning applied to
satellite imagery (Demuzere et al., 2021) and their
characteristics can differ from “typical” values presented in
Stewart and Oke 2012 (locally derived values presented in
Table 1). We therefore complement the above results using an
independent spatial dataset which includes direct spatial and

FIGURE 10 | Eave height comparison of mean maximum and minimum temperatures on warm and cool days. Mean maximum temperatures are represented for
(A)warm days and (B) cool days, and mean minimum temperatures are represented for (C)warm days and (D) cool days. Data has been divided into regions (along the
x-axis) and eave height classifications (via colour coding shown in legend). The number of stations per LCZ classification in each region (n) is given along the x-axis in (C).
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building height information for Sydney (PSMA Australia,
2020).

The LCZ building height classifications are low-rise (2–10 m),
midrise (10–25 m) and high-rise (25 m+). Across Sydney,
stations are mostly categorised by LCZ low-rise, with very few
in midrise and high-rise areas which does not allow for clear
comparison between height categories. As such, when using the
independent dataset, the classification thresholds of low-, mid-
and high-rise have been adjusted to better suit the Sydney urban

landscape. Mean eave height has been broken down into the
following three categories: low-rise (0–6 m), mid-rise (6–12 m),
and high-rise (12 m+). Low-rise defines housing of 1–2 storeys,
and high-rise defines buildings of four storeys or higher in which
an elevator is required.

Figure 10 shows the boxplot comparison of crowdsourced
temperature in different eave height classes per region. The high-
rise category (12 m+) was not present inland, and midrise
(6–12 m) was only represented by one station in this region.

FIGURE 11 | Vegetation fraction comparison of mean maximum and minimum temperatures at each station on warm and cool days. Mean maximum
temperatures are represented for (A) warm days and (B) cool days, and mean minimum temperatures are represented for (C) warm days and (D) cool days. Data
has been divided into regions (along the x-axis) and vegetation classifications (via colour coding shown in legend). The number of stations per LCZ classification in
each region (n) is given along the x-axis in (C).
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In both the central and coastal regions, the number of stations
representing high-rise areas was significantly lower than those
representing low- and mid-rise.

The eave height comparison is consistent with the LCZ height
comparisons, and shows these trends more clearly. In general, the
diurnal range decreased with increasing eave height. The
minimum temperatures increased with increasing eave height,
with ranges in median temperature of 1.4°C and 1.1°C in the
central region, and 1.1°C and 0.6°C in the coastal region, on warm

and cool days, respectively. Conversely, the warm day maximum
decreased with increasing eave height, with a range in median
temperature of 2.0°C in the central region and 1.6°C near
the coast.

Here, we extend the analyses to evaluate the impact of surface
cover determined by impervious and vegetated surface covers.
The fraction of land covered by vegetation and impervious
surfaces (Study Area and Time Period) is found using 100 m
gridded data to represent neighbourhood scales. Vegetation and

FIGURE 12 | Impervious fraction comparison of mean maximum and minimum temperatures on warm and cool days. Mean maximum temperatures are
represented for (A) warm days and (B) cool days, and mean minimum temperatures are represented for (C) warm days and (D) cool days. Data has been divided into
regions (along the x-axis) and impervious classifications (via colour coding shown in legend). The number of stations per impervious class in each region is given along the
x-axis in (C).
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impervious classes were compared per region (Figures 11, 12).
These classes were defined by the ranges 0–0.4, 0.4–0.7 and 0.7−1
of the aggregate vegetation and impervious fractions. All
vegetation and impervious classes were represented in all
regions. Note that the impervious fraction is not simply the
opposite of the vegetation fraction; there are other surface
cover fractions which are not included in either of these
categories. These include water bodies and swimming pools.

No clear trend was observed in the maximum temperatures,
although in the central region areas with increased impervious
fraction and reduced vegetation fraction recorded higher
temperatures for both warm and cool day maxima. In general,
minimum temperatures are higher in areas of high impervious
fraction, on both warm and cool days. This is likely due to
increased heat absorption and thermal inertia of impervious
materials and increased surface temperatures (Masson et al.,
2020). Thermal inertia has been observed to have a stronger
influence on UHI than anthropogenic heat and population,
causing increased overnight temperatures as observed here on
both warm and cool days (Varquez and Kanda 2018).

This is expected to lead to reducedminimum temperatures in areas
of high vegetation fraction, consistent with observations by Sharifi and
Lehmann (2014) and Varquez and Kanda (2018), however this is not
as clearly observed. There is a slight disruption in this trend in the
coastal and central regions on warm days, and the central region on
cool days. This may be due to the high impervious fraction in this
region; the presence of impervious surfaces can significantly reduce the
cooling effect of vegetation whichmay be causing the anomaly (Myint
et al., 2010; Bartesaghi-Koc et al., 2019). However, the high variability
near the coast and the reduced representation of the highly vegetated
areas may have introduced a bias.

Across all urban design characteristic comparisons, a clear trend is
observed between regions. Maximum temperatures increase with
distance from the coast, and minimum temperatures decrease with
distance from the coast, indicating an increased diurnal range inland
compared to the coastal region, as observed in Figure 8. This is clear
regardless of which urban design characteristic is being assessed,
which indicates that the distance from the coast has the largest impact
on air temperature across the city. The distance from the coast is the

key factor affecting the impact of the sea breeze, however there is also
interplay of topography and land use. Los Angeles has a similar
geography to Sydney with both coastal and mountainous boundaries
and similar effects have been observed in terms of UHI dynamics,
including a dominating role played by sea breeze, vegetation having a
positive effect on overnight UHI and urban fraction having a negative
effect on UHI (Vahmani and Ban-Weiss 2016).

THE APPLICABILITY OF CROWDSOURCED
DATA AND HIGH-RESOLUTION LAND USE
DATA
The crowdsourced data used in this study has provided a novel
understanding of the complexity of Sydney’s urban climate,
presenting a unique opportunity for infilling the measurements
gaps across the city. However, crowdsourced data also presents
certain shortcomings that require careful attention in data analysis.

Table 2 lists a combination of conditions in crowdsourced
data collection that can be considered as a source of error, or
indeed a “feature” where thermal environment is assessed in the
immediate environment of city dwellers, focusing on exposure
where people reside and occupy. The high spatial resolution is the
key driver for the use of crowdsourcing, but often comes at the
cost of uneven distribution of stations in cities, leading to spatial
and socio-economic bias in the data. To avoid this, crowdsourced
campaigns may be complemented with centralized efforts to place
additional stations in areas of low representation, or a threshold
of sensors may be required in each region to remove statistical
outliers. Furthermore, collecting data in the proximity of where
people live and occupy is key to understanding thermal exposure,
which is more helpful for estimating health impacts and planning
for future infrastructure. However, this also influences data
collection due to the proximity of other heat-emitting
materials such as nearby walls or buildings. Each of these
difficulties must be addressed when assessing the data quality
and interpreting the data as discussed in Quality Control.

The low cost of the sensors, which leads to higher number of
measurement sites as well as citizen engagements, can further result

TABLE 2 | Advantages and disadvantages of crowdsourced data.

Advantages Disadvantages

Crowdsourced datasets often achieve a higher spatial resolution across a city Distribution of stations is skewed towards more densely populated regions.
Additionally, it is likely that more sensors are located in affluent areas, contributing to
urban climate injustice in analyses and interpretation

Citizen weather stations are located in and around where people occupy, live, and
work, providing relevant data for assessing thermal exposure in the immediate
environment of residents

Siting of stations is uncontrolled. Stations are often placed close to buildings, walls or
other heat-emitting materials causing a bias in the readings

Driven by the low cost, crowdsourced sensor networks are established through
decentralised effort and are maintained by the public

Decentralized effort and reduced maintenance also often translate to the lack of
metadata regarding the sensor location and quality assurance. Additionally, the low
cost of sensors suggests lower accuracy and more likeliness for sensor drift

Citizen weather stations enables more citizen involvement and enablement Citizen engagement presents challenges with regards to data ownership, privacy, and
access. In the case of Netatmo sensors, for instance, data access is limited to the live
web portal and therefore prior planning is needed for data collection. Historical data
not publicly available
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in a lack of quality assurance, calibration, or testing, and since
sensors are set up by the public, there is a lack of metadata. An
understanding of how these stations may be sited is required to
interpret the data. Additionally, more controlled-environment and
long-term experiments can be planned, such that we fully quantify
the uncertainties associated with low-cost weather stations.

Another key part of interpreting the crowdsourced data is
understanding the local environment at each site. Various datasets
describing urban characteristics can be overlayed with crowdsourced
measurements, including the LCZ classifications that aim to represent
urban form and fabric in a universal way. LCZ maps give an
indication of the context of city in relation to other built
environments worldwide, however, are not sufficient for
identifying individual urban design characteristics that modify
urban microclimate. Each LCZ represents a range in height,
vegetation cover, sky view factor, and so forth, which provide
limited comparison with regards to microclimate variabilities when
evaluating one city with only a few dominant LCZ types. To address
this, emerging high-resolution urban datasets can be used to describe
surface cover and urban morphology. Overlaying such datasets with
LCZ maps and crowdsourced measures assist in providing a better
characterisation of each area more specific to a city and provide
further insight into the influences on the urban microclimate.

CONCLUSION

In this study, we used quality controlled crowdsourced data from
over 500 citizen weather stations to explore intra-urban
variabilities in air temperature during a Sydney summer,
totalling 2.3 million data points. Crowdsourcing has provided
a higher spatial resolution climate dataset for Sydney which has
allowed a clearer understanding of the local climate at a finer
scale. Overlaying datasets and urban classifications (such as LCZs
and building-level urban data) have been explored to identify the
key drivers of intra-urban variability.

The key findings from this paper are:

• Crowdsourced air temperature data and the combination of
land use and land cover data layers have provided novel
insight into the air temperature distribution across a
complex coastal city, by investigating the contribution of
both geographic and urbanised influences on intra-urban
variability in air temperature.

• The strongest impact on air temperature was distance from
the coast causing an increase in diurnal temperature range
at locations further inland.

• Intra-urban variability was observed both within LCZs and
between different LCZs.

• Increasing building density and height resulted in a reduced
diurnal temperature range, and increasing impervious
fraction resulted in increased temperatures.

A comparison of crowdsourced data with reference data indicated
that on warm days citizen weather stations continuously observed
increased temperatures throughout the day, whereas on cool days the
diurnal range of crowdsourced temperatures was smaller than that of

reference stations. The crowdsourced overnight temperatures were
higher for all stations across both warm and cool days. These
differences are likely due to the siting of citizen weather stations
closer tomaterials with high thermal inertia, solar radiation exposure,
and in areas with decreased ventilation.

The impact of the sea breeze and moderating influence of the
ocean has been identified by the difference in air temperature
between the inland, central and coastal regions. This coastal effect
dominated over all other impacts on local climate, and as such other
possible influences on air temperature were compared considering
distance from the coast. There was very little variability in the cool
day maxima across all urban characteristics due to the increased
cloud cover and precipitation on cool days. The significant impact of
distance from the coast has been assessed by splitting the city into
regions, however analysis of the coastal region still remains a
challenge due to the varying effect of the sea breeze across this
region. Further investigation into sea breeze flow is necessary to fully
understand the urban climate in this area.

Crowdsourced data typically come with some limitations which
require critical evaluation of the information collected. Despite the
higher spatial resolution, not all regions are represented equally; the
inner-city areas have a significantly higher number of stations than
the outer areas due to a combination of cost and population
density. To ensure the entire population is equally represented
when using data such as this, it may be necessary to supplement
with additional sensors in some areas.
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Maintaining indoor environmental (IEQ) quality is a key priority in educational buildings.
However, most studies rely on outdoor measurements or evaluate limited spatial coverage
and time periods that focus on standard occupancy and environmental conditions which
makes it hard to establish causality and resilience limits. To address this, a fine-grained, low-
cost, multi-parameter IOT sensor network was deployed to fully depict the spatial
heterogeneity and temporal variability of environmental quality in an educational building in
Sydney. The buildingwas particularly selected as it represents amulti-use university facility that
relies on passive ventilation strategies, and therefore suitable for establishing a living lab for
integrating innovative IoT sensing technologies. IEQ analyses focused on 15 months of
measurements, spanning standard occupancy of the building as well as the Black Summer
bushfires in 2019, and the COVID-19 lockdown. The role of room characteristics, room use,
season, weather extremes, and occupancy levels were disclosed via statistical analysis
including mutual information analysis of linear and non-linear correlations and used to
generate site-specific re-design guidelines. Overall, we found that 1) passive ventilation
systems based on manual interventions are most likely associated with sub-optimum
environmental quality and extreme variability linked to occupancy patterns, 2) normally
closed environments tend to get very unhealthy under periods of extreme pollution and
intermittent/protracted disuse, 3) the elevation and floor level in addition to room use were
found to be significant conditional variables in determining heat and pollutants accumulation,
presumably due to the synergy between local sources and vertical transport mechanisms.
Most IEQ inefficiencies and health threats could be likelymitigated by implementing automated
controls and smart logics to maintain adequate cross ventilation, prioritizing building
airtightness improvement, and appropriate filtration techniques. This study supports the
need for continuous and capillary monitoring of different occupied spaces in educational
buildings to compensate for less perceivable threats, identify the room for improvement, and
move towards healthy and future-proof learning environments.

Keywords: environmental sensing and monitoring, thermal comfort, indoor air quality, Internet of Things, living lab,
COVID-19, bushfire, educational buildings
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INTRODUCTION

It is widely acknowledged that, in developed countries, people
spend the majority of their time indoors. In the United States, it
is estimated that 87% of the time is allocated to indoor activities
(Klepeis et al., 2001), while in Australia, the percentage reaches
90% (Australian Government, 2020). These figures are expected
to soar in the next decades as a consequence of the progressive
dispossession of outdoor public spaces caused by 1)
deterioration of urban liveability, 2) escalation of overheating
episodes, and 3) intensification of weather extremes (IPCC Fifth
Assessment Report (AR5), 2013; Santamouris, 2020). This poses
an urgent need for providing adequate indoor environmental
quality (IEQ), specifically in buildings that host vulnerable
populations and a high density of users, or those whose
occupants require long-lasting preservation of attention,
productivity, and health. Educational buildings feature all
these criteria and thus represent a priority target for IEQ
assessments (Eide et al., 2010; Simons et al., 2010; Mendell
et al., 2013).

In educational facilities, such as schools and universities,
maximizing students’ and staff’s performance while preventing
absenteeism is a basic, yet challenging requirement particularly
due to the wide range of possible metabolic rates, clothing levels,
and activities that typify the user category (Havenith, 2007; Kim
et al., 2009). These variables arbitrate whether a defined indoor air
quality and thermal condition can negatively impact the
occupants’ cognitive performance by altering the decision-
making ability (Satish et al., 2012) or productivity (Wyon,
2004; Ebenstein et al., 2016). Beyond comfort and efficiency,
multiple studies on educational facilities indicate that failure to
manage indoor air quality could increase the risk of acute and
chronic effects on students’ physical and mental health (Loh and
Andamon; Annesi-Maesano et al., 2013; Andualem et al., 2019).
Indoor air pollution impairs cognitive functions, damages the
nervous system, increases ischaemic stroke risk, depression, and
mood disorders in adult populations (Calderón-Garcidueñas
et al., 2015; Taylor et al., 2015) and even more in infants and
youngsters (Gent et al., 2003). Further, extensive evidence
demonstrates the negative health impacts of different
pollutants indoors, such as ozone (O3) and fine particles (Mi
et al., 2006; Zhao et al., 2015), as well as nitrogen dioxide (NO2),
carbon monoxide (CO), volatile organic compounds (VOCs) and
benzene, toluene, ethylbenzene, xylenes (BTEX) (Chen et al.,
2000; Evrard et al., 2006). An overview of challenges and impacts
can be found in (Chatzidiakou et al., 2012).

Comparatively underexplored are the damaging effects of
extreme ambient environmental stressors, such as heatwaves
or wildfires. These further exacerbate the range and severity of
health deterioration (Saggu et al., 2018; Reid et al., 2019), but the
topic-specific literature is sparse. The risk assessment of human
exposure to health-threatening indoor environmental conditions,
and consequently the choice of containment measures and risk
prevention, are critical tasks that need to be adequately informed
(Rocca et al., 2020). This further motivates a fine-grained, site-
specific monitoring of exposure to environmental stressors
(Nazarian and Lee, 2021) as well as smart control of rooms,

such that we compensate for less perceivable threats, passive
ventilation inefficiencies, and excessive energy consumption.

A variety of studies reveals that occupants are rather
insensitive to most Sick Building Syndrome (SBS) drivers. For
instance, in Haverinen-Shaughnessy et al. (2015), ventilation rate,
temperature, and hygiene of high contact surfaces manifested as
health- and performance-threatening IEQ parameters in
classrooms. A 70-school district in the United States was
monitored during two academic years in terms of ambient air
temperature (T), relative humidity (RH) and carbon dioxide
(CO2). Settled dust and cleaning effectiveness, as well as
student data (socioeconomic background, absenteeism,
performance, and number of visits to school nurse) was
recorded. Significant associations were stricken between high
academic grades and levels of T and CO2 as well as between
CO2/culturable bacteria and medical visits due to respiratory or
gastrointestinal symptoms. Furthermore, IEQ measurements and
perception analyses in nine naturally ventilated schools in
Athens, Greece (Dorizas et al., 2015) revealed that PM and
CO2 levels were significantly and positively correlated with
SBS symptoms, scholastic performance, and health symptoms.
However, the personal perception of IAQ degradation was rather
insensitive to increased levels of particulate matter, while being
strongly correlated with temperature variations. This is in line
with (Stazi et al., 2017), according to which temperature was the
key driver for students’ control actions on ventilation, while CO2

increments went unnoticed.
Other studies highlight that passive buildings, even those built

upon sustainability principles, are prone to inadequate
ventilation. Almeida and de Freitas (2014) verified the IEQ
impacts of the rehabilitation of school buildings via retrofitting
in Portugal. They monitored annual T, RH, CO2, and ventilation
rates in 24 classrooms across nine school buildings, out of which
seven were retrofitted. Non-retrofitted buildings were compared
against retrofitted schools with HVAC or natural/mechanical
ventilation systems. Statistical analyses and simulations
confirmed that 1) the ventilated schools were the best-
performing, 2) non-retrofitted schools provided inadequate
IEQ throughout the year, and 3) retrofitted classrooms were
affected by the limited use of mechanical ventilation, thus
experiencing serious overheating episodes. Further IEQ
analyses in a secondary school Germany (Ortiz Perez et al.,
2018) demonstrate the complexity of maintaining adequate
IEQ levels in passively ventilated classrooms even in case of
high frequency of ventilation, pointing towards the need for
capillary monitoring and control of rooms, also for energy
minimisation. The same inefficiency was found in passively
ventilated school buildings in Italy (Schibuola and Tambani,
2020). An experimental campaign was carried out in
wintertime in four classrooms having similar shape, size,
occupancy pattern, windows type, and dimensions and the
interlink between IAQ, ventilation rate, Hazard Index, and
Cancer Risk was investigated. It was found that 1) in absence
of appreciable internal pollution sources, the indoor
concentrations of chemical pollutants were correlated to the
corresponding outdoor concentrations and 2) manual
operation of ventilation controls was insufficient to guarantee

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 7259742

Ulpiani et al. IoT Living Lab for Enhanced IEQ

74

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


acceptable IAQ levels over 24 h. To tackle such a need for smart
ventilation in schools, a sense-and-act approach in a secondary
school is proposed in (Stazi et al., 2017) where an automatic
system opens and closes the hopper windows based on
Humphreys’ adaptive algorithm (Humphreys et al., 2013) with
coefficients adjusted to the specific climate and CO2 levels. The
research was carried out in two similar and adjacent classrooms,
one equipped with the automatic system, one left to manual
operation. Results proved that CO2 and T comfort levels easily
surpassed the acceptable range in both classrooms, however, the
automated system promptly restored acceptable levels, while
control actions in the manually-operated classroom
(particularly associated with CO2 levels) were typically
untimely. A similar approach was proposed in Sydney,
Australia (Haddad et al., 2021), where two adjacent classrooms
were characterized in terms of infiltration and ventilation rate,
and were monitored to measure thermal comfort and air quality
during the school year. One room only was equipped with a
cloud-connected, demand-controlled mechanical ventilation
system. Under automatic control of air extraction, CO2 levels
were largely maintained within comfortable and attention-
preserving levels. Peak values were shaved by nearly 70% as
compared to the free-running twin classroom.

Previous studies support the need for high spatial and temporal
resolution monitoring of IEQ in educational buildings to track its
distinctive variability, which can then feed into human-centric and
automated control actions for enhanced air quality and thermal
comfort. So far, however, limited studies have deployed expansive
sensor networks that also provide a long-term assessment of
educational buildings for different environmental conditions and
occupancy patterns. The emergence of low-cost, internet-enabled
environmental sensors aims to address this shortcoming,
establishing educational buildings as living labs for integrating
innovative sensing, data analytics, and automated control
methods that enhance IEQ. An example of such large-scale
Internet-of-Things (IoT) sensor deployment in schools is seen in
(Palacios Temprano et al., 2020), where 280 classrooms hosting
nearly 10,000 children are continuously monitored for 5 years.
Preliminary results reveal how indoor climate conditions differ
considerably across classrooms and throughout the academic
year, indicating that sensors need to be installed in each
individual classroom and for at least one academic year to build
up accurate, longitudinal IEQ assessments and capture causal links.
The heterogeneity of IEQ is further exacerbated in university
buildings - where occupants are more diverse (encompassing
students, academic, professional, and management staff, and
visitors) and follow a less-regulated occupancy schedule
compared to primary and secondary schools. IoT environmental
sensing can be used to detect this distinctive variability and
transform it into tailor-made local control actions. An example is
described in (Luo et al., 2021), where the authors demonstrate that
IoT networks implemented locally can help determine the natural
ventilation potential and its optimal utilization throughout the year.

The present study aims to address the need for comprehensive
and continuous monitoring of IEQ, and is novel in three main
aspects. First, it applies a fine-grained IoT monitoring approach
by setting up a capillary indoor sensor network in a designated

university building, looking not just at classrooms and offices but
at all occupied spaces including labs, meeting rooms, and print
rooms. By profiling the IEQ behaviour of different room types on
account of orientation, floor level, A/C provisions, and access to
environmental controls, this approach makes it possible to strike
associations between microenvironmental characteristics and
IEQ preservation, thus eradicating the misconception of one-
fits-all IEQ solutions for highly variegated educational
environments. Second, it investigates not only seasonal
variabilities, but also behavioural and weather extremes by
comparing the statistical behaviour of the monitored building
under standard occupancy against that under the 2019/2020
catastrophic bushfire season in Australia as well as the
COVID-19 lockdown period. Lastly, this study targets an IEQ-
sensitive subclass of educational buildings: low-tech university
buildings, designed based on natural ventilation and novel design
practices committed to sustainability principles. Despite these
intentions, a post-occupancy user satisfaction survey revealed
that the building (the Red Centre, University of New South
Wales, Sydney) ranked third from the bottom amongst 30
institutional and commercial buildings throughout 11
countries (Baird, 2013). Understanding the reasons behind its
poor IEQ performance is key to delivering good practices and
strategies for other buildings alike. Furthermore, COVID-19
pandemic has prompted renewed interest in the assessment of
deficient indoor air quality conditions, especially in educational
buildings. Notably, recent studies point to the need for indoor air
quality monitoring and prediction solutions based on IoT and
machine learning capabilities (Mumtaz et al., 2021) as well as
reassessing ventilation protocols (Alonso et al., 2021; Meiss et al.,
2021). Accordingly, we further discuss the insight gathered from
the data collected during the COVID-19 pandemic.

In the following section (Materials and Methods section),
the case study is presented and critically analysed, followed by
a detailed description of the experimental method, the sensor
network and the research framework in light of relevant
international and Australian standards. The outcomes are
presented in the Results section, broken down into general
time trends, site characterization, and distinct patterns under
non-nominal conditions (bushfires, lockdown). By means of
statistical analysis, including mutual information analysis of
correlation, we investigate the site-specific IEQ performance
across different seasons and quantify the proclivity to extreme
events. We use the Heat Index to merge the effects of
temperature and humidity and delineate heat safe
conditions. We further perform mutual information analysis
to look into linear and nonlinear correlations and to
interrogate the role of indoor and outdoor parameters in
establishing heterogeneous IEQ conditions. Discussion and
Design Guidelines and Conclusion sections discuss and
summarize the main findings.

MATERIALS AND METHODS

This section introduces the case study characteristics and the
Internet-of-Things (IoT) strategy adopted to investigate its
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spatio-temporal variability of indoor thermal comfort and air
quality. IEQ metrics adopted for determining the performance of
monitored spaces are also detailed.

Case Study and Background Climate
This study is focused on establishing a living lab in the Red Centre
building located in the Kensington campus of the University of
New South Wales, Sydney, Australia (Figure 1A). The climatic
subtype of Sydney is classified as temperate with warm summer
and cold winter, according to the modified Köppen-Geiger
classification system used by the Australian Bureau of
Meteorology and based on a standard 30-years climatology
(1961–1990) (BOM, 2021a, Australian Government). The
campus area is largely influenced by moist, maritime airflows
from subtropical anticyclonic cells to the west. Located in the
Southern Hemisphere, the coldest month is July, with a mild
average temperature (mean maximum temperature around 16°C
and mean minimum temperature of 8°C) and sporadic frosts. The
hottest month is January (mean maximum temperature around
26°C and mean minimum temperature just below 20°C), with

generally high daytime temperatures, quite distinctive diurnal
oscillations (>7°C) and frequent warm, oppressive nights (BOM,
2021). Winter rainfall is derived primarily from frontal cyclones
along the polar front, whereas summer precipitation is driven by
convectional thunderstorm activity and enhanced by tropical
cyclones. Statistically significant increasing tendency of average
temperatures and extreme heat events have further been reported
in recent years as compared to the beginning of the XXI century
(Livada et al., 2019; Yun et al., 2020).

The Red Centre building is particularly selected as it was
constructed considering a variety of natural ventilation strategies
- including cross ventilation and air updraft by solar chimneys -
that aim to integrate passive environmental control and energy
efficiency principles during the design stage (Figure 1D). Air-
conditioning (A/C) was restricted, except for high internal load
areas like computer labs, meeting rooms, studios and for occupied
areas in the basement (Baird and Marriage; Baird, 2003) where
A/C was provided by single-split air conditioners. In absence of
A/C provisions, a number of ceiling fans was installed,
proportional to the floor area. The building stretches across 6

FIGURE 1 | The case study: (A) geolocalization of the University Campus and the Red Centre Building (red marker) with reference to Sydney’s center to the north-
west, the coastline to the east and the outdoor data reference station (see Sensor Network section); (B) North-West view of the building including the vertical shading on
the western facade; (C) frontal (north) view of the building where the terracotta tiles and the solar chimneys are implemented; (D) schematics of the ventilation strategy
comprised of internal passages and discharge through the solar chimneys.
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levels, on top of basement, ground level and mezzanine, each
connected to the lower levels by complex architectures of air
passages aimed at verticalized exhaust air expulsion. The building
is 150 m long and 15.7–19.3 m wide, with a total internal area of
about 16,000 m2 (Baird, 2003) and an almost perfect alignment

with cardinal directions (<10° mismatch). Its strategic exposure to
the north/south axis, and its limited depth along the east-west axis
allows for a high proportion of natural lighting. Other passive
sustainability principles include the protection of the west glazed
facade with operational vertical shading devices (Figure 1B), and

FIGURE 2 | GIS representation of monitored rooms across the different levels of the Red Centre. The three colormaps correspond to room use, presence of air
conditioning systems, and fans. The numbers on the maps correspond to the MyAir identification number, as reported in Supplementary Appendix Table A1.
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the localized increase in thermal mass by making use of terracotta
tiles on the northern facade (Figure 1C). The southern side is
typically characterized by glazed facades with louvres, while the
northern side typically features twin glazing “slots” to avoid glare
and sunlight overexposure.

Despite the technical adroitness and the number of awards
received for sustainable design, the Red Centre building largely
fails at preserving IEQ. In 2015, a post-occupancy user
satisfaction survey was conducted on 30 highly sustainable
institutional and commercial buildings across 11 countries (Baird,
2013). Respondents were asked to rate 45 factors on a 7-point scale,
including 1) operational aspects (e.g., space use, furniture, facilities),
2) environmental aspects (e.g., temperature and gradients, humidity,
air quality), 3) lighting (e.g., natural/artificial light, glare), 4) noise
(e.g., source and magnitude, frequency of undesired interruptions),
5) personal control (e.g., access to HVACs controls, to windows
operation, to noise source switches), and 6) user satisfaction (e.g.,
comfort, health, productivity). The Red Centre building ranked 27th
overall, 27th in terms of comfort, 23rd in terms of health
preservation, and 25th in terms of perceived productivity and
was noted as being excessively cold in winter, hot in summer
and noisy. Most penalties were associated with excessively intense
ventilation and wind whistling across the building. The survey
emphasized that, with exception of image and lighting which
scored well, most other IEQ aspects were poorly addressed and
ventilation was substantially misapplied.

Sensor Network
To investigate the reasons behind poor IEQ performance, a fine-
grained IoT sensor network was established across the building
from the basement to level 6, distributed in offices, classrooms,
computer labs, studios, meeting rooms, print rooms, media
rooms, and multilevel study areas. Figure 2 shows a GIS
representation of room locations on different floors and sensor
locations within each surveyed room. Supplementary Appendix
Table A1 provides additional quantitative and qualitative
information used to characterize the different rooms, including
HVAC provisions (e.g., A/C units, fans), and window
characteristics (e.g., facade coverage, shadings, operability).
Sensor numbering in Figure 2 corresponds to that in
Supplementary Appendix Table A1.

The MyAir sensors deployed in this study represent an in-
house, low-cost multi-parameter detector that includes an
Arduino board with twin full-colour LEDs and three onboard
sensors developed based on IoT paradigms. The sensors monitor
four parameters: CO2 (Non Dispersive Infrared sensor, T6713
Amphenol), TVOCs (metal oxide semiconductor sensor, CCS811
AMS), and T/RH (thermistor, BME280 Adafruit). All
components are open source, including hardware schematics,
firmware, server back-end, front-end and sensor data. The
sensors were calibrated against the LST Heat Shield
(ELR610M) and Aeroqual (Series 500) Portable Indoor
Monitor, which are scientific grade sensor solutions for
microclimate and air quality analysis. During calibration, the
MyAirs returned reliable and stable measurements under a
variety of thermodynamic conditions with recorded accuracy
of ±0.9°C for T, ± 3.5% for RH, ± 3% for CO2 and ±30 ppm

for TVOCs. Additionally, to inform the occupants’ activities and
decision making in real time, a LED-coloured indicator was
added on the front side to reflect the indoor CO2 level. The
readings are sent to the real-time visualisation dashboard and
stored in the cloud-based storage server (UNSW, 2021). 65MyAir
devices were originally installed in the Red Centre building in
December 2018, at 1.5 m above the floor, away from doors,
windows and A/C units. The sampling time was set to 15 s.

The monitoring campaign discussed in this paper represents
the period between February 18th, 2019 and May 31st, 2020. This
window is selected to analyse IEQ not only in a period with
standard occupancy, but also the Black Summer bushfire season
(peaking between November 2019 and January 2020) and the
COVID lockdown period (March 31 - May 30, 2020). This
extended analysis offers a unique opportunity for comparison
and identification of IEQ anomalies associated with extreme
natural hazards and occupancy patterns.

Within the first 2 weeks of monitoring, several sensors were
deemed faulty (with regards to connection to the cloud server),
vandalized, or stolen in public locations. Accordingly, compared
to 65 sensors initially set up, a smaller number is used in each
analysis presented, based on either having >75% readings across
the whole monitoring campaign (38 sensors) or having >90%
readings within comparative periods (23–42 sensors). The
comparative periods last 1 month each and are hereinafter
referred as 1) Term 1 (1–30 April 2019), Term 2 (1–31 July
2019), Bushfire (1–30 November 2019), and COVID-19 (1–31
May 2020). Term 1 and Term 2 indicate the academic terms with
hottest and coldest outdoor conditions and are representative of
standard occupancy levels. Bushfire is representative of late
spring conditions exacerbated by catastrophic bushfires all
around the city of Sydney. “Safer-at-home” orders were issued
during this period. COVID-19 is representative of the pandemic
“stay-at-home” period in autumn 2020. Supplementary
Appendix Table A2 collects the list of sensors used for the
analysis of each considered time period.

Over the same period, outdoor data was taken at a NATA-
accredited meteorological and air quality monitoring station less
than 2 km away from the Red Centre building, established by the
New South Wales (NSW) Department of Planning, Industry and
Environment (DPIE) network. The outdoor measurements are
included to 1) investigate the indoor-outdoor inter-parameter
correlations, and 2) identify which rooms were more responsive
to outdoor variations.

IEQ Metrics
Here, we focus on indoor thermal comfort and air quality as
metrics for IEQ. Thermal comfort is one of the most common
metrics in IEQ analyses and found to be strongly correlated with
occupants’ working performance and productivity (Abdul
Rahman et al., 2014), health and morbidity (Quinn et al.,
2014) as well as perception of indoor air quality (Fang et al.,
1998).

Comfort indices customarily account for six parameters
affecting human thermoregulation (air temperature, air
velocity, humidity, mean radiant temperature, metabolic rate
and thermo-physical properties of clothing) and are
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commonly calculated based on the heat balance of the human
body (Potchter et al., 2018). In indoor environments, however,
low wind speed and solar radiation is assumed, leading to the
estimations of thermal comfort based on temperature and
humidity measurements. Several temperature-humidity
indices are well established internationally for indoor
environments or in shade and have been extensively used in
literature: the Heat Index (HI), the Thom’s Discomfort Index
(DI), and the Humidex (HD). Thom’s DI fails under cold
conditions, and climate-specific variants are better used when
available (Moran et al., 1998; Chernev et al., 2012). HI is used
operationally by the US National Weather Service (NOAA,
2021), while HD is the standard Canadian index
(Government of Canada, 2021). Previous research proved
that HD very often leads to the underestimation of
workplace heat-related dangerousness and a poor reliability
of comfort prediction when it is used in indoor situations
(Alfano et al., 2011). Accordingly, in this study, we applied
HI analysis for the summer (Rothfusz and Headquarters, 1990)
and referred to existing thermal comfort Standards for the
winter given the available microclimate data and information.

Beyond microclimatic parameters, CO2 and VOCs are two
common indoor air pollutants associated with indoor ventilation
rates, SBS symptoms and health risks (Apte et al., 2000; Apte and
Erdmann, 2002; Norbäck and Nordström, 2008; Gallego et al.,
2011). CO2 is a typical indirect metric of occupancy levels,
amount of ventilation, and electronic appliances use, whereas
VOC emissions are in the form of gases released from common
furniture materials and appliances, such as wood products,
photocopiers, printers and cleaning products. These
compounds are extremely sensitive to both occupancy and
pollution episodes, which makes them especially meaningful in
comparing the control period of standard occupancy (Term 1)
with natural (Bushfire) and anthropogenic (COVID-19)
extremes. Besides, the locally dominating arboral genus,
Eucalyptus, is a major natural polluter of biogenic volatile
organic compounds (BVOCs) such as isoprene and
monoterpenes, whose normal emission rate gets amplified
during bushfire events (Bolan, 2020).

In this study, we adopted standardized thresholds to identify
different health risk levels for each of the considered IEQ indexes.
The United States NationalWeather Service classifies HI into four
categories including Caution, Extreme Caution, Danger and
Extreme Danger, associated with a range of potential health
effects under prolonged exposure (Nws, 2021). Indoor CO2 is
classified based on commonly-used international guidelines, into
6 categories ranging from Good to Hazardous, (Saad et al., 2017).
The impacts on cognitive performance and health (e.g.,
headaches, dizziness, vomit) soars when CO2 reaches
1,000 ppm (Loh and Andamon; Satish et al., 2012), which is
the commonly accepted threshold for indoor CO2 concentration
in literature and regulations (Daisey et al., 2003; ANSI/ASHRAE,
2016; Abcb, 2018). Finally, the German Federal Environmental
Agency has expanded the World Health Organization (WHO)
guidelines for TVOCs classification (World Health Organization,
2000) to incorporate 5 classes of increasing health impact from
Excellent to Unhealthy (Umweltbundesamt, 2007). The different

classes and their corresponding class limits are listed in
Table 1 below.

RESULTS

General Descriptive Analysis
Figure 3 depicts all measured variables across the 15-months
monitoring period, based on available MyAir sensors (coloured
dots in the background). The daily means of all sensors in the
occupied hours (9am–6pm) are overlapped as black lines with the
yellow shade indicating the standard deviation range. The grey
vertical blocks in the background identify weekends, while the
arrow-like annotations on top of the figure locate the comparison
periods across the timeline. For pollutants, the health
classification is displayed as well in the form of dashed
horizontal lines and is labelled according to Table 1. For T
and RH, the blue lines with diamond-shaped markers denote
outdoor measurements. Table 2 complements the trends in
Figure 3 by reporting general statistics on minima, means and
maxima among the whole set of MyAir sensors, considering the
15-min time-averaged data.

On average, the hottest and coldest months in the indoor spaces
wereMarch (average of 30.2°C) and August (average of 13.6°C), yet
extreme hot days also occurred in April. The most humid time of
the year was January, February, and November (average of ∼85%),
while the driest occurred between June and August (average of
∼37%). CO2 and TVOCs typically hit higher concentrations in
summertime (November-December) and October-November, and
reached lower concentrations in October and April, respectively.
Over the period of analysis, the hourly mean outdoor T was 18.1°C,
hitting a maximum of 41.7°C in the middle of the bushfire season
(late January 2020) at peak hours, and a minimum of 4.2°C in mid-
winter (August 24, 2019) in the early morning. The corresponding
values in terms of relative humidity were 70.3%, 100% and 7.3%
with both maximum and minimum occurring between November
and December 2019, in the morning and afternoon respectively.
These trends impacted on different rooms in the building in a
distinct way.

The absolute maxima of indoor T, RH, CO2, and TVOCs
observed in sensor measurements were 38.0°C, 100%, 4,688 ppm,
and 1,156 ppb, respectively, and were recorded over occupied
hours on workdays. Notably, the Tmaximumwas observed in the
morning during summer term, while the CO2maximumwas seen
in March 2020 right before the beginning of COVID-19
lockdown at about 3pm. Both RH and TVOCs maxima were
measured on the same day (Aug 12, 2019) between 5 and 6 pm. T,
RH and TVOCs maxima were all measured in individual offices,
located on Level 2 (T) or Level 4 (RH and TVOCs). In sharp
contrast, the CO2 absolutemaximumwas recorded in a classroom
located on the mezzanine. All maxima occurred in north-oriented
rooms featuring no A/C. The maximum averages were 27.8°C,
76.3%, 675 ppm and 109 ppb, with all values (but RH’s) higher
than measurements averaged for the entire week (including
weekends and nights). The maximum of average T (for all
sensors) was measured in an individual office on Level 2,
facing north, whereas the maximum RH mean was measured
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in a studio on Level 1, facing south. In both cases, no A/C was in
use. Conversely, air-conditioned rooms were conducive to higher
average pollutant concentrations: the maximum CO2 mean was
recorded in the print room on Level 1, while the maximum
TVOCs mean was recorded in a staff office in the basement.

Interestingly, the room use associated with most absolute
maxima (individual offices) was also associated with most
absolute minima, at 10.3°C, 17.3%, 232 ppm and 0 ppb.
Indeed, RH, CO2 and TVOCs minima were all measured in
individual offices on different levels (2 north-side,4 north-side
and 5 south-side respectively), with no A/C. The absolute T
minimum was reached in a classroom located on the ground
floor, western-oriented and air-conditioned, and not in colder
months. Minima in T and CO2 were aligned in time as both
occurred in March 2020 early afternoon, but even more aligned
were the minima in RH and TVOCs both recorded on June 24,
2019 at around 5:30 pm. The minimum averages were 19.3°C,
43.6%, 432 ppm and 23 ppb, with all values (but RH’s) higher
than those measured for the entire week. The minimum T and
RH averages were measured in non-air-conditioned rooms on
Level 2, the former in a south-exposed classroom, and the latter in
a north-exposed individual office. Conversely, both CO2 and
TVOC minimum averages occurred in meeting rooms, located
in the basement and Level 2 and featuring A/C and ceiling fans
respectively.

Overall, the absence of an air-conditioning system was
conducive to greater indoor extremes. North-exposure was
associated with both T maxima and maximum means. In the
southern hemisphere, north-facing windows receive twice the
winter Sun than east and west facing windows, allowing light and
warmth into the building. Relative humidity peaks are associated
with the availability of moisture and latent heat which depends on
people and their activities, construction materials, and presence
of cold surfaces, water sources (e.g., kitchens), and rain
penetration. Windows, walls, and doors that lack proper
insulation and tightness and have limited exposure to Sun
radiation are common cool surfaces. This explains why
maximum RH mean levels were measured in high-occupancy
rooms potentially featuring a variety of moisture sources
(studios), located close to the ground and facing south, where
shading from neighbouring elements (e.g., building, trees) is most
effective and sunlight penetration is weakest. In terms of room
use, individual offices exhibit a distinctive behaviour. Indeed, they
represent the smallest rooms on average and thus accumulate
heat, moisture, and pollutants more easily and more promptly.
Having a small air volume with one longitudinal, highly

transmitting windowed side, these rooms respond very quickly
to outdoor variations too. On the other side, as one single person
is typically the greatest source of all measured parameters and
controls all ventilation adjustment actions, these rooms are
extremely susceptible to occupancy patterns and comfort-
restoring actions, which explains the variability range.
Maximum means in pollutants concentration are associated
with the room use and ventilation rates, which justifies the
poor air quality in print rooms and the accumulation in the
basement. Cleaning and renovation activities also occurred
during the monitoring period which are mostly associated
with TVOCs peaks.

Site Characterization
Room use, level, orientation, HVAC provisions, and window
extent and operability are key actors in arbitrating IEQ levels
across an educational building. As such, the following analysis is
focused on spotting spatial heterogeneity and inter-parameter
associations conditioned over room characteristics. The analysis
is performed using the hourly dataset over occupied hours,
focusing on workdays only.

Role of Room Use Under Standard Occupancy
To get an understanding of how room use is associated with
higher or lower IEQ levels, we focused on the time period with
standard occupancy and warm-to-hot outdoor conditions (Term
1). Figure 4 shows a combined box and swarmplot of hourly and
daily averages respectively, grouped by room use. Only sensors
with more than 90% data over the studied time interval are
considered (Supplementary Appendix Table A2). All room
types are represented here except for the print room, which
was monitored by only one sensor and will be discussed later.
The average is further displayed as a green horizontal line and
used to order the boxplots (decreasing mean).

During Term 1, rooms exhibited distinct behaviors,
summarized in Table 3. Computer labs and individual offices
exhibited the highest T mean (24.6°C). High local production of
heat from local appliances, typical elevation, exposure, presence
of partially glazed facade and absence of solar shadings are major
triggers and further explain why computer labs, together with
classrooms, exhibit the highest mean CO2 (527.0 ppm) and
TVOCs (82.0 ppb) concentrations with significant extreme
episodes. As observed in General Descriptive Analysis section,
individual offices tend to experience high variability and the most
extreme high-temperature events. This is demonstrated by the
wide interquartile (IQR) range (4.6°C) and the dense cloud of

TABLE 1 | IEQ Classification based on Heat Index and measured pollutants.

HI [°C] CO2 [ppm] TVOCs [ppb]

Caution 26.7–32.2 Good <380 Excellent <65
Extreme Caution 32.2–39.4 Moderate 380–450 Good 65–220
Danger 39.4–51.1 Unhealthy for Sensitive 450–1,000 Moderate 220–660
Extreme Danger >51.1 Unhealthy 1,000–5,000 Poor 660–2,200

Very Unhealthy 5,000–30,000 Unhealthy 2,200–5,500
Hazardous 30,000–40,000
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recordings above 26.7°C. Reasons include the low air volume and
the presence of portable heating devices which also result in drier
air (mean of 55.0%, typical range � 46.6–64.0%). In terms of

pollutants, individual offices had the lowest CO2 and TVOCs
means (470.5 ppm and 51.7 ppb), mainly due to lower internal
gains. While heat cannot be efficiently controlled due to the

FIGURE 3 | Time trends of temperature, relative humidity, CO2 and TVOCs between February 2019 and JuneMay 2020. Outdoor measurements are taken from
the DPIE station located in Randwick. A blackout period occurred between the 14th and the December 21, 2019, causing all MyAirs to stop recording.
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TABLE 2 | Statistical analysis across all MyAir sensors and over the entire observation period (Feb 2019–Jun 2020).

Minima Mean values Maxima

T RH CO2 TVOCs T RH CO2 TVOCs T RH CO2 TVOCs

mean 16.0 25.6 328.9 0.4 23.1 60.6 464.7 66.9 31.3 93.5 1589.2 1091.4
Std 2.5 7.3 34.5 0.9 1.7 6.1 29.3 28.4 2.6 6.3 692.9 135.7
Min 9.3 15.0 204.0 0.0 19.5 46.1 432.1 21.5 24.5 74.0 514.5 301.0
25% 14.6 21.4 320.0 0.0 21.9 57.2 445.3 46.9 29.7 89.5 975.1 1109.8
50% 16.0 24.0 329.5 0.0 23.4 59.4 452.9 59.8 31.2 95.0 1416.8 1129.5
75% 17.4 28.0 344.3 0.5 24.5 63.1 481.8 90.3 32.6 100.0 2008.3 1148.8
max 23.5 59.0 391.0 4.0 26.4 82.2 588.3 129.7 38.0 100.0 2950.0 1156.0

FIGURE 4 | Different IEQ behaviour across different room types under standard occupancy (Term1). The y-axis limits are adjusted for a better visual comparison of
results. The swarmplots show daily mean observations and complement the representation of the underlying hourly distribution (boxplots).
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considerable solar gains (due to exposure, insufficient shading
provisions), the combination of operable windows and ceiling
fans proved sufficient in limiting the accumulation of pollutants.
Meeting rooms experienced fairly comfortable thermo-
hygrometric and pollution levels, likely caused by the irregular
occupancy pattern, scattered in time and short-lasting.
Temperatures were lower compared to individual offices and
computer labs, yet higher than rooms having even higher
occupancy density (e.g., classrooms) but better ventilated. This
also explains the amount of outliers in CO2 and TVOCs charts,
with both reaching unhealthy levels during closed-door meetings.
In staff offices (encompassing shared and open-plan areas), the
mean T is at 23.1°C, and the mean RH around 60.0% due to the
local presence of latent heat sources. While very limited health-
threatening events were recorded in terms of CO2, frequent
extreme TVOCs episodes occurred which can be imputed to
major renovations, re-painting and cleaning activities. The media
room (a multipurpose space outfitted for video-making and
media releases) exhibited limited temperature variability
(within ±1.5°C of the mean 22.8°C) but comparatively high

RH (46.9–71.1%). TVOCs never crossed unhealthy levels and
CO2 very rarely. The CO2 mean (475.6 ppm) was the second-to-
last across all room uses. This pattern is mostly related to its
sporadic and time-framed use. Multi-level study areas, located
across Level 5 and 6, exhibited medium-low T levels (mean of
22.7°C), yet high RH, CO2 and TVOCs (means of 62.1%,
493.8 ppm and 75.4 ppb). Despite benefitting from both
horizontal and vertical cross ventilation, this proved sufficient
only at removing heat, but not moisture and pollutants which
tended to accumulate on lower levels, gathering the contributions
of multiple floors. Further, these rooms are typified by non-
openable fully glazed facades, thus limiting the intake of outdoor
air. Classrooms were fresher (with T typically in the 20–25°C
range) and experienced limited TVOCs accumulation (levels
below 73.2 ppb) thanks to their south-exposure and operable
shading provisions, however mean CO2 was the highest
(527.3 ppm) and frequently crossed the unhealthy threshold
and high humidity levels (mean of 63.0%) occurred, both
likely caused by the high internal gains. Studios exhibited the
lowest T levels (mean of 22.1°C), and a relatively comfortable RH

TABLE 3 | Typical IEQ pattern per room use under standard occupancy.

Room use Main observations Causes

Computer lab - highest mean temperature
- highest mean CO2 and TVOCs
- relative humidity typically maintained between 50
and 66%

- located between the 2nd and the 3rd floor, south-exposed, with a partially glazed facade
having no solar shadings

- under standard occupancy, these rooms are densely occupied (exceeding 1.5 people/
m2) and affected by a considerable production of sensible heat and pollutants from local
appliances such as computers and personal electronic devices

- usually locked and used for lectures and tutorials which typically prevent or delay
occupants’ comfort-restoring actions not to interrupt the lesson (Stazi et al., 2017)

Individual office - highest mean temperature
- lowest mean relative humidity
- lowest CO2 and TVOCs means

- low air volume which increases the sensitivity to both outdoor- and indoor-generated heat
- north-facing rooms that tend to easily accumulate heat due to the higher thermal mass of
terracotta tiles on the outside

- no A/C in place
- partial shading provisions
- likely presence of portable heating devices, such as radiant units and extra emitting
equipment (multiple computers)

- low internal production of pollutants, ceiling fans combined with operable windows

Meeting room - generally comfortable thermo-hygrometric and
pollution levels

- pollution and heat peaks during closed-door meetings

- irregular occupancy pattern, scattered in time and short-lasting
- mostly located centrally and in the basement, with nowindows and direct outdoor air inlet.
Those exposed to the outdoors are completely shaded or mostly shaded. Half of them are
equipped with split systems, the other half with ceiling fans

- noise and privacy concerns are likely the key factors promoting closed-door meetings
resulting in adverse thermal comfort and air quality

Staff office - generally comfortable thermo-hygrometric and CO2

levels
- frequent extreme TVOCs episodes

- partially glazed facades, complete shading available, low occupancy density
- major renovations, re-painting and cleaning activities performed between 2019/2020
throughout the admin sector in the Red Centre

Media room - limited variability in T, CO2, and TVOCs - irregular occupancy pattern, scattered in time and short-lasting
- local humidity sources and reduced ventilation

Multi-level study
areas

- medium-low T levels, high RH, CO2 and TVOCs - efficient heat removal by horizontal and vertical cross ventilation
- humidity and pollutants accumulation at user level
- non-openable fully glazed facades, limiting the intake of outdoor air

Classrooms - high humidity and CO2 levels
- low T and TVOCs

- south-exposed with shaded and operable partially glazed facades
- high latent heat and carbon dioxide release from people
- no A/C in place

Studio - low T, but significant extremes
- comfortable RH and TVOCs levels
- moderate-high CO2 levels

- south-exposed
- fully glazed facades
- almost all located on Level 1
- no A/C in place
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range (50–71%). However, temperature levels were skewed
towards the upper quartile with extremes over 30°C, likely
caused by the presence of fully glazed facades, although south-
exposed. CO2 could surpass the unhealthy threshold, while
TVOCs stayed within moderate levels. Because CO2 is heavier
than air, it sinks to the lower floors across the building. Almost all
studios are located on Level 1 and feature no A/C that could
extract the excess CO2 or facilitate its removal.

The effect of seasonality is explored in Figure 5, where the
warmest (Term1) and coldest (Term2) periods of standard
occupancy are compared, based on sensors having more than
90% of data in both the time windows (Supplementary
Appendix Table A2). During Term 1, the outdoor
temperature was 18.9 ± 3.3°C with a maximum of 27.8°C and
a minimum of 9.8°C. Relative humidity ranged within 75.9 ±
14.9%, reaching a maximum and minimum of 98.6 and 23.4%,
respectively. During Term 2, the outdoor temperature was 6°

lower (13.0 ± 3.3°C) while relative humidity was nearly 13% lower
on average (62.5 ± 18.1%). The outdoor temperature is
consistently lower than indoor throughout the whole year.
This is attributed to the weather station location (green, open
area, closer to the coastline) and the internal gains.

In both Terms, the indoor temperature was 1–2°C warmer and
<5%more humid as compared to outdoor conditions, due to high
thermal transmittances, extensive glazed surfaces and emission of
latent heat from occupants. Some exceptions occurred. The
indoor temperature difference was much more limited in
computer labs and multilevel study areas, where the internally-
generated heat outweighed the heat loss through the building
envelope and to unconditioned indoors. Classrooms could reach
significantly lower temperatures having extensive shaded
windowed sides on the north facade. The relative humidity
difference was close to 15% on average, with multilevel study
areas touching a major gap of more than 20%. Generally
speaking, the humidity levels tended to equalize across
different rooms in the colder Term with medians within a 5%
range, compared to more than 10% in Term1. The reasons are to
be found in the extensive use of portable heaters that efficiently
dried the air down to a RH of about 45% on average. As for CO2,
mild discrepancies are observed between Term 1 and Term 2,
which entails that CO2 levels are not governed by seasonal cycles.
A standalone behaviour is that of classrooms where considerably
higher CO2 levels are recorded. The reason is likely behavioural:
while classes tend to start and go on with open windows during

FIGURE 5 | IEQ behaviour across different room types: comparison between warm and cold standard occupancy periods. The y-axis limits are adjusted for better
visualization. The swarmplots show all mean observations, on hourly scale, and complement the representation of the underlying distribution.

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 72597412

Ulpiani et al. IoT Living Lab for Enhanced IEQ

84

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


the warm Term, this is hardly the case during wintertime, when
windows and doors are kept closed to maintain the warmth
inside. As such, people’s respiratory emissions were not dispersed
as efficiently as in Term 1 and accumulated over unhealthy levels,
with the mean being nearly 200 ppm higher. Finally, the offset in
terms of TVOCs was negligible regardless of the room use.

The print room on Level 1 lacked enough data in Term 1,
however its IEQ pattern is of special interest due to a combination
of aggravating factors. Beyond the presence of printing devices,
the room is exposed to the outdoors on three sides, with the
northern being the longest. A single unshaded window of about
1 m2 stretches along the western side. No cross ventilation occurs
given that the door is spring-loaded to automatically close and
even though air conditioning is in place, ventilation is very
limited. The sensor continuously recorded from the April 14,
2019 on, as such a month period up to the May 15, 2019 was used
to characterize its behaviour in Term 1. The results over occupied
hours and workdays only are summarized in Table 4.
Temperature and TVOCs stayed very low, at levels
comparable to those of multilevel study spaces in Figure 4,
while relative humidity stayed high at levels comparable to
those of the media room. The most critical observation is
made in CO2 concentration: the average exceeded 937.8 ppm
which is 410 ppm higher than the highest level recorded by any
other room type during the same period, with an IQR of
482.4 ppm which is 10-fold that of other rooms. This suggests
that the average conditions inside the print room are unhealthy
for the sensitives and cross the health-risk threshold of 1,000 ppm
more than 25% of the time. Only a negligible improvement is
recorded in Term 2. This calls for major redesign measures in
order to meet minimum liveability levels.

Proclivity to IEQ Deterioration
In this section, statistical analysis is performed to identify which
rooms were more prone to seasonal IEQ extremes and
criticalities. Only sensors having more than 90% recordings
over each season were included (Supplementary Appendix
Table A2). Upper and lower outliers are those exceeding the
75th percentile or falling below the 25th percentile by 1.5 times
the interquartile range. For each sensor and each parameter, the
percent occurrence of upper and lower outliers was computed.
Figure 6 is a summary GIS representation of the 4 most critical
extremes in terms of IEQ deterioration: summer upper outliers
for T and TVOCs, winter lower outliers for RH, and winter upper

outliers for CO2. It allows immediate visualization of the locations
most prone to extreme conditions.

Most high extreme temperature events occurred in
summertime, with 22% of the sensors recording outliers. The
maximum percent occurrence was 4.5% in the north-oriented
meeting room at Level 5. Comparatively, 16.7, 7.9, and 12.1% of
the sensors recorded outliers in autumn, winter, and spring with a
maximum of 3.6% of the time. Lower outliers mostly occurred in
springtime with 36.4% of the sensors measuring up to 28% of the
time below the threshold. Most extreme dry events took place in
winter, with 78.9% of the sensors measuring outliers. In an
individual office on Level 2, extreme dry events occurred for
41% of the time, likely caused by an overuse of portable heaters.
Dry events were recorded at almost all locations also in other
seasons but rarely surpassed 10% of time. Conversely, extreme
humid episodes concentrated in summertime but over limited
time periods (<1%). CO2 extreme events exacerbated in
wintertime, with 84.2% of the sensors recording poor air
quality, typically for more than 20% of the time. As
mentioned in Role of Room Use Under Standard Occupancy
section, the print room recorded the worst conditions with an
astonishing 74.1% of the time under extreme CO2 levels. Further
a computer lab on Level 2 and a studio on Level 1, both south
exposed, recorded outliers for more than 50% of the time. Almost
all sensors recorded extreme CO2 levels in any other season,
however the time coverage was typically lower than 20%. In terms
of TVOCs, summer was by far the worst season: all sensors
recorded outliers and most for more than 10% of the time. The
greatest time coverage was 38.3% and occurred in a centrally
located staff office in the basement.

The above analysis suggests that the most critical conditions to
moderate not to pose a risk on occupants’ health and productivity
are wintertime CO2 levels.

Heat Index
Heat stress occurs out of the boundaries of the zone of
homeothermy, namely the range of environmental conditions
in which humans maintain heat balance and thereby a steady core
temperature by minimal thermal adjustments (comfort zone) or
mild thermoregulating reactions like shivering and sweating
(Lacetera et al., 2003). Here, the hottest average indoor
temperatures were recorded in March 2019, while the highest
extremes were recorded in April 2019. Consequently, the heat
index analysis was performed contemplating both months.
Figure 7A shows the result, based on sensors having more
than 90% of data only (coloured dots in the background). The
daily means in the occupied hours (9 am–6pm) are overlapped as
salmon-shaded, red lines with the shade indicating the one
standard deviation span. The health classification thresholds
are displayed in the form of dashed horizontal lines and
labelled according to Table 1.

The mean HI ranged between 24.2 and 32.2°C, with the lower
limit measured in a north-oriented studio in the basement and
the upper limit in a north-oriented individual office on Level 2.
The maximum HI ranged between 26.4 and 41.7°C with the
absolute peak recorded in a centrally located studio in the
basement. Conversely, the minimum ranged between 14.3 and

TABLE 4 | Statistical analysis for the print room over Term 1 and Term 2.

Term 1 Term 2

T RH CO2 TVOCs T RH CO2 TVOCs

mean 23.3 61.7 937.8 43.1 23.2 43.9 898.2 54.9
Std 0.5 10 338.4 45.7 0.7 7 303.6 65.6
min 21.9 38 354.4 7 20.6 32.2 414.8 7.3
25% 22.9 51.4 654.1 17.1 22.6 39.3 620.5 15.8
50% 23.3 66.2 906.2 27.5 23.2 42.8 904.6 25.3
75% 23.6 69.2 1136.5 47.2 23.7 46.7 1097 60.6
max 24.8 74 2296.3 396.6 24.5 58.7 1782.3 346.5
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FIGURE 6 | GIS localization and categorization of rooms according to their proclivity to extreme events. From top to bottom: occurrence of summer upper T
outliers, winter lower RH outliers, winter upper CO2 outliers, and summer upper TVOCs outliers (percent time). Upper and lower outliers are those exceeding the 75th
percentile or falling below the 25th percentile by 1.5 times the interquartile range.
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24.5°C with the absolute low observed again in the north-oriented
studio in the basement. Maxima typically occurred in the 12–1
pm and 3–4 pmwindows. In contrast, minimamostly occurred in
the morning. Figure 7B shows the percent time spent into
increasing levels of health risk in the form of a boxplot. Heat
safe conditions were largely dominant, with two offices in the
basement never experiencing any sort of risk (possibly due to A/C
access). The lowest percent time in heat safe conditions (9.8%)
pertains to the individual office on Level 2 typified by extremely
dry air (which also scored the maximum percent time in the
Extreme Caution zone, 53.2%), followed by 29.2% in a west-
oriented studio on Level 4 (that also scored the maximum percent
time in the Caution zone, 68.5%). All rooms having significant
percentages (9–16%) in the Extreme Caution zone and even
above it are located in the basement. We observe that rooms
located in the basement may experience the best and worst HI
conditions depending on the efficiency of air conditioning and on
the ability to dissipate excess humidity. In terms of room use
(Figure 7C), individual offices hit the worst HI conditions, having
mean above the heat-safe upper threshold (27.4°C versus 26.7°C)

and 75th percentile close to the Caution threshold. Computer labs
follow closely with mean HI at 27°C, but much lower variability
(IQR equal to 2.1°C versus 3.4°C) and much less frequent
extremes. The media room in the basement and studios also
exists on the borderline of heat safe conditions (mean of 26.9 and
26.6°C) with HI distribution significantly skewed towards upper
values. As for the print room whose IEQ was deteriorated by CO2

levels, this analysis reveals how major redesign measures are
required for individual offices, computer labs, studios, and media
rooms in order to maintain heat safe conditions, on average.
Health-preserving strategies should target both temperature and
humidity as both contribute to establishing heat stress conditions
in the warm season (compare Figure 4). Meeting rooms, staff
offices and classrooms behave very similarly with mean levels in
the 25.9 ± 0.2°C range. Meeting rooms exhibit the least IQR
(2.1°C), comparable to that of computer labs. Maxima reach or
slightly exceed 40°C, thus trespassing the Extreme Caution
threshold. Minima typically stay around 20°C. Studios show
the widest variability by far, ranging between the absolute
minimum (14.3°C) and the absolute maximum (41.7°C). Much

FIGURE 7 | Heat index analysis: (A) time trends between March and April 2019; (B) boxplot of occurrences under different health risk levels and (C) box and
swarmplots of HI level broken down by room type, both showing mean observations, on hourly basis.
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safer conditions pertain to classrooms, whose variability range is
completely contained within the Heat Safe bounds, to the benefit
of students’ productivity and comfort.

Inter-parameter Correlations and Key Variables
In this section, the correlation among indoor and outdoor
parameters is investigated by means of Mutual Information
(MI) analysis. MI is a statistical metric that measures the
degree of “shared information” between time series x, y by
quantifying the difference between marginal and joint
entropies (Fraser and Swinney, 1986; Cellucci et al., 2005;
Frenzel and Pompe, 2007). It is typically normalized to range
between 0 and 1, where 0 connotes mutual independence, and
expressed as:

MI(X;Y) �
�������������������
1 − exp( − 2 · I(X: Y)√

(1)

where I is calculated based on the probability density p as follows:

I(X;Y) � ∫
R2

p(x, y)log( p(x, y)
p(x)p(y))d(x, y) (2)

MI is a powerful correlation measure for exploratory analysis
of variable pairs for three main reasons: 1) it captures both linear
and non-linear relationships, being equivalent to Pearson
correlation in the linear case, 2) it can be conditioned on a
third, possibly multidimensional, variable, being analogous to
partial correlation, and 3) it is invariant under monotonic
transformations of variables, including linearization.
Conditioned MI returns the degree of association with the
effect of a given controlling variable removed. For instance,
conditioning over the day of the year removes the effect of
seasonal cycles. MI has been applied in atmospheric science
(Zaidan et al., 2018, 2019) and urban analysis (Li et al., 2014;
Ryu et al., 2018; Ulpiani et al., 2021), revealing strong non-linear
associations especially when wind-related and air quality
parameters are concerned. In this study, we applied MI
correlation to look for the inter-parameter associativity under

standard occupancy (Term 1) via k-nearest neighbour search.
The correlation matrices for the rooms where maxima MI were
computed are shown in Figure 8. We also investigated if and
which site-specific parameters (e.g., altitude, orientation, A/C
provisions, window types and shadings) govern the strength of
correlation by applying conditional MI (Laarne et al., 2021). We
included outdoor parameters measured at the DPIE station in
Randwick, which comprised wind speed (ws), wind direction
(wd) and four outdoor pollutants (NO2, O3, PM10 and PM2.5),
outdoor temperature (Tout) and relative humidity (RHout).
Supplementary Appendix Table A3 collects the list of
parameters that were significantly correlated to the four MyAir
measurements. The significance threshold was set to 0.5, namely
midway between mutual independence and full correlation.

Relative humidity was, by far, the most correlated parameter,
followed by temperature, CO2 and TVOCs. The absolute
maximum correlation coefficient for T was with RH and
reached 0.88. It was recorded in a studio in the basement.
Temperature tended to be most correlated to RH (86.0% of
cases), Tout (7.0%) and CO2 (7.0%) while it exhibited mild
correlation with all other outdoor parameters and with
TVOCs. In terms of RH, the absolute maximum correlation
coefficient was the same as for T, measured in the basement
studio. Relative humidity was typically correlated with T (79.1%
of cases), equally followed by CO2 and wd (9.3%) and then by
RHout (2.3%). Indeed, in Sydney, the wind direction dictates
whether humid fresh air is entrained by the sea breeze from the
east or dry warm air is advected by desert winds coming from the
western fringe. This dualism has been largely investigated and
governs the magnitude and spatial heterogeneity of urban heat
island and outdoor heat stress (Santamouris et al., 2017; Yun
et al., 2020). As for CO2, the absolute maximum correlation
coefficient was with RH and reached 0.83. It was recorded in an
air-conditioned, west-exposed staff office on the mezzanine. CO2

tended to be most correlated to RH (74.4% of cases), T (20.9%)
and both Tout and TVOCs equally (2.3%). A strong linear and
positive correlation between carbon dioxide and relative
humidity was also found in other naturally ventilated school

FIGURE 8 | Inter-parameter correlation coefficients for MyAir #59, #51, and #25 (shown respectively from left) where maximum MI correlations were observed.
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buildings elsewhere in the world (Lazović et al., 2016). Finally, the
absolute maximum correlation coefficient for TVOCs was with
RH and reached 0.67. It was recorded in a non-conditioned,
north-oriented individual office on Level 3 that underwent
extensive cleaning during the time of observation (MyAir
#25). TVOCs were most typically correlated with CO2 levels
(34.9% of cases) and RH (32.6%), but in some cases significant
correlation was found with T (16.3%), wd (7.0%) and outdoor T,
ws, NO2, O3 parimerito (2.3%).

Floor level, orientation, room use, air volume, A/C and ceiling
fan provisions, cross ventilation, type of windows, level of
shadings and windows operability (refer to Supplementary
Appendix Table A1) were codified and included in the
dataset to verify whether knowing the room characteristics
could lead to stronger associations and thus better
predictability. We iterated across the different conditional
parameters and calculated the difference in correlation
coefficients between conditional and unconditional matrices.
Interestingly, only the floor level was associated with higher
correlation coefficients. The average increase was 0.09. Above
average increments are those in the mutual correlation between
T-CO2 (+0.17), RH-CO2 (+0.15), RH-TVOCs (+0.15), T-RH
(+0.14), T-wd (+0.14), T-ws (+0.11), T-Tout (+0.11), and
T-NO2 (+0.10). Hence floor level is a major trigger for inter-

parameter associations, especially in terms of pollutants. Since
CO2 and TVOCs are heavier than air, they travel all the way down
from the upper levels to the ground. At the same time warmer,
drier air tends to move upwards convectively, especially in
naturally ventilated buildings provided with vertical air
communication. This explains why the strength of correlation
between thermo-hygrometric and air quality parameters
significantly depends on the elevation.

Weather Extremes and Occupancy
Anomalies
This section is dedicated to the impacts of microclimatological
and occupancy anomalies on IEQ preservation by comparing the
control period of standard occupancy (Term 1) with the Bushfire
and COVID-19 subsets, respectively. The analysis is conducted by
considering the records of sensors having more than 90% data in
the paired time windows (Supplementary Appendix Table A2).

Figure 9 shows the impact of 2019/2020 Black Summer,
during which hundreds of bushfires ravaged the urban fringe
causing extreme pollution, heat waves and droughts. Themultiple
microclimatic impacts in the city of Sydney have been analysed
elsewhere and include 1) health-threatening PMs accumulation
due to long-transport mechanisms and complex interactions

FIGURE 9 | IEQ behaviour across different room types: comparison between warm standard occupancy period and bushfire. The y-axis limits are adjusted for a
better visual comparison. Boxplots and overlapped swarmplots show mean observations, on hourly basis during occupied hours and workdays only.
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between prevailing and local winds, 2) strongly attenuated UV
radiation and radiative forcing impairment, and 3) exacerbated
urban heat island intensity and absence of cool island events
(Ulpiani et al., 2020). In November 2019, a dense plume of smoke
blanketed the city and safer-at-home orders were put in place,
thus altering standard occupancy patterns. The outdoor
temperature was 19.7 ± 4.0°C (higher than Term 1 by less
than 1°C) with a maximum of 35.5°C and a minimum of
10.3°C. Relative humidity ranged within 63.9 ± 21.7% (lower
than during Term 1 by more than 10% and much more
fluctuating), hitting a high of 96.1% and an extreme low of
7.3%. These trends were closely reflected indoors, although
extreme events were all strongly exacerbated. The following
exemptions stood out. Computer labs are electronically locked
thus acting as hermetically sealed sinks for heat, moisture and
pollutants under periods of unoccupancy. Furthermore, extra
heat may have also been released by remotely controlled
computers as coarse dust from the bushfires amassed.
Computer overheating is most commonly caused by the heat
sink and fans being clogged with dust and debris. Indeed, the
mean T was 4.0°C above the mean of most other rooms and was
1.0°C above the mean in Term 1. Meetings, conferences, and
gathering stopped during the bushfires critical phase, thus
causing a significant decrease in internal heat gains in meeting
rooms as mirrored both in terms of sensible (T) and latent (RH)
heat balance. The Tmean was 0.5°C lower than in Term 1, and the
25th percentile was 21.3°C, 2.5°C less than in Term 1. A
standalone behaviour is that of the media room in the
basement, where humidity equalled Term 1 levels while
temperature dropped, suggesting intense evaporative cooling.
The T mean and maximum, 22.4 and 24.4°C respectively, were
nearly 2.4 and 6°C less than in Term 1. The reasons for this
specific trend require further investigation and might have been
caused by A/C failures and water leakages.

In terms of pollutants, very interesting and distinctive patterns
emerge in the comparison with Term 1. CO2 levels dropped
everywhere caused by the altered occupancy pattern. The
maximum offset was again recorded in computer labs and
amounted to −122.1, −115.9, and −336.4 ppm in terms of
mean, IQR, and maximum, respectively. The following largest
mean decrease pertained to the media room and the multilevel
study areas, hitting −87.8 and −18.5 ppm respectively, with
multilevel study areas showing also a significant drop in IQR
and absolute maximum (−51.3 and −130.9 ppm). The reduction
in means was around 5–20 ppm also in the other room types, but
milder in terms of IQR and maxima. The greatest drops were
recorded in rooms with high standard occupancy density (e.g.,
computer labs, classrooms) or receiving the contributions from
multiple floors (multilevel study areas), as those were most
impacted by the reduced flow of people. In sharp contrast,
TVOCs increased everywhere because of biogenic emissions
from biomass burning. The offset with respect to Term 1 was
greatest in computer labs, multilevel study areas, and meeting
rooms, reaching a maximum of 30.0, 14.5, and 58.9 ppb (mean,
IQR and maximum) in computer labs. The increase in meeting
rooms was comparable (26.7, 17.1, and 263.3 ppb), followed by
23.1, 23.5, and 668.7 ppb recorded in multilevel study areas.

These rooms remained locked with no A/C during the safer-
at-home orders and thus could not disperse air pollutants as
efficiently as during standard occupancy. Smart logics should be
put in place to control the A/C and door opening/closing cycles in
electronically operated rooms of these types to avoid generating
highly health-threatening indoor environments during bushfire
events. Such results suggest an urgent need to prioritize building
air tightness improvement, appropriate filtration techniques, and
emergency strategies to expel excess dust towards future-proof
buildings in Sydney and similar regions in the world, as also
stressed elsewhere (Rajagopalan and Goodman, 2021).

The role of occupancy levels and patterns emerges even more
vividly when comparing Term 1 with COVID-19 lockdown
period, as displayed in Figure 10. In May 2020, the outdoor
temperature was 14.9 ± 3.3°C (exactly 4°C lower than during
Term 1) with a maximum of 25.5°C and a minimum of 7.6°C.
Relative humidity ranged within 69.1 ± 17.1% (less than 10%
lower than during Term 1), hitting a high of 96.2% and an
extreme low of 29.1%. While during Term 2 the outdoor T offset
with respect to Term 1 was mitigated by 1–2°C indoors, during
the lockdown it got amplified in most room types by about 0.5°C.
Statistically significant gaps were recorded everywhere, with
reductions in the 75th percentile reaching 7°C under the
lockdown, given the concerted fall in heat gains from both
people and equipment. The only exception to this pattern is
represented by multilevel study areas whose temperature stayed
low in Term 1 too. Interestingly, the absence of people flattened
out the differences across room types with all T means lying
within a 1°C range across 20°C. This indicates that occupants and
their actions (including central A/C or portable devices
activation, windows/doors opening and closing) are pivotal in
driving room-specific average temperature levels. In sharp
contrast, the humidity levels in Term 1 and during the
lockdown show marginal differences (<5% for almost all room
types) as the loss of latent heat was largely compensated by higher
relative humidity under lower temperatures. This also explains
why the gap was especially narrow in studios and especially wide
in multilevel study areas.

Similar to the bushfire period, CO2 levels dropped everywhere.
The maximum offset was again recorded in computer labs and
reached −138.7, −136.8, and −445.3 ppm in terms of mean, IQR
and maximum, respectively, which closely resemble the values
recorded during the bushfire when the labs were closed as well.
The following largest decrease pertained to multilevel study areas,
whose corresponding drops amounted to −130.8, −69.2, and
−359.8 ppm larger than during the bushfire as a result of the
complete absence of people. The reduction in means was around
30–40 ppm also in the other room types, but milder in terms of
IQR and maxima. It is thus confirmed that greatest drops occur
where the occupancy density is typically higher or where multiple
floors are interconnected. Looking at TVOCs, the pattern is less
clear, with most room uses showing negligible changes. The only
rooms that experienced significantly higher TVOCs were
multilevel study areas, staff offices and studios. Notably, the
offset with respect to Term 1 reaches a maximum of 133.0,
147.5 and 858.0 ppb (mean, IQR, and maximum) in multilevel
study areas, again due to the vertical contribution from
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interconnected floors and the greatest air volume. All multilevel
study areas and staff offices on Level 5/6 underwent major
renovations and cleaning during the lockdown period which
explains the increase in TVOCs associated with the use of
cleaning products, paints and varnishes.

To further investigate the perturbing actions of bushfires and
COVID lockdown on the inter-parameter equilibria, we
performed mutual information analysis on the subset of
sensors having more than 90% of reading over Term 1,
Bushfire and COVID-19 periods. Then we calculated the
difference in correlation coefficients with respect to Term 1, to
determine which associations got stronger or weaker under
extreme events. We focused the analysis on 4 locations per
each period, where the absolute maximum, maximum average,
absolute minimum and minimum average difference was
recorded. The results are displayed in Figure 11. During the
bushfires, the absolute maximum difference (0.60) occurred in a
non-conditioned, north-oriented individual office on Level 4 and
affected the relationship between indoor CO2 and outdoor PM10.
The maximum mean difference (0.09) was recorded at the same
location, where the temperature was more correlated with O3, RH
with both PMs and TVOCs with wd. This suggests that, under
bushfire conditions, temperature-triggered photochemistry as
well as wet deposition phenomena are critical in defining the

IEQ conditions with a major role played by temperature,
humidity, and wind-related parameters. The absolute
minimum difference (−0.46) was detected in a north-oriented
individual office on Level 3 and affected the TVOCs-PM2.5

relationship, again induced by cleaning works. The minimum
mean difference (0.003) was recorded in a south-oriented
individual office on Level 5, where T was much less correlated
with NO2, RH with TVOCs and NO2, CO2 with TVOCs and O3,
and TVOCs with RH, CO2 and PM2.5. Such a wide decrease in
associativity is likely caused by the transient effects of pollutants
intake from the outdoors and the tendency to accumulate towards
lower floors. All major differences occurred in individual offices,
as their limited air volume was more responsive to short-lived
variations.

During COVID-19 lockdown, the correlations tended to get
stronger as more stable conditions were established across the
building. The absolute maximum difference (0.73) occurred in
a non-conditioned, south-oriented staff office on Level 4 and
affected the relationship between indoor CO2 and wind speed.
As people’s contribution to CO2 emissions disappeared, the
relative weight of outdoor carbon dioxide transported by the
wind increased. The maximum mean difference (0,17) was
recorded in a computer lab on level 3, where almost all
correlations increased by more than 0.5. This suggests that

FIGURE 10 | IEQ behaviour across different room types: comparison between warm standard occupancy period and COVID-19 lockdown. Boxplots and
overlapped swarmplots show mean observations, on hourly basis during occupied hours and workdays only.
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occupancy dictates the IEQ level in spaces of standard high-
density, on all counts. The absolute minimum difference
(−0.42) was detected in the centrally located studio in the
basement and affected the TVOCs-PM2.5 relationship. This
location experienced also the minimum mean difference
(0.08), since the correlations across indoor parameters were
strongly attenuated. This decrease in associativity is partly
compensated by the increase in associativity with outdoor
parameters, which, in the end, is the overarching effect of
the lockdown.

DISCUSSION AND DESIGN GUIDELINES

A public health imperative exists for educational buildings to
be heat- and pollution-safe, particularly on account of
escalating heatwaves and tropical nights events that impair
night flush cooling (Gershunov et al., 2009; Dengel and
Swainson, 2012). To achieve these objectives, results from
fine-grained and long-term measurements can be used in
identifying priority areas and emerging patterns, which can
inform re-design strategies for IEQ preservation. These
insights can be further useful for other buildings with
similar building types, usage, and characteristics.

Focusing on room characteristics, we find that:

• the absence of an air-conditioning system was conducive to
greater heat stress, while its presence triggered higher average
pollutant concentrations. This is particularly due to the fact
that passive ventilation systems - such as louvres that are
embedded to assist with air circulation in the building - entirely
rely on manual interventions that are not commonly used.
Accordingly, the optimum natural ventilation of the building
envisioned in the design is hardly achieved. This results in
significantly higher CO2 levels in rooms with high occupancy,
as users tend to be less sensitive to CO2 levels, further
supporting the need for automated demand-driven controls
that can be actioned informed by real-time data;

• north-exposure was associated with the hottest conditions,
suggesting a non-efficient use of thermally massive
materials, ineffectiveness of solar shading devices, and
limited natural ventilation;

• insufficient thermal insulation and air tightness result in
excessively humid episodes in high-occupancy rooms close
to the ground and facing south, where shading was most
effective;

• rooms located in the basement, which lack windows and
mostly rely on air conditioning, experienced the best and
worst heat stress conditions depending on manual
interventions to condition the air and dissipate excess
humidity.

FIGURE 11 | Significant inter-parameter correlation coefficient variation between Bushfire and Term 1 (upper row) and COVID-19 and Term 1 (lower row).
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Focusing on room use, we find that:

• individual offices (mostly north-facing) exhibited most
absolute maxima and minima, owing to the small air
volume, the highly transmitting windowed side, and the
extreme variability associated with occupancy patterns.
These rooms also represent the highest user autonomy and,
therefore, likelihood for implementing manual interventions.
The use of portable A/C devices and the amount of electronic
equipment should clearly be considered in individual offices to
enhance heat index and IEQ levels;

• computer labs exhibited the highest mean temperature,
CO2, and TVOCs, with significant extreme episodes.
Being densely occupied, electronically closed, and prone
to untimely comfort-restoring actions, these rooms, on
average, act as sinks for heat and pollutants and fail at
maintaining heat safe conditions. Particularly during
extreme events such as bushfires, these rooms should be
closely monitored and intensively ventilated to avoid
unhealthy conditions for occupants. This further extend
the service life of the electronic equipment from dust
clogging;

• studios exhibited HI conditions requiring caution and
significant pollution episodes, with CO2 crossing the
unhealthy thresholds. These rooms were mostly located
on lower floors, likely leading to the accumulation of
pollutants from upper levels in addition to local
emissions from typical equipment used on site.
Relocation of studio-like environments with higher
occupancy to upper floors should be considered;

• multi-level study areas benefited from better air circulation,
but were prone to extreme pollutant accumulation due to
the presence of fully glazed facades that cannot be opened;

• meeting rooms succeeded in maintaining the comfort zones
on average, but exhibited very high-risk events during
closed-door meetings. Both CO2 and TVOCs could reach
unhealthy levels in short periods of use. Due to concerns
regarding noise levels, doors are often kept shut which leads
to extremely unhealthy conditions particularly during
extreme weather events. Large, acoustically-insulated
grids or automated controls could be implemented to
maintain adequate cross ventilation while addressing
concerns regarding noise;

• staff offices were typically heat-safe, thanks to extensive
shading, very low occupancy, and AC provisions. Similar to
individual offices, these spaces are also more likely to be
subject to manual interventions. However, the presence of
TVOC-emitting equipment and major renovations
exacerbated TVOCs levels;

• classrooms outperformed all other environments in terms of
thermo-hygrometric conditions with no A/C in place,
particularly due to their south exposure, the extensive
provision of shadings and operable windows, and the
efficient cross ventilation. The temperature typically lied in
the 20–25°C range, theHI stayedwithin the heat-safe zone, and
TVOCs never crossed the unhealthy threshold in warm

periods. However, mean CO2 levels could put sensitive
people at risk and frequently crossed the unhealthy
threshold, with further accumulation in wintertime when
windows and doors were typically closed, thus stressing the
need for year-round ventilation strategies;

• Utility rooms (such as the print and media rooms) further
exhibited unique characteristics. The print room reached CO2

levels so high that health-threatening levels (even for short
exposure) were the norm. Major redesign measures are
imperative in order to meet minimum advised levels. On
the other hand, the media room in the basement, which is
sporadically used for media content production, frequently
experienced extreme HI episodes due to unusually high
humidity levels and equipment in use. This further suggests
that utility rooms, even if not regularly occupied, require active
control actions or redesign to avoid adverse IEQ conditions.

On top of this, the mutual information analysis revealed that
1) relative humidity is especially correlated with carbon dioxide
levels, hence a better control over RH is expected to be extremely
impactful on IAQ preservation; 2) during bushfire events, a major
role is played by temperature and wind-related parameters,
whereas during lockdown periods (i.e., in the absence of
occupants) the influence of outdoor parameters becomes
dominant; 3) elevation arbitrates the strength of correlation
between thermo-hygrometric and air quality parameters.
Future-proof re-design strategies should be built upon these
associations.

Pertaining to the application of fine-grained IoT networks
for assessing environmental quality, we note that in addition to
insights gathered in this analysis, certain challenges and
limitations should be considered. First, not only the spatial
and temporal distribution of data collection but also the
parameters monitored have a big impact on drawing
insights from results. For instance, behavioural parameters -
such as occupancy and manual interventions - are not
commonly recorded in the environmental networks, but
have a significant impact on IEQ particularly in educational
buildings on university campuses. Here, room types are used as
a proxy for determining occupancy patterns, but future
measurement campaigns should consider collecting detailed
behavioural data that focus the analyses solely on occupied
hours. Similarly, detailed metadata on room characteristics are
extremely hard to obtain and rarely incorporated in the IoT
environmental data platforms. Here, exhaustive and manual
surveys of rooms were conducted to determine room
characteristics in the studied research (summarized in
Supplementary Appendix Table A1). Future research
should focus on automated integration of fine-grained
building information with real-time sensor data,
establishing a digital twin of buildings to effectively
integrate, communicate, and analyze environmental quality.
More importantly, such integration with building data can
inform automated control actions that enhance IEQ. Lastly,
larger deployment of sensors often dictates that sensors are
lower cost which can have an impact on sensor accuracy and
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lifetime. Quality controls are applied in these analyses (before
sensor installation and after data collection), but longer-term
data collection likely requires recalibrations to account for
sensor drifts and faulty devices. This is in addition to
maintenance challenges regarding theft and vandalism that
have been experienced in this project.

On a conclusive note, the proposed monitoring design departs
from conventional data collection methods, relying on
controlled-environment testing or short-term monitoring. It
captures the IEQ nuances in a realistic and unbiased fashion.
Accordingly, we did not intend, nor had the ability, to control for
environmental/occupancy conditions that the building was going
to be subject to in the long term. This non-invasive approach
makes it harder to disclose clear patterns and run comparative
assessments, yet it gives us the chance to appreciate the
complexity of a living environment without data degradation
or alteration.

CONCLUSION

In this study, we targeted an educational building in Sydney,
whose proclivity to IEQ deterioration is aggravated by design
inefficiencies and local weather extremes. A novel, low-cost,
multi-parameter IOT sensor network was deployed to fully
depict the spatial heterogeneity and temporal variability in
terms of thermal comfort and air quality. The data has been
analysed through a variety of statistical methods including
unconditioned and conditioned mutual information analysis
and through established comfort metrics on account of room
characteristics, room use, season, weather extremes and
standard versus atypical occupancy patterns as those
recorded during the bushfire season and the COVID-19
pandemic. By merging the results presented in Results
section, a variety of redesign strategies could be delineated
(Discussion and Design Guidelines section) thanks to the fine-
grained, site-specific monitoring of each room type across

different floors and orientations. Such a detailed analysis
compensates for less perceivable threats, pinpoints passive
ventilation inefficiencies, identifies the room for
improvement, and suggests an urgent need to prioritize
building air tightness improvement, appropriate filtration
techniques and smart logics. This study offers a roadmap
for other campaigns alike in order to verify climate
dependencies and general patterns and move towards more
resilient and healthy educational buildings. However, future
directions in IoT environmental sensor networks should focus
on not only covering spatial heterogeneity of IEQ, but also
consider comprehensive data collection (encompassing
environmental and behavioural factors), integration of
building metadata, and dynamic quality controls to provide
most comprehensive insights.
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Urban climate features, such as the urban heat island (UHI), are determined by various
factors characterizing the modifications of the surface by the built environment and human
activity. These factors are often attributed to the local spatial scale (hundreds of meters up
to several kilometers). Nowadays, more and more urban climate studies utilize the concept
of the local climate zones (LCZs) as a proxy for urban climate heterogeneity. However, for
modern megacities that extend to dozens of kilometers, it is reasonable to suggest a
significant contribution of the larger-scale factors to the temperature and UHI climatology.
In this study, we investigate the contribution of local-scale and mesoscale driving factors of
the nocturnal canopy layer UHI of the Moscow megacity in Russia. The study is based on
air temperature observations from a dense network consisting of around 80 reference and
more than 1,500 crowdsourced citizen weather stations for a summer and a winter
season. For the crowdsourcing data, an advanced quality control algorithm is proposed.
Based on both types of data, we show that the spatial patterns of the UHI are shaped both
by local-scale and mesoscale driving factors. The local drivers represent the surface
features in the vicinity of a few hundred meters and can be described by the LCZ concept.
The mesoscale drivers represent the influence of the surrounding urban areas in the vicinity
of 2–20 km around a station, transformed by diffusion, and advection in the atmospheric
boundary layer. The contribution of the mesoscale drivers is reflected in air temperature
differences between similar LCZs in different parts of the megacity and in a dependence
between the UHI intensity and the distance from the city center. Using high-resolution city-
descriptive parameters and different statistical analysis, we quantified the contributions of
the local- and mesoscale driving factors. For selected cases with a pronounced nocturnal
UHI, their respective contributions are of similar magnitude. Our findings highlight the
importance of taking both local- and mesoscale effects in urban climate studies for
megacities into account. Furthermore, they underscore a need for an extension of the
LCZ concept to take mesoscale settings of the urban environment into account.

Edited by:
Tomas Halenka,

Charles University, Czechia

Reviewed by:
Valéry Masson,

Météo-France, France
Marcus Thatcher,

Oceans and Atmosphere (CSIRO),
Australia

*Correspondence:
Mikhail Varentsov

mikhail.varentsov@srcc.msu.ru
Fred Meier

fred.meier@tu-berlin.de

Specialty section:
This article was submitted to

Interdisciplinary Climate Studies,
a section of the journal

Frontiers in Environmental Science

Received: 29 May 2021
Accepted: 28 October 2021

Published: 25 November 2021

Citation:
Varentsov M, Fenner D, Meier F,

Samsonov T and Demuzere M (2021)
Quantifying Local and Mesoscale

Drivers of the Urban Heat Island of
Moscow with Reference and
Crowdsourced Observations.
Front. Environ. Sci. 9:716968.

doi: 10.3389/fenvs.2021.716968

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 7169681

ORIGINAL RESEARCH
published: 25 November 2021

doi: 10.3389/fenvs.2021.716968

97

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2021.716968&domain=pdf&date_stamp=2021-11-25
https://www.frontiersin.org/articles/10.3389/fenvs.2021.716968/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.716968/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.716968/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.716968/full
http://creativecommons.org/licenses/by/4.0/
mailto:mikhail.varentsov@srcc.msu.ru
mailto:fred.meier@tu-berlin.de
https://doi.org/10.3389/fenvs.2021.716968
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2021.716968


Keywords: urban heat island, crowdsourcing, local climate zone, mesoscale, local scale, Moscow, citizen weather
station, Netatmo

INTRODUCTION

The urban heat island (UHI) is one of the most studied examples
of inadvertent climate modification due to humans and refers to
the fact that cities are almost always warmer than their natural
surroundings (Oke et al., 2017; Stewart, 2019). UHIs affect urban
dwellers in various (in)direct ways, e.g., by increased levels of heat
risk/stress and heat-related mortality (Tan et al., 2010; Gabriel
and Endlicher, 2011; Zemtsov et al., 2020), and are, thus,
important to include in weather forecasts (Barlage et al., 2016;
Baklanov et al., 2018; Rivin et al., 2020), climate-responsive urban
planning (Svensson and Eliasson, 2002; Fernandez Milan and
Creutzig, 2015; Emmanuel, 2021), and ecological and
epidemiological applications (Gregg et al., 2003; Mironova
et al., 2019; Brousse et al., 2020). UHIs are expressed at
different vertical levels from subsurface soil temperatures to
atmospheric boundary layer (ABL), yet the most studied and
relevant for many applied tasks is a so-called canopy layer UHI,
defined as the difference between the near-surface air
temperatures below roof level (Oke et al., 2017). It is typically
studied based on the screen level (1.5–2 m) temperature
observations. Further in this paper, by UHI, we mean exactly
the canopy layer UHI.

A distinctive feature of urban climates is their high spatial
heterogeneity, determined by a variety of urban forms, land cover
types, and anthropogenic activity on different spatial scales, and
the complexity of the surface–atmosphere interaction in cities.
The question of spatial scale is acknowledged as central in urban
climate studies (Oke et al., 2017). It is important for observational
data analysis and numerical modeling, for resolving the climatic
heterogeneity in applied tasks, and for developing physically
based urban climate models. However, while its importance
has been recognized over decades of urban climate research
(Stewart, 2019), specific contributions of processes at different
spatial scales to certain urban climate phenomena remain vague.

Heterogeneity of urban forms and land cover types can be
expressed on a wide range of spatial scales from micro- to
mesoscale, each corresponding to typical horizontal length
scales from meters to kilometers (Oke et al., 2017), and
leading to scale-dependent urban climate phenomena (Pacifici
et al., 2019). Among this range of scales, the so-called local scale
(i.e., hundreds of meters to several kilometers) is considered to be
especially relevant for UHI studies. At such scale, canopy layer air
temperatures are directly influenced by their underlying surface
properties (Stewart and Oke, 2012). In order to make urban
climate studies more comparable and to facilitate metadata
collection and description of measurement sites, Stewart and
Oke (2012) developed the concept of local climate zones (LCZs),
where LCZs are defined as regions of uniform surface cover,
structure, material, and human activity that span hundreds of
meters to several kilometers in horizontal scale. This concept
classifies urban and rural environments according to local-scale
surface cover, morphology, and human activities into 10 “built”

and 7 “natural” classes, where each class has a set of characteristic
parameter values (e.g., sky view factor, built-up surface fraction,
and vegetation surface fraction). The body of literature using the
LCZ concept is fast growing (Demuzere et al., 2021), highlighting
the applicability of the concept in UHI studies and showing that
different LCZs possess different air temperature regimes (see, e.g.,
Alexander andMills, 2014; Fenner et al., 2014; Stewart et al., 2014;
Skarbit et al., 2017; Beck et al., 2018a; Verdonck et al., 2018;
Milošević et al., 2021). Despite the fact that a microscale
temperature heterogeneity can still be observed within the
same LCZs or neighborhoods (Ellis et al., 2015; Leconte et al.,
2015; Quanz et al., 2018; Shi et al., 2018; Pacifici et al., 2019), the
LCZ system is widely acknowledged as a global standard for
urban temperature studies (Stewart and Oke, 2012; Jiang et al.,
2021).

Beyond the LCZ framework, several studies attempted to
explain UHI spatial structures through local-scale variability of
land cover and morphology properties. Several studies revealed
dependencies between the UHI intensity and land cover
parameters such as green area fraction, artificial cover fraction,
and building area fraction (Bottyán et al., 2005; van Hove et al.,
2015; Scott et al., 2017). More advanced statistical models were
developed to predict UHI intensity, e.g., for Portland,
United States (Hart and Sailor, 2009), Wroclaw, Poland
(Szymanowski and Kryza, 2009), Rotterdam, Netherlands
(Heusinkveld et al., 2014), and 35 European cities (Sangiorgio
et al., 2020), using several local-scale parameters as predictors,
e.g., building and road density, surface roughness, albedo,
greenery, and anthropogenic heat flux.

Local-scale variations in surface cover and morphology
determine modifications of the surface–atmosphere interaction
regime within the surface layer of the atmosphere with a depth of
a few tens of meters (Oke et al., 2017). However, for medium-
sized cities and even more so for megacities, the influence of the
various neighborhoods on the atmosphere is accumulated and
further transformed over tens of kilometers, resulting in
modifications of the whole ABL and the development of the
phenomena induced by the city as a whole. According to the
classification of atmospheric processes by scale (Orlanski, 1975),
such phenomena can be considered as mesoscale processes. The
examples of urban-induced mesoscale atmospheric phenomena
include the ABL heat island with a vertical extent of hundreds of
meters (Bornstein, 1968; Oke, 1995; Wouters et al., 2013;
Lokoshchenko et al., 2016; Varentsov et al., 2018), urban
plumes (Clarke, 1969; Wang et al., 2020), urban-induced
modifications of regional circulation (Lemonsu and Masson,
2002; Varentsov et al., 2018), and deep convection systems,
precipitation, and cloudiness (Bornstein and Lin, 2000; Dixon
and Mote, 2003; Han et al., 2014).

The urban-caused mesoscale phenomena not only involve the
“bottom–up” urban forcing affecting the ABL and lower
troposphere but also provide “top–down” impacts on the
canopy layer climate and spatial patterns of the UHI. The
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latter is clearly expressed, e.g., in the UHI advection to the
leeward side of the city and its neighboring rural areas, as
reported both by modeling (Zhang et al., 2011; Heaviside
et al., 2015) and observation-based (Bassett et al., 2016; Bassett
et al., 2017) studies. On a quasi-climatic approximation, heat
advection from varied wind directions, together with diffusion,
and mixing by mesoscale circulations, are expected to smooth the
local-scale thermal heterogeneity of the urban environment, and
to make the climate of the given site sensitive to surface
parameters outside its local-scale neighborhood. Mesoscale
smoothing is expected to be among the factors establishing the
known logarithmic relation between UHI intensity and city size
or population (Oke, 1973; Zhou et al., 2017; Li et al., 2020).

Despite the obvious contribution of mesoscale processes to the
development of urban climates, they are often ignored in spatially
resolving UHI studies, including those ones aimed to predict
urban temperature heterogeneity based on land cover parameters
(Hart and Sailor, 2009; Szymanowski and Kryza, 2009;
Heusinkveld et al., 2014). A few counterexamples include the
studies for Leipzig, Germany (Franck et al., 2013), Detroit,
United States, (Oswald et al., 2012), and several French
(Gardes et al., 2020) and Dutch (Theeuwes et al., 2017) cities,
where the authors attempted to account for both local-scale
parameters and the meso-climatic features of the area through
the distance from the city center and large water bodies. On the
other hand, local-scale factors may be also ignored. For example,
the recent work by Manoli et al. (2019) continues to explore the
varying UHI intensity with population size, yet others believe this
coarse-grained approach is insufficient and inappropriate, even as
a first-order guidance approach (Martilli et al., 2020).

The abovementioned contradictions about the scale-
dependent drivers of the UHI may, in part, be attributed to
the lack of detailed observational data. To resolve urban climate
phenomena with observations, high-density observational
networks with stations installed in various settings are
required. Such networks are deployed in different cities, e.g.,
in Birmingham, United Kingdom (Chapman et al., 2015); Dijon,
France (Richard et al., 2018); Szeged, Hungary (Lelovics et al.,
2014); and Novi Sad, Serbia (Milošević et al., 2021); see review in
Muller et al. (2013) for further examples. However, the large
majority of global cities do not possess such networks, as they are
costly to install and maintain over longer periods of time (Muller
et al., 2013).

In recent years, the use of nontraditional and opportunistic-
sensing technologies in meteorological and climatological
research, such as smartphones (Overeem et al., 2013b; Mass
and Madaus, 2014; Droste et al., 2017), cars (Haberlandt and
Sester, 2010; Mahoney and O’Sullivan, 2013; Bartos et al., 2019),
commercial microwave links (Messer et al., 2006; Zinevich et al.,
2009; Overeem et al., 2013a; Chwala and Kunstmann, 2019),
wrist-mounted wearables (Nazarian et al., 2020), and privately
owned citizen weather stations (CWSs), e.g., Wolters and
Brandsma (2012), Bell et al. (2015), de Vos et al. (2017),
Meier et al. (2017), Fenner et al. (2019), Droste et al. (2020),
and Mandement and Caumont (2020), have shown to provide
additional and reliable information, thus, highlighting a
multitude of possible applications in research and beyond (de

Vos et al., 2019; Nipen et al., 2020). To study urban air
temperatures and the UHI effect, data from CWSs have been
used in a variety of studies (Steeneveld et al., 2011; Chapman
et al., 2017; Fenner et al., 2017; de Vos et al., 2020; Feichtinger
et al., 2020; Venter et al., 2020; Vulova et al., 2020), focusing on
different cities. One major advantage of CWSs over traditional
meteorological stations is their large number within a single city
(Meier et al., 2017). Further, CWSs are located in a large variety of
micro- and local-scale settings, distributed all over a city region
(Fenner et al., 2017), thus, detecting the spatial heterogeneity of
urban air temperatures.

Decades of research provide evidence that local- and
mesoscale processes are important drivers shaping urban
thermal environment. This is relevant both for specific
atmospheric processes as well as the scales of the surface
heterogeneity influencing the climate of specific site, which are
referred to as drivers in this study. However, it remains largely
unknown to what extent both scales determine the spatial
heterogeneity of urban air temperatures. To disentangle these
two influencing spatial scales, this study focuses on the megacity
of Moscow, Russia. The city is a perfect testbed for this question
since it is located far away from the sea and has no significant
topography, ruling out these geographic controls on the
formation of its UHI. Furthermore, a large set of near-surface
observations is available from both professionally maintained
stations and amateur CWSs in a large variety of meso- and local-
scale settings. The overall aim of the study is to investigate the
respective contributions of meso- and local-scale heterogeneity of
urban surface to the nighttime canopy layer UHI in Moscow.

DATA AND ITS PREPROCESSING

Study area
Moscow is the most populous Russian and European megacity
(55.75°N, 37.62°E) with a population of approximately 17 million
people (considering the whole urban agglomeration) (Cox, 2017).
The actual area of the city (excluding the suburbs and satellite
cities) is about 1,000 km2. Moscow has a temperate humid and
moderately continental climate (Dfb in the Köppen–Geiger
climate classification, Beck et al., 2018b) with an annual mean
air temperature of 5.8°C, and mean June and January
temperatures of 19.2°C and −6.5°C, respectively (values are
given for VDNKh weather station, Figure 1, for the period
1981–2010). Due to the cold winters, Moscow is known as
one of the coldest megacities of the world. The intense urban-
induced meteorological effects of Moscow are easy to detect
against the homogeneous rural surroundings. The city
experienced an increasing UHI intensity over the last decades
(Kislov et al., 2017), with a present-day annual mean UHI
intensity of 2°C, peaking to more than 10°C during calm and
clear nights (Lokoshchenko, 2014; Lokoshchenko, 2017).
Recently, Moscow served as a testbed for a series of high-
resolution urban climate modeling studies with the COSMO
model (Varentsov et al., 2017; Varentsov et al., 2019; Garbero
et al., 2021), revealing persistent urban-induced mesoscale effects
in the lower atmosphere (Varentsov et al., 2018) and high

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 7169683

Varentsov et al. Local and Mesoscale Drivers of Moscow’s UHI

99

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


sensitivity of the simulated UHI to the spatial patterns of the
urban canopy parameters (Varentsov et al., 2020b). Nonetheless,
despite the numerous previous studies, the spatial patterns of the
Moscow UHI and their physical drivers have not been
systematically analyzed yet.

This study focuses on an area centered around the city center
of Moscow with a 60-km radius, thereby including Moscow itself,
its suburbs, and satellite cities, yet not including the medium-
sized cities around Moscow that are separated from the megacity
by wide countryside areas (Figure 1).

Reference meteorological observations
We use regular observations from a dense reference network
(hereafter referred to as REF) consisting of weather stations
(WSs) of the Russian hydrometeorological service
(Roshydromet) and automatic air-quality stations (AAQS) of
Mosecomonitoring, the official environmental monitoring
service of Moscow. The WSs provide the most reliable screen-
level (1.5–2 m above the ground) air temperature observations
according to the standards of the World Meteorological
Organization (WMO). Yet, only a few WSs are available in
urbanized areas: the Balchug WS in the city center, the
meteorological observatory of the Lomonosov Moscow State
University (MSU), VDNKh WS in an urban park, and several
WSs in the suburbs. AAQSs cover the city with a denser network
(Figure 1) but provide less accurate meteorological data.
Meteorological observations by AAQSs do not comply with
the WMO standards, e.g., the sensors are located at a height

of 2 m above roofs of metal containers and 4 m above the ground.
Previous studies showed that AAQS air temperature
measurements may be biased during daytime. However, daily
mean and nighttime temperatures are accurate enough for
spatially explicit UHI studies (Varentsov et al., 2019).

We use REF air temperature data on a one-hourly temporal
resolution with instantaneous values at the full hour to be
consistent with the temporal resolution of the CWS data (see
next subsection Citizen weather stations). The data were
downsampled from the original 10- and 20-min resolutions of
WSs and AAQSs, respectively. For a few WSs where only three-
hourly observations are available, missing one-hourly
temperature values were gap filled based on existing three-
hourly values and one-hourly values for the nearest WSs,
where they are available. In total, we use data from up to 42
WSs and up to 40 AAQSs (the actual number of stations varies
due to data availability for the considered periods).

Citizen weather stations
Crowdsourced air temperature data from CWSs of the “Netatmo”
company (https://www.netatmo.com/en-us/weather) were
acquired using the application programming interface (API)
provided by the company (https://dev.netatmo.com/
apidocumentation/weather). A full description of the device
itself and the data acquisition, i.e., crowdsourcing, is given in
Meier et al. (2017); a brief summary is given in the following. The
device consists of an indoor and an outdoor module. From the
latter, air temperature and relative humidity data can be acquired

FIGURE 1 | Local climate zonemap from Varentsov et al. (2020b) and reference stations. The white circle in the left subplot depicts the study area involved in further
statistical analysis, and the red box shows the smaller area shown in detail in the right subplot and used in the followingmaps. Circle markers indicate location of reference
weather stations (WSs), and square markers indicate location of reference automatic air-quality stations (AAQSs, more info below). Nine WSs used to define mean
background temperature are highlighted by blue.
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via the API. The specified accuracy for the air temperature sensor
is ± 0.3 K in the range –40°C–65°C. Each CWS takes
measurements approximately every 5 min, data are then
automatically uploaded to the server of the company via WiFi
connection. Netatmo data for the study area was collected at an
hourly resolution (instantaneous values) using the workflow as
described in Meier et al. (2017).

Netatmo CWSs provide uncertified observations, which can be
misrepresentative for many reasons. For example, outdoor
modules may be installed directly at walls or even inside
buildings (Meier et al., 2017). Beyond these extreme cases,
other typical ways of CWS installation could, nonetheless, be
different from standards of meteorological observations, such as
observations on balconies or below trees.

Previous studies have already shown the opportunity to filter
out misrepresentative and faulty data using quality-control (QC)
algorithms. Here, we developed a QC algorithm based on ideas
from previous studies (Meier et al., 2017; Napoly et al., 2018) with
some modifications, which allows to exploit the high number of
reference observations in the Moscow region (Figure 1).

The preprocessing step, L0, removes CWSs with the same
location (assuming that the location was wrongly defined by
using the IP address; Meier et al., 2017). The following three steps,
L1–L3, depend on statistics calculated over a period Δt � 14 days
before the i-th moment for which the QC is applied. L1 is passed
if the missing data ratio for the j-th CWS over the Δt period is
lower than a threshold (Rgaps � 0.5). L2 is passed when the

temperature mean value TCWS
j and the standard deviation

σ(TCWS
j ) for the j-th CWS for the Δt period are within an

acceptable range, determined by min/max values within a set
of n reference stations in the study area, with an additional k1
sigma tolerance (k1 is set to 1.5):

⎧⎪⎪⎨⎪⎪⎩
min(Tref

1...n) − k1 · σ(Tref
1...n)≤TCWS

j ≤max(Tref
1...n) + k1 · σ(Tref

1...n)
min(σ(Tref

1...n)) − k1 · σ(σ(Tref
1...n))≤ σ(TCWS

j )≤max(σ(Tref
1...n)) + k1 · σ(σ(Tref

1...n)).

This approach rejects CWSs if the outdoor module is located
indoors and partially eliminates cases when the outdoor module
is not shaded properly. The L3 step checks the Pearson
correlation coefficient R between the data for the j-th CWS
and the mean temperature over the five nearest reference
stations over the Δt period. The level is passed if R > 0.9.
Levels L4 and L5 depend on the data for the i-th time
moment only. The L4 step checks whether the CWS
temperature value for individual hours is within an acceptable
range determined by min/max values within a set of reference
stations with an additional k2 sigma tolerance (k2 is also set
to 1.5):

min(Tref
1...n) − k2 · σ (Tref

1...n)≤TCWS
j ≤max (Tref

1...n) + k2 · σ (Tref
1...n).

Finally, a fifth step (L5) is added to remove too high spatial
variability among closely located CWSs within a 3-km
distance, following the idea of a “buddy check” from
Båserud et al. (2020) and Nipen et al. (2020). The criteria
for the L5 step for the temperature value for j-th CWS at i-th

moment is based on its deviation from the mean value over the
neighboring CWS:∣∣∣∣∣∣∣∣TCWS

j − TCWS
k1 ...km

∣∣∣∣∣∣∣∣≤ 3 · σ(TCWS
k1 ...km

)
where TCWS

k1...km
are temperature values ofm other CWSs within a 3-

km distance. This condition is applied only if m≥ 4, and the

temperature deviation |TCWS
j − TCWS

k1...km
| is higher than twice the

declared accuracy of Netatmo CWS air temperature
measurements (0.6°C).

For comparison with this new QC scheme, the raw CWS data
were also filtered according to the “CrowdQC” procedures until
level O1 (Grassmann et al., 2018; Napoly et al., 2018). Based on
evaluation of the quality-controlled CWS data against closely
located REF sites, we found that the proposed algorithm
noticeably decreases the CWS errors with respect to unfiltered
data and performs even better than CrowdQC, but passes slightly
less data (see Supplementary S2 for details).

The quality-controlled CWS data is still not free from
uncertainties, associated with the height of a CWS installation
above the ground. CWSs may be installed at different heights,
including the upper floors of high-rise buildings, which is far
away from the standards of the WMO. Unfortunately, no
methods of identification for the installation height of the
CWS have been proposed so far. However, we assume that
CWSs are typically installed below roof level and characterize
the temperature of typically well-mixed air within the urban
canopy and, hence, could be used to study the canopy layer UHI
studies as already shown, e.g., in Fenner et al. (2017), Meier et al.
(2017), Napoly et al. (2018), and Feichtinger et al. (2020).

Sampling and preprocessing the
observations
Based on availability of REF and CWS data, as well as on weather
conditions, we selected the periods of winter 2018/2019
(December and January) and summer 2019 (May and June)
for our study. During the two winter months Moscow
experienced low temperatures with a strong cold wave at the
end of January 2019 (Figure 2A). May and June 2019 experienced
warm weather that was favorable for UHI development, while
July and August 2019 were cold, rainy, and unfavorable for UHI
appearance. Therefore, we did not include July and August 2019
in the analyzed summer period.

In the selected winter and summer periods, CWS data were
collected from, respectively, 1,646 and 1,673 unique CWSs. Raw
CWS data included numerous artifacts, which are typical for
Netatmo temperature readings according to previous studies:
unrealistically high daytime temperatures due to overheating
of the unshaded outdoor modules by direct sunlight and
unrealistic temperatures without expected diurnal variations
for the CWSs placed somewhere indoors instead of outdoors
(Meier et al., 2017; Napoly et al., 2018). The proposed QC
algorithm successfully filters out such artifacts, which
decreases the amount of individual temperature readings by
39% in winter and 44% in summer (Figure 2).
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To analyze the spatial structure of the UHI and the factors of
its formation in a quasi-climatological approximation, we
sampled a selection of summer and winter cases characterized
by intense UHIs. UHI intensity (ΔT) is defined in line with
several previous studies for Moscow (Varentsov et al., 2018, 2019;
Varentsov et al., 2020a) as the air temperature deviation from the
mean background air temperature. The latter is averaged over
nine weather stations surrounding the city at a distance from 53
to 110 km from its center (see Figure 1; Supplementary Table
S1). Only one among them, Novo-Ierusalim, is inside the selected
study area. Some of these stations are not purely “rural” due to
their location close to smaller towns or within rural/suburban
settlements, typically in LCZ 6 (Supplementary Table S1). We
note that the calculated UHI values might, hence, be
underestimated, as even villages are shown to have UHI effects
(Dienst et al., 2018; Dienst et al., 2019). Nevertheless, such an
approach to use several stations surrounding the city allows
eliminating the influence of a potentially existing large-scale
horizontal temperature gradient on ΔT. For any given site and
at each hour, ΔT is defined as follows:

ΔT � T − 1
N

∑
k�1...N

Tb, k (1)

where N � 9 is the number of selected background stations, and
Tb, k is the air temperature at the k-th background station.

We usedΔT of the city center (BalchugWS) >4 K as a criterion
for sampling the cases for further analyses. Such a criterium
corresponds to the 50th percentile of the daily maximum ΔT in
summer and the 90th percentile in winter. In summer, such UHI
intensities are common for Moscow during nocturnal hours,
while in winter, they may be observed during the whole day
under frosty weather conditions (Yushkov et al., 2019; Varentsov
et al., 2020b). Nonetheless, to exclude the effects of direct solar
heating on the UHI spatial patterns and possible uncertainties of
the CWSs and AAQSs, we considered only the nocturnal and
early morning hours, i.e., 21–2 UTC (0–5 local time) for summer
and 18–6 UTC (21–9 local time) for winter. Based on this
criterion, we sampled 196 individual cases (one-hourly values)
for summer and 62 cases for winter. Further analyses were
performed for the mean air temperature and ΔT, averaged
over these sampled summer or winter cases.

As expected for cases with pronounced UHI, the sampled
cases are characterized by generally calm weather conditions with
a near-surface wind speed lower than 3 m/s and generally low
low-level cloudiness (see Supplementary Figure S3 for details).
Wind direction during the sampled cases is not homogeneous but
is still quite diverse (Supplementary Figure S3.1), so we deem it
acceptable for a coarse quasi-climatic approximation.

For the final analyses, we considered only reference stations
and CWSs with a ratio of missed or QC-filtered values over all
cases <25%, resulting in a total of 477 and 500 CWSs, and 67 and

FIGURE 2 | Air temperature in the study region for January 2019 (A) and June 2019 (B) for citizen weather station (CWS) data and reference observations. Quality
control (QC) levels L0–L5 refer to the data after each respective level of quality control for CWS data. In the legend, f � n (Li) / n (L0) indicates the fraction of individual
temperature values over all CWSs that passed through the i-th QC level. Reference minimum and maximum were identified as the respective individual (hourly) values
among all reference stations within the study area. Note the different scales of the y-axes.
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61 REF sites within the study area, for winter and summer,
respectively. The remaining stations were gap filled using a
regression-based algorithm adopted after Tardivo and Berti
(2012) to obtain continuous and homogeneous time series.
Each individual gap for a specific station was filled based on a
multiple linear regression using air temperature observations at
neighboring stations as predictors (for each station, three to five
neighboring stations were used that provided the best regression
result). Regression coefficients were derived based on the data
before and after each individual gap, separately for each hour of
the day. When applying gap filling for CWS data, we only used
REF data as predictors.

For each station, we calculated the mean air temperature over
the selected summer or winter cases. To exclude a larger-scale
spatial temperature gradient from our analysis, a two-
dimensional latitude–longitude mean temperature trend was
identified based on the observations at rural WSs for a larger
area (within 300 km around Moscow) and subtracted from the
mean temperatures. Finally, we calculated the mean ΔT based on
Eq. 1 and detrended temperatures. Since the topography of the
Moscow region is relatively flat, altitude differences between the
stations are small (123–212 m within the study area), and no
height correction of the air temperature was carried out.

Local climate zones and city-descriptive
parameters
To characterize the heterogeneity of the underlying surface
properties, our study combined two popular approaches,
namely, the LCZ classification (Stewart and Oke, 2012) and
independent quantitative estimation of city-descriptive
parameters. The LCZ map for the Moscow region (Figure 1)
is available from Varentsov et al. (2020b) at a 100-m spatial
resolution. It was created based on training areas selected by
Samsonov and Trigub (2018) and post-processed using a
Gaussian kernel majority filter (Demuzere et al., 2020).

Each observation site (WS, AAQS, or CWS) was assigned to
an LCZ class based on a majority filter applied for a circle with
a 250-m radius around each site as suggested in Fenner et al.
(2017). An important but nontrivial component of the LCZ
assignment procedure is to detect the measurement sites
surrounded by heterogeneous LCZ coverage and to exclude
them from further analyses. Fenner et al. (2017) proposed to
consider sites only if the LCZ for the central pixel of the kernel
is equal to the major LCZ of the kernel and that this LCZ covers
≥80% of the area of the kernel. However, applying the same
criteria for Moscow resulted in losing a high number of
stations from both REF and CWS networks. We found that
a lot of sites were excluded in cases where they are surrounded
by two or more relatively similar LCZs. For example, a site may
be surrounded by mixed open mid- and high-rise buildings,
classified into LCZs 4 (open high-rise) and 5 (open mid-rise),
or by low-rise private houses surrounded by vegetation
classified as LCZs 6 (open low-rise) and 9 (sparsely built).
To avoid such data loss, we proposed a procedure of LCZ
assignment that accounts for the similarity between
surrounding LCZs. For a kernel where the i-th LCZ

occupies the largest area fraction λLCZi, the similarity-
weighted fraction λLCZi, sim is calculated as follows:

λLCZi, sim � ∑
j�1...17 wi,j · λLCZj

where λLCZj are the area fractions of each LCZ in the kernel, and
wi,j are similarity coefficients between the i-th and j-th LCZs.
These coefficients refer to the similarity of LCZ classes in terms of
openness, height of roughness elements, land cover, and thermal
inertia (Bechtel et al., 2017; Bechtel et al., 2020). They were
originally designed for assessing the accuracy of LCZ maps, as
confusion between dissimilar types (e.g., LCZs 1 and A) should be
penalizedmore than confusion between similar classes (e.g., LCZs
1 and 2). For greater rigor, we use only wi,j > 0.5; otherwise, we
treat it as zero.

Based on the proposed approach, we considered a site to be in
quasi-homogenous local-scale surroundings if the area fraction of
the modal LCZ of the kernel is >0.5, and the similarity-weighted
area fraction is >0.75. Otherwise, the station was excluded from
the LCZ-dependent analyses. Additionally, and in contrast to the
LCZ assignment procedure from Fenner et al. (2017), we do not
use a condition that the LCZ for the nearest pixel of a station has
to correspond to the modal LCZ, since the location of the stations
are not always known with enough precision.

On top of the LCZ-based approach, several city-descriptive
parameters were sourced from OpenStreetMap data, Sentinel-2
images, and Copernicus Global Land Cover (CGLC) data,
following Samsonov and Varentsov (2020). Based on the
literature review, we selected the following parameters that are
commonly used as predictors for ΔT: urban (built up) land cover
class area fraction according to CGLC (λurb), impervious area
fraction (λISA), and building area fraction (λbld). Additionally, we
consider building volume, derived as Vbld � H · λbld, where H is
the mean building height. These parameters were defined on a
250-m grid. On the smallest scale, the surroundings of the
measurement sites were characterized by the values of these
parameters specified as a weighted-mean within four nearest
grid cells of a 250 m by 250 m grid, with weights equal to
inversed distances between the location of the sites and grid
cell centers. To characterize the urban surroundings of a specific
site on larger scales, a set of smoothed 2D fields of all listed
parameters was prepared using a running square kernel filter with
size ofm ×m grid cells, wherem � 2 p r/0.25 + 1, and r is what
we further call a smoothing radius. We prepared smoothed fields
with r equal to 0.25, 0.5, 1, 2, 3, 5, 7, 10, 15, and 20 km. Figure 3
shows the spatial distribution of λurb, λISA, and λbld parameters on
the original 250-m grid and after applying a smoothing kernel
with radii of 3 and 10 km.

ANALYSIS STRATEGY

The central hypothesis of our study is that the ΔT at a given site is
determined by the surface properties in the local neighborhood of
this point and a larger area with a size corresponding to
mesoscale. The local-scale heterogeneity may be characterized
by the LCZ map and selected city-descriptive parameters. To
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characterize the mesoscale heterogeneity, we use again the city-
descriptive parameters, smoothed with different radii, r.
Additionally, the concentric structure of Moscow (Figure 3)

allows considering the distance to the city center as a
simplified proxy for mesoscale heterogeneity. To disentangle
the contribution of the local-scale and mesoscale heterogeneity

FIGURE 3 | Spatial distribution of city-descriptive parameters λurb (A, D, G), λISA (B, E, H), and λbld (C, F, I) on the original 250-m grid and after smoothing within a
radii of 3 km (A–D) and 10 km (G–I).
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of the urban land cover to the observed UHI spatial patterns, we
perform several types of statistical analyses, described below:

• LCZ-dependent analysis. This analysis focuses on the intra-
and inter-LCZ variability of ΔT in order make our results
comparable with other LCZ-based UHI studies.

• Simple correlation analysis. This analysis focuses on the
relationships between ΔT and selected city-descriptive
parameters, smoothed with different radii, r. We analyze
the Spearman correlation between ΔT and these parameters
to estimate at what scale it is maximal.

• Regression analysis with local-scale and mesoscale
predictors. Based on the central hypothesis of our study,
we propose to predict the observed ΔT using a multiple
linear regression (MLR) with two predictors, where the first
one represents the local-scale surroundings (xloc), and the
second one represents the mesoscale surroundings (xmeso):

ΔTreg � k0 + kloc · xloc + kmeso · xmeso (2)

• As local-scale predictors xloc, we consider λurb, λISA, λbld,
and Vbld values on the original 250-m grid (r � 0) or
smoothed with r of 250 and 500 m, i.e., with a square
kernel with a size of 750 and 1,250 m. As mesoscale
predictors xmeso, we consider the same parameters
smoothed with r of 1, 2, 3, 7, 10, 15, and 20 km. We do
not pretend to establish prognostic relationships between
ΔT and specific parameters. Instead, we consider all possible
pairs of xloc and xmeso (384 combinations in total). For each
pair, we further estimate unknown regression coefficients
k0, kloc, and kmeso using the regress function of Matlab and
then calculate several statistical parameters. First, we
calculate the regression coefficient Rreg � RΔT,ΔTreg

(correlation coefficient between observed and predicted
ΔT) and correlation coefficients between ΔT and each of
the predictors, Rloc � Rxloc, ΔT and Rmeso � Rxmeso,ΔT. To
exclude correlations between the local-scale and
mesoscale predictors, we use partial correlation
coefficients Rxy/z that allow to estimate the correlation
between x and y variables excluding their correlation
with variable z. In this way, we calculate partial
correlation coefficients Ploc � RΔT, xloc/xmeso, Pmeso �
RΔT, xmeso/xloc using the pcorr function of Matlab.

• Regression analysis with multi-scale predictors. Assuming
that an MLR model with predictors of only two scales may
be oversimplified and, therefore, skew the results, additional
analyses are performed using an MLR model
simultaneously involving predictors xr smoothed with all
nr � 11 considered radii r from 0 to 20 km:

ΔTreg � k0 + ∑
i�1...nr

ki · xri (3)

• To avoid appearance of meaningless negative values of ki,
we build the MLR models with an additional constraint
ki > 0 using the lsqlin function of Matlab. In order to obtain
more robust results, we processed 1,000 randomly generated

combinations of predictors (independently changing λurb,
λISA, λbld, and Vbld for each xri) and select the best 25% for
further analysis according to regression coefficient Rreg,
defined in the same way as before as RΔT,ΔTreg . All
parameters xri were preliminary normalized to fit the
range from 0 to 1, which allows to compare and analyze
their relative weights wi � ki/ ∑

i�1...nr
ki.

RESULTS

Spatial patterns of the nocturnal urban heat
island in Moscow
Figure 4 shows the spatial distribution of theΔT in the central part of
the study area. Both for winter and summer, the highest ΔT is
observed in the central parts of the city, with a general decrease inΔT
with increasing distance away from the city center. This pattern is
visible in both the REF and CWS data. To further illustrate this,
Figure 5 displays the relation between the distance to the city center of
Moscow (defined here as the Balchug WS, 55.74556°N, 37.63°E) and
themeanΔT of each station. For both networks and both seasons, we
find significant (p < 0.05) strong negative correlations. The strength of
the correlation is similar between winter and summer for CWSs and
lower for reference stations during summer compared with winter
(Figure 5). Both networks are similar in terms of their regression
slope, with an approximate decrease inΔT of 1 K per 5 km away from
the city center. At the same time, such regressions clearly show that
theCWSdata are generally biasedwith respect to the referenceΔT for
the whole range of distances. The mean difference between the trend
lines is approximately 1 K. This is not surprising, since the CWSs are
typically installed on the buildings themselves or in their immediate
vicinity. Even after passing QC, they exhibit warm biases against the
reference network (see Supplementary S2 for more details).

Intra- and inter-LCZ variability of air
temperature
Figure 6 displays ΔT for each station, grouped by LCZ type.
Intra-LCZ variability of air temperature and thus also ΔT is large
for most LCZs, both for REF (Figures 6A, C) and CWS data
(Figures 6B, D). Generally, more stations per LCZ lead to higher
intra-LCZ variability. Yet, LCZs 6 and 9 display the largest intra-
LCZ variability among all LCZ types for CWS data, even though
they are not the LCZs with the highest number of stations.
Furthermore, even though the number of CWSs in LCZ 6 is
three to four times the number of CWS in LCZ 9, interquartile
ranges (IQR) in ΔT are much alike between these LCZ types. Both
these LCZs display the largest IQR for “built” LCZ types (1–10),
being approximately double the IQR of the other built LCZ types.
Especially, LCZ 4 stands out, containing the maximum number of
CWS, yet showing a narrow IQR compared with LCZ 6 with
almost the same number of CWS (Figures 6B, D). Intra-LCZ
variability of ΔT for LCZ 4, calculated from REF data, shows a
similar absolute range and larger IQR compared with CWS data,
even though the number of stations is much smaller.

Comparing mean ΔT across LCZ types, the highest values are
observed for LCZ 1, 2, 4, 5, and 8. LCZ 2 displays the highest ΔT
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for winter and summer, and for REF and CWS data. Mean ΔT for
LCZs 6 and 9 are alike when compared within the same network.
These two “built” classes are also the only ones with stations
exhibiting lower values than the background REF stations,
i.e., ΔT < 0 K. When comparing ΔT per LCZ type between the
two networks, CWS data generally display higher values than REF
data. This is particularly prominent in mean ΔT and less so in
absolute maximum values per LCZ type (Figure 6).

To further investigate the intra-LCZ variability of ΔT seen in
Figure 6, mean ΔT values per station for summer and winter are
displayed in Figure 7 in relation to the distance to the city center
of Moscow. Despite the overall higher UHI intensities in the CWS
data compared with the REF data (as seen in Figure 5), a
dependence between distance from city center and mean ΔT is
observable in both networks and for both seasons. Mean ΔT
decreases with increasing distance from the center. The

FIGURE 4 | Spatial patterns of the mean urban heat island (UHI) intensity ΔT over the analyzed winter (A) and summer (B) cases. Big circle markers indicate WSs,
square markers indicate AAQSs, small circle markers indicate CWSs.

FIGURE 5 |Dependence between UHI intensity ΔT and distance from the city center (BalchugWS) for winter (A) and summer (B) for reference stations and CWSs.
Dotted lines indicate linear trends. R in the legend denotes Spearman correlation coefficient, R2 denotes coefficient of determination.
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dependence is similar for the different LCZ groups, and for the
reference and CWS data (Figure 7). Yet, despite this general
decreasing dependence, large variability is also present for the
same distance to the center, both in the REF and CWS data. This
can especially be seen for LCZs 6 and 9 in winter between 40 and
50 km away from the center for CWS (Figure 7B), or for LCZs 4
and 5 in summer around 10 km away from the center for the REF
data (Figure 7C). Meanwhile, coefficient of determination R2,
i.e., the proportion of the temperature variation that is predictable
by analyzed dependence, exceeds 0.5 for several LCZ groups in
Figure 7 (LCZs 4 and 5, 6 and 9 for REF data in winter, 8 and 10
for CWS data in winter, 6 and 9 for REF data in summer), as well
as for several individual LCZs (see Supplementary S4). Hence,
distance to city center may explain up to 50% and even more of
intra-LCZ temperature variability.

These LCZ-dependent results are, to some extent, sensitive to
the thresholds used in the procedure of LCZ assignment for REF
and CWS sites (see the Local climate zones and city-descriptive

parameters section). Nevertheless, the key results and conclusions
do not change (not shown).

Quantifying the local-scale and mesoscale
drivers
Within a framework of simple correlation analysis, we analyzed
correlations betweenΔT and selected city-descriptive parameters,
λurb, λISA, λbld, and Vbld, defined on a 250-m grid and further
smoothed with several radii r from 250 m to 20 km.
Corresponding Spearman correlation coefficients (R) are
presented in Figure 8, separately for different seasons and
networks. Despite the differences in correlation strength
between REF and CWS data, both networks demonstrate the
following. First, there is only a small difference in R values
between selected city-descriptive parameters, which is not
surprising since they are highly correlated (all pairwise
correlation coefficients on 250 m grid exceeds 0.7). Only λurb,

FIGURE 6 | Boxplots representing the dependence between UHI intensity ΔT and LCZ type for winter (A, B) and summer (C, D) based on reference (A, C) and
CWS (B, D) observations. Digits in the plots indicate the number of reference stations or CWSs related to specific LCZ types.
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the CGLC built up area fraction, slightly stands out from the rest
and provides lower R values for smaller smoothing scales. This is
likely because λurb includes urban vegetation and weakly
differentiates more or less built-up urban areas (Varentsov
et al., 2020b; Samsonov and Varentsov, 2020). Second, there is
a tendency for the strength of the correlation to increase with
increasing r, especially for r < 2 km. For the REF data, R increases
until maxima are found for r in a range 1–2 km in summer and
2–10 km in winter. For the CWS data, R increases until the end of
the considered r range for summer, even though differences for
r > 2 km are small. For winter, the CWS data show R maxima at
similar radii as for the REF data (Figures 8A, B).

Results of the simple correlation analysis may be
misinformative due to cross-correlation between city-
descriptive parameters, smoothed with different radii. For
example, the correlation coefficient between λISA on the 250-m
grid and smoothed with a 10-km radius is 0.58. To avoid this, we
built MLR models with one local-scale and one mesoscale

predictors, as described by Eq. 2 in the Analysis strategy
section, and further analyzed partial correlation coefficients,
Pmeso and Ploc, for the best pairs of predictors.

Table 1 presents the results for the five combinations of
predictors with the highest Rreg, separately for different
seasons and CWS/REF data. Despite the variety of predictors
in these combinations, their common feature is the prevalence of
Pmeso over Ploc. A second common feature is that almost all best
combinations include one of the fields smoothed with r � 10 km
or higher as mesoscale predictor, except REF data for summer,
where best regressions are obtained with r � 2 or 3 km (Table 1).
For a more robust view, we consider Rreg values and Pmeso/Ploc

ratio, averaged over the top 25% of predictor combinations for
each pair or rmeso and rloc (four best combinations among 16 for
each pair). From Figure 9 it can be seen that the best results are
typically obtained when combining local-scale predictors with
500-m smoothing and mesoscale predictors with 10–15 km
smoothing. An exception is again the REF data for summer,

FIGURE 7 |Dependence between UHI intensity ΔT and distance from the city center for winter (A, B) and summer (C, D) for reference stations (A, C) and CWSs.R
in the legend denotes Spearman correlation coefficient, R2 denotes coefficient of determination.
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where optimal rmeso is shifted to lower values, and additional Rreg

maximum exists at rmeso � 2 km and rloc � 0. The Pmeso/Ploc ratio
generally decreases with increasing rmeso and increasing rloc, but

typically remains >1, indicating a larger contribution of the
mesoscale heterogeneity. For the REF data in summer, values
are <1 when using the local-scale predictor with highest

FIGURE 8 | Spearman correlation coefficients, calculated between UHI intensity and selected city-descriptive parameters, smoothed with different radii for winter
(A, B) and summer (C, D) periods, REF (A, C), and CWS (B, D) data. Zero radius means using the values on the original 250-m grid. The colors of the cells correspond to
the values.

TABLE 1 | Results of the multiple linear regression predicting of the summer and winter urban heat island (UHI) intensity based on reference network (REF) and citizen
weather station (CWS) data.

Data type
and season

xloc rloc, km xmeso rmeso, km Rreg Ploc Pmeso Rloc Rmeso

REF winter λurb 0.5 λurb 15 0.93 0.61 0.84 0.74 0.88
Vbld 0.5 λisa 10 0.93 0.61 0.75 0.82 0.88
Vbld 0.5 λurb 10 0.93 0.62 0.77 0.82 0.88
Vbld 0.5 λbld 5 0.93 0.54 0.64 0.82 0.88
Vbld 0.5 λurb 15 0.93 0.65 0.76 0.82 0.88

CWS winter λisa 0.5 λisa 10 0.83 0.39 0.48 0.77 0.79
λisa 0.5 λurb 10 0.83 0.40 0.48 0.77 0.79
λisa 0.25 λisa 10 0.83 0.38 0.55 0.74 0.79
λisa 0.25 λurb 10 0.83 0.39 0.55 0.74 0.79
Vbld 0.5 λurb 10 0.83 0.39 0.44 0.78 0.79

REF summer Vbld 0 λisa 2 0.90 0.47 0.75 0.74 0.85
Vbld 0.5 λisa 2 0.89 0.44 0.55 0.86 0.85
Vbld 0 Vbld 2 0.89 0.42 0.70 0.74 0.86
Vbld 0.5 λisa 3 0.89 0.56 0.51 0.86 0.79
Vbld 0 λbld 2 0.89 0.50 0.65 0.74 0.84

CWS summer Vbld 0.25 λisa 10 0.85 0.37 0.53 0.80 0.82
λisa 0.25 λisa 10 0.85 0.40 0.56 0.77 0.82
λisa 0.5 λisa 15 0.85 0.39 0.52 0.79 0.82
λisa 0.25 λisa 15 0.85 0.39 0.58 0.77 0.82
Vbld 0.25 λisa 15 0.85 0.35 0.55 0.80 0.82

Note: For each period and data type, results are shown for the top five predictor combinations with highest Rreg.
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smoothing (rloc � 0.5 km). In summer, the Pmeso/Ploc ratio is
generally lower than in winter, which is especially clear for
REF data and still noticeable for CWS data.

MLR models with multi-scale predictors, constructed as
described by Eq. 3 in the Analysis strategy section, allow to
compare the contribution of the specific scales of the surface

heterogeneity to the observed UHI. Figure 10 shows the relative
weights of predictors with different smoothing radius, averaged
over the top 25% of predictor combinations among the
randomly generated ensemble of 1,000 members. Despite
the differences between plots for REF and CWS data, both
networks demonstrate consistent patterns indicating the major

FIGURE 9 | Values of Rreg (A–D) and Pmeso/Ploc ratio (E–H), averaged over the 25% of best combinations for each pair of rloc and rmeso for winter (A, B, E, and F)
and summer (C, D, G, andH) periods, REF (A, C, F, andG), and CWS (B, D, F, andH) data. Zero rloc valuesmean using the data on the original 250-m grid. The colors of
the cells correspond to the values. Note the different color ranges in subfigures (A–G), compared with subfigures (E–H).

FIGURE 10 |Mean relative weights of predictors, smoothed with different radii, in the multi-scale MLRmodel, averaged over best 25% of predictor combinations in
randomly generated ensemble. R in the legend denotes mean regression coefficient over best 25% of predictor combinations.
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contribution of the scales corresponding to r between 0 and
2 km, and >10 km, and near-zero contribution from r between 3
and 7 km (these radii are almost not presented in the top 25% of
predictor combinations). Differences between plots for summer
and winter again suggest larger contribution of the smaller
scales in summer. Thus, both types of regression analyses
confirm the contribution of the mesoscale variation of the
city-descriptive parameters (on a scale of about 10 km and
higher) is comparable or even higher than the local-scale
variation of these parameters.

DISCUSSION

The UHI has been studied for decades, and it is one of the clearest
examples of inadvertent climate modification due to humans
(Oke et al., 2017). Land cover properties are known to play a
crucial role in its development, yet the role of their spatial
heterogeneity at various spatial scales remains unclear. The
current study addresses this issue by linking the latter to the
observed nocturnal canopy layer UHI of Moscow. Our results
thereby provide a systematic understanding of the spatial scales
affecting the UHI of a megacity.

The identified spatial patterns of the canopy layer UHI of
Moscow are consistent with studies for other cities. As found by
other studies focusing on LCZs and their thermal regimes
(Stewart et al., 2014; Fenner et al., 2017; Skarbit et al., 2017;
Beck et al., 2018a; Verdonck et al., 2018; Kwok et al., 2019;
Milošević et al., 2021), we revealed a dependence between ΔT
and LCZ type (Figure 6). The highest temperatures are found
for densely built compact LCZs (1–3), which are warmer than
open high-/mid-rise LCZs (4, 5), which again are warmer than
low-rise residential areas (LCZ 6, 9) and natural LCZs. At the
same time, intra-LCZ variability is comparable or even higher
than inter-LCZ differences, especially for the most frequent
LCZs in the study area (4, 6, and 9), which is consistent
with previous studies (Leconte et al., 2015; Fenner et al.,
2017; Skarbit et al., 2017; Quanz et al., 2018; Shi et al., 2018;
Kwok et al., 2019).

Meanwhile, we obtained a strong negative correlation
(R < −0.75) between ΔT and distance to the city center
(Figure 5), which is also visible within specific LCZ classes
(Figure 7). The dependence of ΔT to this distance may
explain more than 50% of the intra-LCZ variability that is
obtained for the whole city region (Figure 7, Supplementary
Table S4). In other words, a specific LCZ in the city center is
warmer than the same LCZ at the edge of the city. Such
dependency has, to date, gained little attention, reporting
ambiguous results. As strong correlation as for Moscow
(R < −0.7) was previously only reported for the medium-sized
city of Szeged, Hungary (Bottyán et al., 2005). Weaker
dependencies (R � −0.41) were found by Oswald et al. (2012)
for the nocturnal UHI in Detroit, United States. Kwok et al.
(2019) showed higher air temperature per LCZ class in regions
close to the city center of Toulouse, France, and lower values for
the same classes in regions farther away. Similarly, Gardes et al.
(2020) reported an impact of the distance to the city center on the

intra-LCZ variability for 42 French cities, yet with large scatter
around the average. In contrast, only a weak impact of the
distance to city center on the urban temperatures was found
for Augsburg, Germany (Straub et al., 2019), and Leipzig,
Germany (Franck et al., 2013).

In order to explore the impacts of the land cover heterogeneity
of different scales on the UHI spatial patterns, we suggest a novel
approach based on a set of the city-descriptive parameters,
defined on a 250-m grid, and further smoothed with several
radii (r) from 250 m to 20 km. Based on several types of statistical
analysis, our results indicate that the observed UHI is shaped by
both local and mesoscale land cover heterogeneity, with
comparable, or even dominant, contributions of the mesoscale
features. The local scale, which is considered as highly relevant for
urban climate studies, is defined as “hundreds of meters to several
kilometers” (Stewart and Oke, 2012), but is often associated with
only scales of a few hundred meters (Fenner et al., 2017; Skarbit
et al., 2017; Beck et al., 2018a), while the mesoscale is typically
associated with scales >2 km (Orlanski, 1975). Our correlation
analysis revealed that the local-scale (a few hundred meters)
urban land cover description is less correlated with nocturnal ΔT
compared with a smoothed r ≥ 2 km (Figure 8). Furthermore,
using MLR analyses with two predictors, representing
heterogeneity of the urban land cover on local (rloc ≤ 500 m)
and meso (rmeso > 1 km) scales, we found the best results of
rmeso ≈ 10 km and have shown a typically larger importance of
the mesoscale predictor (Table 1, Figure 9). Our final, more
comprehensive MRL analysis with predictors representing the
wide range of scales allowed to separate two dominant ranges of
contributing scales, r ≤ 2 km, and a second with r > 7 km
(Figure 10).

The presence of two dominant ranges of spatial scales suggests
their connection with different physical processes. The
contribution of scales with r > 7 km, which represents the
mesoscale UHI variability, is likely related to the horizontal
and vertical advection of warmer urban air by the larger-scale
airflow. UHI advection to the leeward side of the city was reported
by observation-based (Bassett et al., 2016; Bassett et al., 2017) and
modeling studies (Zhang et al., 2011; Heaviside et al., 2015). At
this scale, UHI advection takes place across the whole urban
boundary layer, and can extend to the countryside via heat
plumes (Clarke, 1969; Varentsov et al., 2018; Wang et al.,
2020). Available observations allow to demonstrate this
phenomenon for Moscow as well, which is shown by
comparing two cases with southwesterly and southeasterly
wind directions (Figure 11). In these examples, differences in
wind direction resulted in a shift of the UHI hotspot bymore than
10 km. Of course, UHI advection depends on the wind speed,
atmospheric stability, and other factors, which require accurate
quantification in further studies. Nonetheless, since the wind
direction during the sampled cases largely varies (see
Supplementary S3), one can expect that UHI advection in
different directions resulted in smoothing of the mean ΔT
fields on a scale of several kilometers and more. Advected air
is additionally mixed by boundary-layer turbulence. Moreover,
city-wide UHI smoothing may be forced by other atmospheric
phenomena, e.g., urban-induced circulations (urban breeze) in
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the urban dome (Lemonsu and Masson, 2002; Varentsov et al.,
2018). In the case of Moscow, smoothing with r ≥ 10 km turns the
observed heterogeneity of urban land cover to almost concentric
spatial structures (Figure 3), resulting in the observed
dependence of ΔT and distance to city center. Mesoscale UHI
smoothing also explains the dependence between maximum UHI
intensity and city size, which is known from observational (Oke,
1973; Zhou et al., 2017) and modeling (Varentsov et al., 2017; Li
et al., 2020) studies.

The range of contributing scales with r ≤ 2 km is more
difficult to interpret. On the local scale, the thermal
environment is expected to be uniform due to the
homogeneity of the land cover and building morphology,
and the surface-layer turbulent mixing, which can remain
quite intensive in urban canopy layer even at night (Oke
et al., 2017). However, in our case, the contributing scales
extend to a “gray zone” between local and mesoscales. For
example, r � 2 km corresponds to an area width of 4 km, which
still fits the “several km” from the local scale definition but is
generally larger than the definition typically used in many
urban climate studies. In Moscow, urban areas of such size are
typically highly heterogeneous and include parks, building
blocks, and industrial zones.

In order to relate the contributing spatial scales revealed in
our analysis to the heterogeneity of the LCZ classes in Moscow,
we estimated the typical surface area size of homogenous LCZ

patches. For this, we applied the “circle-based region width
estimation” method (Samsonov et al., 2019) that assigns—to
each pixel inside an LCZ patch—a characteristic radius. That
radius corresponds to the largest circle covering the pixel
without intersecting other LCZ classes (Supplementary
Figure S5.1). Analyzing these radii grouped by LCZ class
within the study area indicates that the typical LCZ class
radius (mean or median) does not exceed 500 m for all
LCZs, and is <300 m for all urban LCZs except 2 and 4
(Supplementary Figure S5.2). Such values are noticeably
smaller than the range of 1–2 km, which provide significant
contribution to the spatial UHI patterns (Figure 10). Hence,
the range of contributing scales with r between 1 and 2 km
cannot only be explained by the alteration of different LCZs.
Possible explanations for its contribution include two options.
The first one is the similarity of LCZ classes, e.g., 4 and 5, 6 and
9, A and B, etc. (Bechtel et al., 2017; Bechtel et al., 2020), as
discussed in the Local climate zones and city-descriptive
parameters section. The second option is atmospheric
mixing, forced by specific processes with typical scales of a
few kilometers, e.g., by advection between neighboring LCZs
(Quanz et al., 2018), and by coherent structures in the
atmospheric boundary layer, including local circulations,
induced by urban blocks or green areas. This could be
addressed in future studies using high-resolution modeling
approaches.

FIGURE 11 | Spatial patterns of UHI intensity ΔT for two specific winter cases demonstrating an UHI shift to the leeward side of the city by south-easterly (A) and
south-westerly (B)winds. Symbols are similar to Figure 4. The arrow in the top right corner shows the 10-mwind direction according to ERA5 reanalysis. The dotted line
indicates the area with maximum ΔT. Digits in the caption indicate date and time, maximum ΔT according to REF data, ERA5 wind speed and direction.
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CONCLUSION AND OUTLOOK

Based on dense reference and crowdsourced air temperature
observations, we analyzed linkages between the nocturnal
canopy layer UHI of Moscow and the land cover
heterogeneity on different spatial scales, ranging from a few
hundred meters to tens of kilometers. Land cover properties
were described using the local climate zone (LCZ) classification
and specific city-descriptive parameters, derived on a 250-m grid
and smoothed with different radii (r) to represent their variations
on different scales.

Our results underscore that the thermal environment in
Moscow is influenced by the heterogeneity of land cover
properties on different scales, including local scale (a few
hundred meters, r < 1 km) and mesoscale (from the first km
to the first tens of kilometers, with typical r ≈ 10 km). The
mesoscale contribution to the observed UHI spatial patterns is
established by smoothing the smaller-scale thermal
heterogeneity by atmospheric processes, including advection
and diffusion. For Moscow, with its symmetric planning
pattern, this mesoscale contribution is reflected in a
dependence between UHI intensity and distance to city
center, which is also visible for specific LCZ classes. This
mesoscale contribution is comparable to, or even exceeds,
the contribution of the local scale to observed UHI
intensity. Finally, we show a significant contribution from
the scale within a “gray zone” between local and mesoscales
(r � 1 ÷ 2 km). This is likely associated with the similarities
between different LCZ types and again with atmospheric
mixing at that scale, yet requires further studies.

Our results recommend considering the mesoscale
heterogeneity of land cover properties alongside the local-scale
heterogeneity in urban climate studies and practical applications,
especially for large cities. Our findings are especially relevant for
statistical modeling of the urban thermal environment. It can be
expected that the use of predictors reflecting mesoscale
heterogeneity of land cover properties will improve the
accuracy of temperature mapping for urban areas. Our results
are also relevant for urban planning, since they underline the
impact of local changes in specific areas (e.g., new urban
developments) to its neighborhood on a mesoscale.

In order to assess the robustness of our findings, we propose
the following research directions for follow-up studies:

• The proposed hypothesis should be tested for other
cities, including more complex geographic controls,
and for longer periods, since the sampling size in our
study is relatively small, especially for winter. Moreover,
the presented results are valid only for nocturnal cases
with a pronounced UHI signature. Different patterns of
air temperature may be expected during daytime and
should be further investigated.

• Further studies are needed for deeper understanding of the
physical processes beyond the revealed local-scale and
mesoscale drivers. Yet, our study is based on a coarse-
grained approach that analyzes the influencing scales of
land cover heterogeneity through spatial smoothing of the

city-descriptive parameters. Our results allow only
suggesting about the physical processes responsible for
such smoothing. More detailed and reliable knowledge
may be gained based on high-resolution numerical
simulations with mesoscale models, coupled to urban
canopy schemes. Such modeling seems to be the only
way to comprehensively analyze the interaction between
UHI and atmospheric processes at different scales and
different vertical levels from the surface up to the ABL.

• Despite the overall consistent results from the CWS and
REF data, further research is needed to understand
differences between the two types of stations, particularly
regarding their spatial representativeness. Differences in the
setup of the stations likely affect results regarding the
contribution of scales; yet to what extent is not understood.

• Follow-up studies could explore the use of machine learning
(ML) techniques that are already used to study and predict
UHI spatial patterns (Straub et al., 2019; Gardes et al., 2020;
Vulova et al., 2020). Simultaneously, existing ML-based
techniques could be improved by considering the
mesoscale heterogeneity of the urban environment.

• Additional attention should be paid to the scale smaller than
the local scale, i.e., the microscale, which is ignored in our
study. Yet, studies have shown that there is microscale
variability within LCZs or neighborhoods, even of similar
local-scale characteristic (see, e.g., Heusinkveld et al., 2014;
Ellis et al., 2015; Leconte et al., 2015; Quanz et al., 2018; Shi
et al., 2018; and Pacifici et al., 2019). Such an intra-LCZ
variability is expected due to microscale variations in
surface cover and morphology, exposure of the sensors, and
anthropogenic heat sources. In the case of CWS, one can argue
that due to their non-standard setup, the microscale influence
is more pronounced than for reference observations (Fenner
et al., 2017). This may explain the higher correlation coefficient
for the CWS data without smoothing (r � 0), compared with
the REF data (Figure 8). In order to further delineate micro-,
local-, and mesoscale influences on T and ΔT, datasets with
higher spatial resolution are needed to resolve features down to
few tens of meters. Such datasets should not only include
parameters representing the building spatial extent as in the
current study, but should also reflect their morphology,
thermal, and radiative characteristics, e.g., sky view factor or
albedo.

• In the end, our study highlights that further research is
needed to systematically understand the contribution of
spatial scales in urban thermal climate investigations across
geographic and climatic regions, and cultures. This could
lead to a possible extension of the LCZ concept to take
mesoscale settings of the urban environment into account,
further enhancing communication and reporting on the
UHI effect throughout the scientific literature.
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CrowdQC+—A Quality-Control for
Crowdsourced Air-Temperature
Observations Enabling World-Wide
Urban Climate Applications
Daniel Fenner1,2*, Benjamin Bechtel 1, Matthias Demuzere1, Jonas Kittner1 and Fred Meier3

1Urban Climatology, Department of Geography, Faculty of Geosciences, Ruhr University Bochum, Bochum, Germany, 2Chair of
Environmental Meteorology, Institute of Earth and Environmental Sciences, Faculty of Environment and Natural Resources, University
of Freiburg, Freiburg, Germany, 3Chair of Climatology, Institute of Ecology, Technische Universität Berlin, Berlin, Germany

In recent years, the collection and utilisation of crowdsourced data has gained attention in
atmospheric sciences and citizen weather stations (CWS), i.e., privately-owned weather
stations whose owners share their data publicly via the internet, have become increasingly
popular. This is particularly the case for cities, where traditional measurement networks are
sparse. Rigorous quality control (QC) of CWS data is essential prior to any application. In this
study, we present the QC package “CrowdQC+,” which identifies and removes faulty air-
temperature (ta) data from crowdsourced CWS data sets, i.e., data from several tens to
thousands of CWS. The package is a further development of the existing package
“CrowdQC.” While QC levels and functionalities of the predecessor are kept, CrowdQC+
extends it to increaseQCperformance, enhance applicability, and increase user-friendliness.
Firstly, two new QC levels are introduced. The first implements a spatial QC that mainly
addresses radiation errors, the second a temporal correction of the data regarding sensor-
response time. Secondly, new functionalities aim at making the package more flexible to
apply to data sets of different lengths and sizes, enabling also near-real time application.
Thirdly, additional helper functions increase user-friendliness of the package. As its
predecessor, CrowdQC+ does not require reference meteorological data. The
performance of the new package is tested with two 1-year data sets of CWS data from
hundreds of “Netatmo”CWS in the cities of Amsterdam,Netherlands, and Toulouse, France.
Quality-controlled data are compared with data from networks of professionally-operated
weather stations (PRWS). Results show that the newpackage effectively removes faulty data
from both data sets, leading to lower deviations between CWS and PRWS compared to its
predecessor. It is further shown that CrowdQC+ leads to robust results for CWS networks of
different sizes/densities. Further development of the package could include testing the
suitability of CrowdQC+ for other variables than ta, such as air pressure or specific humidity,
testing it on data sets from other background climates such as tropical or desert cities, and
to incorporate added filter functionalities for further improvement. Overall, CrowdQC+ could
lead the way to utilise CWS data in world-wide urban climate applications.

Keywords: crowdsourcing, quality control, citizen weather station, private weather station, urban climate, Netatmo,
Amsterdam, Toulouse
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INTRODUCTION

Cities modify atmospheric conditions and amongst these
alterations the urban heat island (UHI) phenomenon,
i.e., generally higher temperatures within the city compared to
its rural surroundings, is likely the best documented one (Arnfield
2003; Oke et al., 2017; Stewart 2019). Despite high variability in
atmospheric conditions within cities due to heterogeneity in
underlying surface cover, morphology, thermal properties, and
anthropogenic heat emissions (Oke et al., 2017), there is a dearth
of observations to monitor these. While a growing number of
cities is now equipped with dedicated urban climate observation
networks (see review by Muller et al., 2013), mostly run by
research institutions [e.g., Amsterdam, Netherlands (Ronda
et al., 2017), Berlin, Germany (Fenner et al., 2014; Langer
et al., 2021), Birmingham, United Kingdom (Chapman et al.,
2015; Warren et al., 2016), Novi Sad, Serbia (Šećerov et al., 2019),
Szeged, Hungary (Lelovics et al., 2014; Skarbit et al., 2017)], for
the broad majority of urban regions across the globe little to none
is known about their urban climate conditions through
observations.

In recent years, the collection and utilisation of vast amounts
of data via crowdsourcing, i.e., the collection of data from non-
traditional sources via the internet (Muller et al., 2015), has
gained much attention. Such non-traditional, opportunistic
sources of data are, e.g., smartphones (e.g., Overeem et al.,
2013b; Mass and Madaus 2014; Droste et al., 2017), smart
wearable devices (Nazarian et al., 2021), cars (e.g., Haberlandt
and Sester 2010; Bartos et al., 2019), commercial microwave
links (e.g., Messer et al., 2006; Overeem et al., 2013a; Chwala
and Kunstmann 2019), and privately-owned weather stations,
called citizen weather stations (CWS) in the following (e.g.,
Steeneveld et al., 2011; Wolters and Brandsma 2012; Bell et al.,
2013; Madaus et al., 2014; Chapman et al., 2017; de Vos et al.,
2017; Venter et al., 2021). Each type of these data sources alone
or multiple combined can be used in different meteorological
and climatological applications, such as weather forecast (e.g.,
Mass and Madaus, 2014; Nipen et al., 2020), operational
weather monitoring (e.g., de Vos et al., 2019), mesoscale
model evaluation (e.g., Hammerberg et al., 2018),
hydrometeorological analyses and modelling (e.g., Smiatek
et al., 2017; de Vos et al., 2020), high-resolution mapping of
air temperature (e.g., Venter et al., 2020; Vulova et al., 2020;
Zumwald et al., 2021), thermal-comfort assessment (Nazarian
et al., 2021), and urban climate investigations (e.g., Fenner
et al., 2017, 2019; Droste et al., 2020; Feichtinger et al., 2020).
The potential of CWS data is especially large for cities, where
population density and thus also CWS network density is high
and where traditional meteorological observations are sparse.

By investigating CWS data and crowdsourced data sets of air-
temperature (ta) measurements, Bell et al. (2015) and Meier
et al. (2017) identified different sources of uncertainties or
errors. These are issues related to metadata (e.g., incorrect,
incomplete), the device design (flaws of the station that lead
to inaccurate measurements, e.g., radiative errors, slow
response), installation (e.g., CWS set up inappropriately near
building walls), calibration (e.g., constant offsets or sensor drift

over time), and communication and software errors (lead to
missing data) (Bell et al., 2015; Meier et al., 2017). For other
variables than ta, other sources of uncertainty may also arise
[see, e.g., de Vos et al. (2019) for precipitation, and Droste et al.
(2020) for wind speed]. Design flaws leading to radiative errors
and to slow sensor-response times are common among many
different types of CWS (Bell 2015). This holds particularly true
for the Netatmo CWS (https://www.netatmo.com/en-us/
weather), a popular CWS especially in Europe. Due to its
compact built form and its aluminium shell with poor
ventilation and without a proper radiation screen it is
particularly affected by both types of errors (Meier et al.,
2017; Büchau 2018). Despite the abundance of CWS,
especially in urban areas, crowdsourced CWS data sets can
hence not be used in urban climate research without prior
rigorous quality control (QC).

To address sources of uncertainties associated with CWS
data and to remove erroneous data from a data set of
crowdsourced CWS observations, a number of studies has
developed QC procedures, either relying on reference data
from professionally-operated weather stations (PRWS), or
using statistical approaches that are independent of
additional meteorological observations. Several QC
procedures for CWS that make use of PRWS data have
been developed, all with different complexity and focusing
on different variables: for ta (e.g., Bell 2015; Meier et al., 2017;
Hammerberg et al., 2018; Cornes et al., 2020), for precipitation
(Bárdossy et al., 2021), for wind speed (Droste et al., 2020;
Chen et al., 2021), and for multiple variables (Clark et al., 2018;
Mandement and Caumont 2020). Recently, Båserud et al.
(2020) introduced an automatic QC package for ta and
precipitation, which aims at identifying possibly faulty
values from meteorological observations based on a series of
(spatial) tests. The applicability of that specific QC is
highlighted by the fact that it is implemented in the
operational weather forecast of the Norwegian
Meteorological Service (Båserud et al., 2020; Nipen et al.,
2020).

One core potential benefit of CWS data is their availability in
regions where traditional and high-quality meteorological
observations are sparse or even non-existing. Hence, a QC
that is independent of such additional data makes it
particularly useful for application in such areas and
transferable across regions. For precipitation from CWS, de
Vos et al. (2019) developed an automatic QC that can be
applied in (near-)real time for operational weather monitoring.
For ta, Chapman et al. (2017), e.g., used a relatively simple
statistical approach of mean and standard deviation to filter
potentially faulty measurements from CWS in London,
United Kingdom. Napoly et al. (2018) developed a more
comprehensive QC for ta, also working without reference
meteorological data and being available as a package in R (R
Core Team 2021) under the name of “CrowdQC” (Grassmann
et al., 2018). CrowdQC is a statistically-based QC with four main
and three optional QC levels that are applied sequentially,
removing erroneous data based on the assumption that the
whole crowd of CWS knows more than each individual station
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(“wisdom of the crowd”). Since its release, CrowdQC has
successfully been applied in a number of studies to quality-
control CWS ta data for further analyses (e.g., Fenner et al.,
2019; Feichtinger et al., 2020; Venter et al., 2020, 2021; Vulova
et al., 2020; Benjamin et al., 2021; Potgieter et al., 2021; Zumwald
et al., 2021). Its large-scale applicability was only recently
demonstrated by the study of Venter et al. (2021), using
CrowdQC to quality-control data from >50,000 CWS in 342
urban regions in Europe for a summer month.

While CrowdQC already provides good performance
regarding identifying and removing possibly faulty values in
the CWS data set (Napoly et al., 2018), Feichtinger et al.
(2020), e.g., identified that when applying CrowdQC for
Vienna, Austria, radiative errors remained in the filtered
data set. Similar issues were reported by Venter et al.
(2021). To address the remaining radiative errors,
Feichtinger et al. (2020) introduced additional filter levels,
adopting filter functions developed by Meier et al. (2017).
These additional filter functions rely on measurements of
global radiation and ta data from PRWS. Further,
Feichtinger et al. (2020) had to collect and quality-control a
whole month of CWS data, even though their investigation
period lasted only eleven days during that month. This was due
to the functionality of CrowdQC, which only worked on a fixed
monthly basis and not being flexible towards periods of other
lengths.

While radiative errors have been addressed by the various QC
procedures available for CWS data, none of them has tried to
address errors due to slow sensor response. Sensor-response times
are dependent on the type of sensor, its built form, radiation shield,
location, and weather conditions, which makes it non-trivial to
implement such a correction for crowdsourced CWS data. The
question is, whether it is nonetheless possible to reduce such errors
due to slow sensor response, in absence of additional meta data and
other meteorological observations. Since Netatmo CWS are all
built identically, it might be possible to reduce errors in a
crowdsourced data set of hundreds of these CWS in a
simplified manner by correcting the data with a uniform time
constant.

This study introduces and describes CrowdQC+ as a further
development of CrowdQC. CrowdQC+ builds on its
predecessor, keeping the QC concepts, software and QC
design, and existing QC levels. The core aim of CrowdQC+
is to retain the existing applicability of CrowdQC, i.e., providing
a QC for CWS data that is independent of reference
meteorological data, thus exploiting the “wisdom of the
crowd” and being applicable universally around the world.
The main idea of CrowdQC+ is that there is trustworthy
information in a large group of individual measurements,
which can be used to check individual values. With several
enhancements and added functionalities, the aim of CrowdQC+
is to increase applicability and performance of the QC,
effectively removing faulty data while retaining as much data
as possible. The core enhancement of CrowdQC+ is the
introduction of two new QC levels: The first implements a
spatial QC that mainly addresses radiative errors, the second a
temporal correction of the data regarding sensor-response time.

Besides, a number of modifications and bug fixes to the existing
package are implemented, as well as several helper functions
that target the user-friendliness of the package.

The following sections aim at providing on overview of the
open-source package CrowdQC+ with its additional
functionalities and extensions. Both CrowdQC and
CrowdQC+ are applied to two data sets in Amsterdam
(Netherlands) and Toulouse (France), where PRWS data
exist, used as benchmark. In the end, two applications
highlight the applicability of CWS data in urban climate
research.

DATA AND METHODS

Data
Cities and Investigation Periods
Two cities were selected for this study: Amsterdam (52.37°N,
4.89°E) and Toulouse (43.60°N, 1.44°E). Figure 1 displays both
regions and corresponding weather stations, Table 1 provides a
brief overview of the cities and the respective investigation
periods. Both investigation periods cover 1 year: 2019 and
2020 for Amsterdam and Toulouse, respectively. The cities
and investigation periods were selected due to the availability
of reference data from PRWS for comparison with CWS data,
relatively dense CWS networks, different background climates,
and different city settings.

Amsterdam lies in the north of the Netherlands and is
strongly influenced by maritime air from the North Sea
(distance to coast <50 km). In addition, the surroundings
contain large waterbodies (to the north-east of the city) and
canals are found throughout the city centre region. The region
of interest (ROI) for Amsterdam (cf. definition of ROI in Station
Selection section) has a flat topography, with an altitude
approximately at mean sea level. Central areas of the city are
mainly composed of LCZ 2 (compact midrise). Surrounding
these areas, LCZ 6 (open low-rise) and 8 (large low-rise)
dominate the built-up areas, natural surroundings of the city
are mainly composed of LCZ D (low plants) and G (water)
(Figure 1A).

Toulouse is an inland city in the south of France,
approximately 80 km north/north-east of the Pyrenees
mountain range. The river Garonne runs through the city.
Overall, topography is flat, with a mean ROI altitude of
approximately 150 m above mean sea level (amsl). Central
parts of Toulouse are composed of LCZ 2 and 5 (open
midrise), while largest built-up areas consist of LCZ 6, 8, and
9 (sparsely built). Natural landcover surrounding the city is
mainly LCZ D and A (dense trees) (Figure 1B).

Citizen Weather Stations and Crowdsourcing
Data from CWS were collected from the Netatmo network
(https://weathermap.netatmo.com/) via the company’s
Application Programming Interface API (https://dev.netatmo.
com/).

The Netatmo CWS is a smart device, sold by the French
company “Netatmo.” The station consists of an indoor and an
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outdoor module, each enclosed by a cylindrical shell made of
aluminium. Upon purchase, Netatmo CWS do not contain a
proper radiation shield such as lamella-type radiation screens,
making it prone to shortwave radiative errors if set up in
unshaded locations. Additional radiation screens can be fitted
to the sensor but are likely only found at a marginal percentage of
Netatmo CWS, since the company does not offer such a screen.
The outdoor module measures ta (specified accuracy ±0.3 K,
−40°C to 65°C) and relative humidity at 5-min resolution. Data is
automatically and wirelessly sent to the Netatmo server, from
which the owner can retrieve the data. If the owner consents to
share the data, the outdoor measurements are publicly shared and
can be retrieved via the API at no cost. Meier et al. (2017)
investigated the accuracy of the sensor, showing that the specified
accuracy is met for the tested range 0°C–30°C, with only a small
positive bias at 0°C. Fenner (2020) further showed that even after
several years in the field the sensors did not show a systematic
drift and still met the specified accuracy.

CWS ta data was crowdsourced at an hourly resolution using
the “getmeasure” API endpoint. Beforehand, station metadata
(station identifier, latitude, longitude, altitude) were collected and

updated regularly using the “getpublicdata” API endpoint,
retrieving new metadata and comparing it to previously-
obtained metadata. Each CWS received a unique internal
station ID. If a change in position for an existing CWS was
detected, a new internal station ID was assigned to this CWS, in
order to keep the time series consistent (similar to Meier et al.,
2017). Metadata for each CWS are limited to geographical
position and altitude, and no further information regarding,
e.g., a possible additional radiation shield or the specific setup
of the sensor are available from the Netatmo API. This is in
contrast to other CWS platforms such as Weather Underground
(https://www.wunderground.com/pws/overview) or the Weather
Observations Website (https://www.wow.metoffice.gov.uk/),
where such metadata can be provided by station owners and
which can then be obtained by API users. However, the Netatmo
network surpasses other CWS platforms regarding network
density, especially in Europe, and offers the advantage of a
consistent station design and sensor quality throughout the
whole network.

Netatmo CWS data are one-hourly mean values. Netatmo
time stamps obtained from the API were valid for the beginning

FIGURE 1 | Study regions (A) Amsterdam and (B) Toulouse with the location of weather stations and Local Climate Zones LCZ. Citizen weather stations (raw data
availability) are displayed as black circles, professionally-operated weather stations as black squares. A more detailed description of the LCZ scheme can be found in
Stewart & Oke (2012).

TABLE 1 | Overview of the professionally-operated weather stations in each city used in the investigations. KGC: Köppen-Geiger classification after Beck et al. (2018b). KNMI,
Koninklijk Nederlands Meteorologisch Instituut–Royal Netherlands Meteorological Institute; AAMS, Amsterdam Atmospheric Meteorological Supersite (Ronda et al., 2017).

City KGC Period Network/Provider Number of
stationsa

Temporal resolution
(minutes)

Sensor Accuracy
(K)

Amsterdam Cfb 01/01–31/
12/2019

KNMI 1 60 Pt500 (active ventilation) 0.1
AAMS 23 5 Decagon VP-3 (active ventilation with

global radiation >100 W m−2)
<0.5

Toulouse Cfa 01/01–31/
12/2020

Toulouse Métropole/
Météo France

38 15 Davis Vantage Pro II ISS (natural ventilation) 0.3

aIn analyses, after QC, aggregation, and clipped to each cities’ ROI.
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of each aggregation interval, which was modified (+3600 s/+1 h)
to represent the end of each interval. Then, CWS data were
prepared for the QC according to the requirements of the
CrowdQC and CrowdQC+ packages, resulting in a data table
(Dowle and Srinivasan 2021) with column names as required by
the packages [ta, time information, station ID, and corresponding
coordinates (latitude, longitude)].

Professionally-OperatedWeather Stations and Quality
Control
Data from PRWS were collected from different institutions for
both cities. The respective temporal availability, temporal
resolution, instrumentation, and number of stations are
displayed in Table 1. Data from these PRWS are especially
suitable for our purpose, as networks in both cities cover
extended areas with stations being located in a variety of local
settings, yet with a focus on city-centre regions where CWS data
are also especially dense (Figure 1). PRWS data for Amsterdam
from the Amsterdam Atmospheric Meteorological Supersite
(AAMS, Ronda et al., 2017) have previously been used in the
evaluation of and comparison with CWS data (e.g., de Vos et al.,
2020; Droste et al., 2020). PRWS data from the network in
Toulouse was already used in the study by Napoly et al.
(2018) to evaluate the performance of CrowdQC, yet with a
much lower number of sites than in this study. Sensors of both
PRWS networks are installed on lampposts or street signs at a
height of approximately 3–4 m above ground level.

Data from PRWS were quality-controlled to remove
unrealistic values. The QC steps and corresponding thresholds
were adapted from several sources (Shafer et al., 2000;
Zahumenský 2004; Fiebrich et al., 2010; Estévez et al., 2011;
Cerlini et al., 2020). The QC consisted of four individual tests, all
working on the individual station level:

1) Gross-error limit test: All values outside the range [−40°C,
60°C] were flagged as FALSE.

2) Spike-dip/step test (temporal consistency): If the difference
between a value and its previous value was above a threshold
value, this value was flagged as FALSE. The threshold was
adapted to the temporal resolution of the data (5-min
resolution: 6 K, 15-min resolution: 10 K, 1-hourly
resolution: 20 K).

3) Persistence test (temporal consistency): If a value persisted for
a certain period of time, these values were flagged as FALSE.
The threshold was adapted to the temporal resolution of the
data (5-min resolution: 2 h, 15-min resolution: 3 h, 1-hourly
resolution: 6 h).

4) Manual visual check: This last step was performed to identify
any additional flawed data based on a visual inspection of each
time series.

The QC tests were always applied at the highest available
temporal resolution at each station. If any of the tests failed
(FALSE flag), this value was set to missing value. After QC, all
data were aggregated to hourly mean values. A minimum of
>80% of valid data per hour had to be available for the
aggregation, otherwise this value was set to missing value.

Further, each month of a station was only kept if >80% of
hourly data were valid.

Local Climate Zone Maps
For each city, an LCZ map (Figure 1) was produced using the
LCZ Generator (Demuzere et al., 2021, https://lcz-generator.rub.
de/). This web application translates the default WUDAPT
protocol (Bechtel et al., 2015; Ching et al., 2018) into a cloud-
based web application, thereby using all recent advancements of
LCZ mapping as described in Bechtel et al. (2019) and Demuzere
et al. (2019a,b; 2020).

Methods
Station Selection
A ROI was set for each city. Each ROI extended from the
minimum to the maximum in common geographical coverage
among the PRWS and CWS networks (based on latitude and
longitudes of all stations), adding (subtracting) 0.05° to the
maximum (minimum) latitude and longitude. Only stations
within each ROI were selected for further analyses (Figure 1).
The ROI for Amsterdam (506.54 km2) is about half the size of
that for Toulouse (1,130.90 km2), while the maximum network
density in time for raw CWS data (calculated per hourly data
availability) is similar for both cities with 0.85 CWS/km2 and
0.86 CWS/km2 for Amsterdam and Toulouse, respectively.

Height Correction
For comparisons among stations after QC, ta data were corrected
for elevation differences among stations to a reference height per
city, using the environmental lapse rate of −0.0065 K m−1. The
reference height was set to the mean of the elevation of all PRWS
in each city, rounded to the nearest integer value (Amsterdam:
3 m amsl, Toulouse: 155 m amsl). The elevation of each station
was extracted from the nearest grid-point value from the hole-
filled Shuttle Radar TopographicMission SRTMdata (Jarvis et al.,
2008). Additionally, the sensor height was considered in the
height correction, using the available metadata for PRWS and
assuming a uniform sensor height for the CWS of 2 m above
ground level, as in Fenner et al. (2017).

Classification of Stations to Local Climate Zones
All CWS available in the ROI were considered in the application
of CrowdQC and CrowdQC+. For comparison between CWS
and PRWS, an LCZ was assigned to each station following
Fenner et al. (2017) and Varentsov et al. (2021), using the
geographical position of each station and the LCZ maps. First,
the nearest-pixel LCZ value was assigned to each station.
Second, for a buffer with a radius of 250 m around each
station, the surface-cover fraction of the modal LCZ was
calculated (using pixels of the LCZ map). Third, a weighted
surface-cover LCZ fraction in the same buffer was calculated
(Varentsov et al., 2021), applying “similarity weights”
(Figure 3B in Bechtel et al., 2020) between the modal LCZ
and all other grid points (LCZ pixels) within the buffer.

Only those stations (CWS and PRWS) were considered if 1)
the nearest-pixel LCZ was identical to the modal LCZ in the
buffer, 2) the modal LCZ covered a surface fraction within the
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buffer of >0.5, and 3) the weighed-LCZ fraction of the modal LCZ
was ≥0.75. This procedure was applied to select only those
stations that are located in homogeneous surroundings
regarding the LCZ scheme, to obtain a locally-representative
signal (Fenner et al., 2017).

Statistics
Four statistical metrics were calculated to compare CWS with
PRWS ta data.

Mean deviation MD:

MD � 1
N

∑N
i�1

tai, CWS − tai,PRWS

where tai,CWS and tai,PRWS are ta at CWS and PRWS, respectively,
at time i.

Mean absolute deviation MAD:

MAD � 1
N

∑N
i�1

∣∣∣∣tai, CWS − tai,PRWS

∣∣∣∣
Root-mean-square deviation RMSD:

RMSD �

���������������������
1
N

∑N
i�1
(tai, CWS − tai,PRWS)2

√√

Centred root-mean-square deviation cRMSD (Taylor 2001):

cRMSD �

�����������������������������������������
1
N

∑N
i�1

[(tai, CWS − tai,CWS) − (tai,PRWS − taPRWS)]2
√√

where taCWS and taPRWS are temporal mean ta across the whole
investigation period at CWS and PRWS, respectively.

For comparisons when these statistical metrics were calculated
per PRWS (e.g., Table 3), all CWS within a 2000 m radius around
each PRWS, belonging to the same LCZ as the PRWS (cf.
Classification of Stations to Local Climate Zones section),
where firstly identified (Amsterdam: 200 CWS from 531 in the
original data retained, Toulouse: 497 CWS from originally 1,354).
Secondly, the metrics were calculated for each of these CWS-
PRWS pairs and then averaged per PRWS. Lastly, the metrics
where averaged across all PRWS for city-scale results. This
approach was chosen in order to have an as direct as possible
comparison between the two types of networks, even though a
large percentage of CWS was omitted. If the statistical metrics
were calculated on the network basis, i.e., averaging ta per
network first and then calculating the metrics, overall lower
deviations were obtained (not shown).

DESCRIPTION OF CROWDQC+

CrowdQC+ is an improved version of the existing CrowdQC R
package (Grassmann et al., 2018; Napoly et al., 2018),
implementing several additional or modified functionalities. In

the following, all available functions are briefly described. Focus is
given to the additions and modifications of CrowdQC+. Table 2
provides an overview of the QC levels and additional functions
that are available.

As in CrowdQC, a data table with CWS data and meta data is
used as input in CrowdQC+. Each QC level adds an additional
column to the data table with boolean flag values TRUE (QC level
passed) and FALSE (QC level failed). Only values flagged TRUE
in the previous QC level are used in the subsequent level.

Main Quality-Control Levels
m1–Metadata Check
In QC level m1, function cqcp_m1 performs a metadata check
based on available latitude and longitude values and removes
stations with identical values (similar also to filter A0 in Meier
et al., 2017). This function is unchanged compared to CrowdQC
and primarily targets CWS that were faultily installed by the user
with automatic assignment of geographic coordinates based on
the IP address of the user’s internet connection. This error is a
common feature in data sets of Netatmo CWS.

m2–Distribution Check
In main QC level m2 the distribution of ta at each time step for
the whole ROI is checked and values that are statistical outliers at
the lower and upper ends of the distribution are removed.
Respective cut-off values can be specified by the user. This QC
level primarily targets radiative errors that lead to unrealistically
high ta values, and errors due to CWS installed indoors, showing,
e.g., lower ta during daytime than CWS installed outdoors. A
height correction, i.e., lapse-rate adjustment of ta, can be applied
(default: TRUE) to account for elevation differences in the data
set. Compared to CrowdQC, where only the environmental lapse
rate could be applied, cqcp_m2 now provides the option to the
user to specify any lapse rate in the height correction. Then, a
normal distribution is assumed in QC level m2 to calculate critical
values for flagging outliers at the lower and upper ends of the
distribution at each time step. Yet, if the available number of
stations is low (<100, value discussed in Effect of Different
Distribution Functions in m2 section), the assumption of
normal distribution may no longer hold. In such a case,
critical values can be more robustly calculated assuming a
Student-t distribution (Gosset, 1908). This functionality
(parameter “t_distribution”) was added in CrowdQC+.

m3–Data Validity
Main QC level m3 checks each station for the amount of values
that were flagged FALSE in QC level m2. If too many values
(default: 20%) are flagged FALSE in a certain period of time, it is
assumed that this station is to erroneous to be kept. In CrowdQC
this period of time was fixed to monthly episodes. In CrowdQC+,
cqcp_m3 offers the possibility to specify any period of time
(“duration”) for this check. The user can also choose to use
the complete data set (“complete � TRUE”).

m4–Temporal Correlation
In QC level m4, a temporal correlation between each station and
the median of all stations is carried out for a specified period of
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time. As in QC level m3, this was formerly set to correlations per
month. In cqcp_m4, analogously to cqcp_m3, any period of time
can be specified or the complete data set can be used (default:
month). If the complete data set or the specified duration is short
(sample size <100) considering the temporal resolution of the
data set, the correlation is still calculated, yet a warning is given.
This QC level primarily targets CWS that are set up indoors and
thus show a weak temporal correlation with the median of all
CWS, which are assumed to be installed outdoors.

m5–Spatial Buddy Check
This new main QC level m5 performs a spatial buddy check,
i.e., an outlier detection within the neighbourhood of a station.
Analogously to QC level m2, it is assumed that a (large) number
of individual observations contain robust information, justifying
that individual stations can be flagged as erroneous when
deviating too much from spatially adjacent stations. This QC
level aims at identifying faulty values that remained after all
previous QC steps, primarily single unrealistically high values due
to radiative errors. The QC level is comparable to the spatial
buddy check implemented in the TITAN package (Båserud et al.,
2020). There, mean and standard deviation are calculated across
the buddies to then identify statistical outliers. For CrowdQC+, it
was decided to apply the same robust statistics in the buddy check
as in QC level m2, i.e., median and Qn estimator (Rousseeuw and
Croux, 1993), the latter being an efficient alternative of the

median absolute deviation, instead of the arithmetic mean and
standard deviation. CWS data sets typically contain outliers that
could affect these statistics, while median and Qn/median
absolute deviation are less influenced by them.

In cqcp_m5, the spatial neighbours, i.e., buddies, of each
station are first identified within a given radius (default:
3000 m). If a sufficiently large number of neighbours with
valid data are available (default: five), median and Qn are
calculated per time step, excluding the station that is checked.
Then, comparable to the check in cqcp_m2 (see Napoly et al.,
2018 for the detailed description), a z-score Z is calculated as

Z �
∣∣∣∣∣∣∣∣
tai,j −median(tai, buddies)

Qn(tai, buddies)
∣∣∣∣∣∣∣∣

where tai,j is the ta value at time i and station j, and tai,buddies are
the ta values of the buddies at time i. Based on the Student-t
distribution and a specified significance level a (default: 0.1),
critical cut-off values (two-tailed approach, default: a � 0.1, which
translates to probabilities of 0.05 and 0.95 at the lower and upper
tail of the distribution, respectively) are calculated per station and
time step. All values for which Z < cut-off and for which the
number of buddies is sufficiently high are flagged as TRUE,
otherwise FALSE. Additionally, a second column “isolated” is
added to the data table, indicating whether (flag “isolated” �
FALSE) or not (flag “isolated” � TRUE) enough buddies are
present for each station.

TABLE 2 |Overview of the quality control QC levels and additional functions available in CrowdQC+. Italic lines mark functions that were modified regarding their functionality
compared to the original CrowdQC, bold lines mark functions that were added in CrowdQC+.

Level Details Modification to CrowdQC Comment Default values

Main QC levels

m1 Lat/Lon check cutOff � 1
m2 Distribution check Student-t distribution

possible, other lapse rate
possible

low � 0.01, high � 0.95, heightCorrection � T,
lapse_rate � 0.0065, t_distribution � F

m3 Validity Other time span possible cutOff � 0.2, monthly basis
m4 Temporal correlation Other time span possible cutOff � 0.9, monthly basis
m5 Spatial buddy

check
New With(-out) height correction, with(-out)

elevation check, removing/keeping isolated
stations

radius = 3000, n_buddies = 5, alpha = 0.1,
heightCorrection = T, lapse_rate = 0.0065,
check_elevation = T, max_elev_diff = 100,
keep_isolated = FALSE

Optional QC levels

o1 Interpolation maxLength � 1
o2 Daily validity cutOff � 0.8
o3 Duration validity Other time span possible cutOff � 0.8, monthly basis
o4 Sensor lag New Known sensor lag no default

Additional functions

Input check New Tests for column names, temporal
coverage, data regularity, geographical
extent, number of stations

Padding New Make regular and complete for each station
Add digital
elevation model
height

New Automatic download of elevation data
possible

Output statistics New Data availability after each QC level
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In order to avoid the influence of vertical temperature
gradients in this check, the data can be corrected for height
differences using a lapse-rate adjustment, as in cqcp_m2 (default:
TRUE). This is done prior to the statistical calculations detailed
above. Additionally, and independently from the height
correction, the user can specify that only stations within the
radius are considered, if their elevation does do differ too much
from the elevation of the station that is checked (default: 100 m
elevation difference).

Since at least the specified number of buddies/valid
observations has to be present within the given radius, QC
level m5 also flags isolated stations (flag “m5” � FALSE).
While this will lead to the exclusion of stations and negatively
affect spatial coverage, it provides greater trust in the overall
quality-controlled data set, since data from individual CWS are
doubtful in absence of comprehensive metadata (Fenner et al.,
2017; Napoly et al., 2018). Nonetheless, for certain applications or
especially where network density is low, it might be desirable to
keep these isolated stations, which an optional parameter allows
(“keep_isolated � TRUE”).

By setting the minimum number of buddies to a low number
or specifying a large radius, the user has the possibility to adjust
this to the region under investigation, depending on, e.g., network
density.

Optional Quality-Control Levels
After the main QC levels, four optional levels are included in
CrowdQC+. Altogether, they aim at further improving data
quality, yet are not considered essential. The benefits of these
levels depend on the specific application.

o1–Temporal Interpolation
In optional QC level o1, function cqcp_o1 carries out a temporal
linear interpolation for missing values between the two closest
valid values in a time series. This function is unchanged
compared to CrowdQC and aims at increasing data availability
by having as continuous time series as possible.

o2–Daily Validity
For robust calculation of daily values, function cqcp_o2 checks if a
predefined fraction (default: 0.8) of valid values is available at
each station on each calendar day. Again, this QC level is
unchanged compared to CrowdQC.

o3–Validity in Time Period
Optional QC level o3 was modified compared to CrowdQC to
handle other time spans than full months, to be consistent with
the main QC levels m3 and m4. Function cqcp_o3 checks if a
predefined fraction (default: 0.8) of valid values is available at
each station during the specified duration.

o4–Correction for Time Constant
The optional QC level o4 was introduced in CrowdQC+ in order
to correct values for a known time constant τ of the sensor at each
station. τ is typically defined as the time that a sensor needs to
respond to approximately 63% of a step change in conditions
(here: ta). Typical high-quality sensors deployed in

meteorological measurement networks have τ values of a few
seconds. However, CWS might suffer from design flaws, leading
to a slow response time of the sensor (Bell et al., 2015). Netatmo
sensors, e.g., have a slow thermal response due to their compact
form and cylindrical enclosure, as noted by previous works
(Meier et al., 2017; Büchau 2018).

In function cqcp_o4, a time-constant corrected air temperature
ta_corr is calculated (similar to Miloshevich et al., 2004 for
humidity):

ta corri �
tai − (tai−1pe−(ti−ti−1)/τ)

1 − e−(ti−ti−1)/τ

where tai is the ta value at time ti, tai-1 the ta value at the previous
time step ti-1, e Euler’s number, and τ the time constant.

In CrowdQC+ it is assumed that τ is the same for all stations
and that it is constant, regardless of weather conditions. In the
correction itself, it is assumed that a step change in air
temperature happens from one time step to the next. The
correction is applied to the original values (“ta”) and not to
the interpolated values obtained in QC level o1 (“ta_int”). Hence,
the correction can be applied after any QC level. Diverging
from all other QC levels, no additional flag variable with
TRUE/FALSE values is added to the data table during
cqcp_o4. The user can thus select the corrected values at any
QC level. In addition, cqcp_o4 is not carried out with any default
values, as the time constant is specific to each possible sensor type.
CrowdQC+ is, however, not limited or specific to any type of
station or sensor.

Additional Functions
On top of the actual QC functions, four additional functions are
implemented in CrowdQC+ to provide the user with support in
preparing the input data for the QC and to obtain quick statistics
on data availability at each QC level. These functions do not carry
out actual QC of the data.

Input Check
The cqcp_check_input function checks the input data table for
compliance with CrowdQC+ and can be used before starting the
actual QC functions. Five individual tests are performed to check
that 1) all relevant columns (“p_id”, “time”, “ta”, “lon”, “lat”) are
present, 2) the temporal coverage of all stations is identical, 3)
data for all stations are at the same temporal resolution and
regular, 4) the geographical extent is not too large
(<100 km×100 km), and 5) the absolute number of available
stations is sufficiently high. The function prints information
regarding these tests in the console or to an output file, or
outputs the results of the tests as a list. The latter output is
especially useful in automated workflows. The function further
provides hints to the user to resolve errors in case some of the
tests fail.

Padding
The padding function cqcp_padding makes sure that all stations
cover the same period of time with the same temporal resolution
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and is helpful in the preparation of the data for CrowdQC+. For a
specified temporal resolution, data at each station is set to the
nearest, next upper, or previous lower time step. If multiple values
per time step are present, the mean is calculated across these. This
function is especially useful if, e.g., the original station data have
gaps, do not cover the same period of time, or have time stamps
that are not regular.

Adding Digital Elevation Model Height
If the user does not have elevation information at each station
available but wants to apply the height correction of the
measurement data in main QC levels m2 and m5,
cqcp_add_dem_height adds data from a digital elevation
model (DEM) to each station. Any DEM data can be
provided by the user via a RasterLayer object or a path to a
GeoTIFF. If none of the two is given, SRTM data is downloaded
automatically via the getData function from the raster package
(Hijmans 2021). The downloaded data can be cropped to the
extent of the CWS data and stored as a GeoTIFF. Note that
SRTM data is only available between 60°N and 56°S. In case the
region under investigation is located outside that range the
user should make use of other available DEM data sets, e.g.,
the “Multi-Error-Removed Improved-Terrain DEM (MERIT
DEM)” (Yamazaki et al., 2017).

Output Statistics
After CrowdQC+ was carried out, cqcp_output_statistics provides
basic statistics, i.e., the absolute number of valid observations, the
percentage of valid observations compared to the raw data, and
the number of unique stations with at least one valid observation
after each QC level. The information is printed to the console or
to an output file. This function is for illustrative purposes to the
user to see, e.g., what effect the choice of a different threshold in
one of the QC functions has on data availability.

RESULTS AND ANALYSES OF NEW
FUNCTIONALITIES

In this section, mainly the results for Amsterdam are shown as
figures and tables. Similar figures and tables for Toulouse can be
found in Supplementary Material A and will be referred to in the
following sub-sections.

Overall Performance and Comparison With
CrowdQC
Comparing overall deviations between CWS and PRWS in
Amsterdam, both QC packages show a strong improvement in
all statistical metrics along the annual cycle compared to the raw

FIGURE 2 | Deviations in hourly air temperature (ta) between CWS and PRWS in Amsterdam during 2019 per month and for the whole year. Displayed are values
for the raw data set, after applying CrowdQC and CrowdQC+ in their respective default settings (cf. Table 2). Shown are values at QC level o3. Deviations were
calculated between each PRWS and each CWS within a radius of 2000 m around the respective PRWS, located in the same LCZ type as the PRWS. Deviations were
then averaged per month and year across all CWS and PRWS. Error bars denote the standard deviation across all CWS and PRWS per month and year. MD, mean
deviation; MAD, mean absolute deviation; RMSD, root-mean-square deviation; cRMSD, centred RMSD.
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data, except for MD (Figure 2). MD is higher after applying the
QC packages compared to the raw data. This is due to the fact that
a large number of CWS in Amsterdam show values just above 0°C
and around −20°C (Figure 3A) at the raw data level. These
stations are likely set up indoors in refrigerated warehouses or
fridges, as they also display no distinct annual cycle but display
relatively constant values. Similar features were noticed by Meier
et al. (2017) for likely indoor stations in Berlin, which showed
relatively constant values around 20°C. After applying the QC
functions, both data sets are cleaned of these outliers bymisplaced
CWS (Figure 3B, Supplementary Figure S2).

Overall, positive deviations are visible in CWS ta compared to
PRWS ta (Figure 2, Supplementary Figure S1), as noted in
previous studies (e.g., Chapman et al., 2017; Meier et al., 2017;
Napoly et al., 2018; Venter et al., 2021). Deviations are reduced
after application of CrowdQC and CrowdQC+, with stronger
reduction for Amsterdam than for Toulouse. Statistical metrics
further show that while CrowdQC already provides a strong
improvement compared to the raw data, CrowdQC+ provides
further improvement with overall lower deviations than
CrowdQC (Figure 2, Supplementary Figure S1).
Improvements are stronger during the warmer months of the
year for all metrics in Amsterdam andmore variable for Toulouse
(Supplementary Figure S1). Comparing both cities, Amsterdam
shows generally lower deviations than Toulouse and displays a
more distinct annual cycle with higher deviations during summer
compared to winter months (Figure 2).

The overall better performance of CrowdQC+ is, however,
accompanied with lower data availability after QC (Table 3). QC
level m1 already reduced data availability by 30% and removed 163
CWS for Amsterdam. The high percentage of invalid values at QC
levelm1 is specific to theAmsterdamCWSdata set andmuch higher
than for Toulouse (Table 3) and what was found for Berlin,
Germany (Meier et al., 2017; Napoly et al., 2018). In fact, most
of these removed CWS in Amsterdam with invalid latitude and
longitude values as defined by QC level m1 show no distinct annual
cycle in ta (not shown) and are thus likely set up indoors. QC filters
m2 and m5 (CrowdQC+) further reduced data availability by
approximately 10% in both cities. Due to the reduction in data
availability in QC level m5, roughly 20% of the raw CWS data at
nearly 200 CWS are retained after QC level o3 with CrowdQC+ in
Amsterdam, compared to 41% from 281 CWS with CrowdQC
(Table 3). For Toulouse, the difference in data availability after QC
level o3 between CrowdQC and CrowdQC+ is similar, with
approximately 55% and nearly 30%, respectively.

Figure 4 shows mean ta differences between CWS and PRWS
along annual and diurnal cycles in 2019 with the stations grouped
by LCZ type. Across all LCZ a distinctive pattern is visible, which
is related to the diurnal cycles of ta and incoming shortwave
radiation. Higher differences are generally found after midday
during the months April to September with highest differences in
the late afternoon in summer, while for other times differences
are generally lower and consistent. The CWS data set is thus likely
still influenced by radiative errors induced by the design of the

FIGURE 3 | Hourly air temperature (ta) in Amsterdam during 2019. Each grey line corresponds to data from a single CWS, the red line displays the spatial median
across all CWS, the blue line the median across all PRWS (barely visible as similar to red line). Sub-figure (A) shows raw CWS data, sub-figure (B) CWS data at QC level
m5 of CrowdQC+ with default settings (cf. Table 2).
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Netatmo CWS without a proper radiation shield and the setup of
CWS in unshaded locations, leading to these higher differences.
This might impair analyses of daytime ta conditions in cities
when absolute values are of relevance, yet might be of lower
relevance when calculating spatial differences among (groups of)
CWS, as in, e.g., UHI analyses. Night-time differences are lower
and consistent both in time (along annual cycle) and space
(across LCZ types), underlining the high applicability of
Netatmo CWS in urban climate investigations that focus on
night-time. Other types of CWS might be less influenced by

radiative errors during daytime due to a better design with
lamella-type radiation shields and would thus allow for more
reliable daytime analyses. Yet, they might show other deficiencies
such as a systematic bias or a sensor drift over time, which have
not been observed for Netatmo CWS (Meier et al., 2017; Fenner
2020).

LCZ D displays a different pattern with higher deviations
during night-time and late afternoon and negative differences
during winter, spring, and autumn months during daytime
(Figure 4). This pattern resembles typical urban heat island

TABLE 3 | Percentage of CWS hourly data availability and number of available CWS (given in brackets) at each QC level in Amsterdam (2019) and Toulouse (2020) after
application of CrowdQC and CrowdQC+ in their respective default settings (cf. Table 2). Values for CrowdQC+ for QC levels m5 to o3 are given with isolated stations in
QC level m5 removed (first values per field) and retained (second values per field, italic).

QC level Amsterdam Toulouse

CrowdQC CrowdQC+ CrowdQC CrowdQC+

raw 100.0 [531] 100.0 [1354]
m1 69.4 [368] 92.0 [1214]
m2 59.9 [362] 82.5 [1214]
m3 59.4 [354] 82.2 [1185]
m4 58.2 [332] 81.4 [1170]
m5 47.1 [324]/48.9 [332] 69.2 [1146]/ 70.6 [1163]
o1 58.5 [332] 47.8 [324]/49.6 [332] 81.8 [1170] 70.2 [1146]/ 71.5 [1163]
o2 53.0 [331] 36.9 [323]/38.5 [331] 72.4 [1165] 52.6 [1123]/ 53.8 [1140]
o3 41.0 [281] 20.7 [197]/22.1 [205] 54.9 [971] 29.5 [700]/ 30.5 [715]

FIGURE 4 |Hourly air-temperature difference (Δta) between mean CWS andmean PRWS ta in Amsterdam per Local Climate Zone LCZ during 2019. CWS data at
QC level m5 after CrowdQC+ with default settings (cf. Table 2). CWS and PRWS data were averaged across all stations in the respective LCZ. Missing episodes are
displayed in grey.
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characteristics along annual and diurnal cycles (compare, e.g.,
Fenner et al., 2014; Skarbit et al., 2017). This could indicate that
the CWS in LCZ D in Amsterdam contain an “urban” signal in
their ta data (due to a set up close to buildings, compared to the
PRWS in LCZD, Schiphol airport. Note though that this PRWS is
likely also not completely uninfluenced by man-made surfaces,
considering its setup on the airport ground between runways.
Another possible reason for this pattern could be related to
advective effects. While Schiphol airport is located upwind of
Amsterdam (most south-western PRWS in Figure 1A, main wind
direction along the annual cycle south-west, not shown), most
CWS located in LCZ D are located downwind of built-up areas.
Advection of warm air from cities to the surroundings has been
reported by observational (e.g., Brandsma et al., 2003; Bassett
et al., 2016, 2017) and modelling studies (e.g., Zhang et al., 2012;
Heaviside et al., 2015; Bassett et al., 2019).

For Toulouse, mean ta differences between CWS and PRWS
along annual and diurnal cycles in 2020 per LCZ type show a
different pattern with higher positive deviations during night-
time and generally near-zero to negative deviations during
daytime (Supplementary Figure S3). To understand these
differences, it needs noting that there is a systematic difference
in the setup of stations between the CWS and the PRWS network.
While CWS are likely located in all kinds of settings, ranging from
setups close to building walls and within street canyons to more
open settings in residential gardens, the majority of PRWS is
located in open areas with little shade. This difference in the setup
leads to two possible effects, likely both acting at the same time,
which could explain the pattern found. Firstly, ta conditions are
different at the sites. CWS located in street canyons and shaded
environments experience less radiative heating of the air during
daytime than open areas where the PRWS are set up and
thus measure lower ta. During night-time, due to reduced sky
view factors (SVF) at CWS sites compared to the more open
PRWS sites, cooling of the air is hindered, leading to higher ta.
This is similar to the first hypothesis brought forward above to
explain the deviation for LCZ D in Amsterdam (Figure 4).
Secondly, radiative errors contribute to the deviations. Even
though the PRWS are of much higher quality than the CWS,
especially regarding the station design (Netatmo CWS with
aluminium shell around the sensor with little ventilation,
Davis Vantage Pro with lamella-type radiation shield, naturally
ventilated), the type of PRWS used is not free of radiative errors
(Cornes et al., 2020). Comparing the radiation biases of two Davis
Vantage Pro with natural ventilation, one in a rural setting with
relatively unobstructed airflow and one in a more enclosed
residential setting, Cornes et al. (2020) found that
measurements at the site in the residential setting experienced
radiative errors of >1 K duringmidday and the warmermonths of
the year, compared to ≤0.6 K at the rural site. It was suggested
that this difference is due to increased airflow at the rural site that
aided the ventilation of the radiation screen, reducing radiative
errors.

Based on these results and since the majority of PRWS in
Toulouse are located in urban, yet open settings with little
shading, radiative errors can be expected. On the other hand,
radiative errors in the CWS data set should largely be reduced by

the QC. Further, hypothesising that the majority of CWS is
located in shaded environments, the network of quality-
controlled CWS contains less radiative errors during daytime
which could then, in the end, lead to the deviations that were
found (Supplementary Figure S3). Positive deviations between
CWS and PRWS ta for Toulouse during night-time might also be
linked to differences in setup. At locations close to building walls,
where CWS are typically installed, ta might be higher during
night-time than further away from the wall, yet predominantly
for walls that were exposed to solar radiation during the day
(Nakamura and Oke 1988). The hypotheses brought forward
require further systematic investigations, yet go beyond the scope
of this study.

Note that all displayed deviations between CWS and PRWS
are not all errors of the CWS data set with respect to the PRWS
data. Firstly, variation in ta can be expected in the 2000 m radius
around each PRWS (used in the calculations of the deviations),
even if located in the same LCZ type as the PRWS. Secondly,
deviations in ta are likely due to differences in the setup of
stations. CWS are typically installed closer to buildings than
PRWS, leading to differences in exposure andmicro-scale settings
at each site, which affect ta (Chapman et al., 2017; Fenner et al.,
2017).

Effect of Different Durations
In QC levels m3,m4, and o3 different durations can be defined in the
filter applications. To investigate their influence on overall ta
deviations, six experiments were run, applying durations from
3 days to the complete data set (1 year) (Table 4, Supplementary
Table S1). Overall, differences in deviations between the experiments
are small, indicating a robust behaviour of the QC regarding this
parameter. When looking at the best results per metric and variable
(bold numbers in Table 4 and Supplementary Table S1), choosing
the complete data set shows generally best performance. However,
using the complete data set atQC level o3 for a 1-year data set reduces
final data availability to about 13% of hourly data (compared to the
raw data) from 58 CWS in Amsterdam and to nearly 15% from 157
CWS in Toulouse. This is mainly due to QC level o3, checking for
data availability per station for the specified duration and flagging a
complete station with FALSE in case of not enough valid values
(default: fraction of 0.8, i.e., 80% data availability). With marginally
higher deviations, but retaining a much higher fraction of data after
QC, the use of a shorter duration could be advisable (Table 4,
Supplementary Table S1). Based on the obtained results, we
recommend to use a duration between 7 days and 1month.
Shorter durations, one the one hand, lead to less robust
correlations in QC level m4 with hourly data (sample size at best
72), leading to overall higher deviations. Longer deviations, on the
other hand, lead to much more data being excluded, with only a
marginal benefit in terms of deviations to PRWS data.

Setting parameter “complete � TRUE” is especially useful in
cases when only a shorter period of time is under investigation.
Further, it could be useful in near-real time applications, when
data shall be quality-controlled and used in operational weather
monitoring. In such a case, the user could provide data for the
past, e.g., 14 days to the QC and use this complete data set for
the QC.
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Effect of Different Distribution Functions
in m2
To test the effect of using the normal distribution or the Student-t
distribution when calculating the critical cut-off values in QC
level m2, the following experiment was run. After applying QC
level m1 and removing all CWS that only provide invalid data
after this QC level for each city’s investigation period, a bootstrap
approach was chosen to randomly select a subsample of a
specified number of CWS from each city’s data set. Then, QC
level m2 was carried out, once assuming the normal distribution
(parameter “t_distribution � FALSE,” default in cqcp_m2) and

once assuming the Student-t distribution (parameter
“t_distribution � TRUE”). Afterwards, deviations between
CWS and PRWS at QC level m2 were calculated for both data
sets for the whole investigation period as described at the end of
Statistics section. Finally, deviations were averaged across the
number of bootstraps (n � 100). Seven subsample sizes were
chosen in the experiment: 10, 25, 50, 100, 150, 200, and 250.

Figure 5 displays the results of the experiment for both cities.
Deviations are highest when ten CWS were randomly selected in
the bootstrap runs in both cities. With a higher number of CWS,
deviations are lower and relatively similar when comparing the

TABLE 4 |Mean annual deviations in hourly air temperature (ta) and in aggregated daily values of mean (ta_mean), maximum (ta_max), and minimum (ta_min) between CWS
and PRWS in Amsterdam, and remaining data availability during 2019 after applying CrowdQC+ in its default setting (cf. Table 2). Displayed are values at QC level o3with
different “durations” (in QC levels m3, m4, o3). Bold values mark best results per metric and variable, italic values second best. Deviations were calculated between each
PRWS and each CWS within a radius of 2000 m around the respective PRWS, located in the same LCZ type as the PRWS. Deviations were then averaged across all CWS
and PRWS. MD, mean deviation; MAD, mean absolute deviation; RMSD, root-mean-square deviation; cRMSD, centred RMSD.

Metric Variable 3 days 7 days 14 days 21 days 1 month Complete

MD (K) ta 0.32 0.27 0.28 0.29 0.28 0.32
ta_mean 0.30 0.25 0.27 0.27 0.26 0.31
ta_max 0.50 0.45 0.46 0.48 0.44 0.48
ta_min 0.33 0.30 0.35 0.33 0.32 0.30

MAD (K) ta 0.76 0.70 0.69 0.70 0.70 0.64
ta_mean 0.61 0.56 0.55 0.55 0.55 0.52
ta_max 0.93 0.88 0.88 0.90 0.87 0.82
ta_min 0.77 0.69 0.70 0.68 0.69 0.58

RMSD (K) ta 1.01 0.92 0.91 0.92 0.92 0.87
ta_mean 0.75 0.68 0.68 0.67 0.67 0.65
ta_max 1.20 1.14 1.14 1.15 1.13 1.11
ta_min 0.93 0.83 0.84 0.83 0.83 0.72

cRMDS (K) ta 0.83 0.77 0.77 0.77 0.77 0.75
ta_mean 0.52 0.49 0.48 0.47 0.48 0.50
ta_max 0.95 0.91 0.90 0.89 0.90 0.93
ta_min 0.58 0.54 0.53 0.54 0.55 0.51

Data availability % of raw data 26.7 24.9 23.0 22.0 20.7 13.1
No. of CWS 303 268 244 227 197 58

FIGURE 5 |Mean annual deviations in hourly air temperature (ta) between CWS and PRWS in (A) Amsterdam during 2019 and (B) Toulouse during 2020 after QC
level m2 for subsamples of the CWS data set. Subsamples were randomly selected after QC level m1 in a bootstrap experiment (n � 100). Deviations were calculated per
bootstrap run between each PRWS and each CWSwithin a radius of 2000 m around the respective PRWS, located in the same LCZ type as the PRWS. Deviations were
then averaged across all CWS and PRWS, the whole investigation period of each city (cf. Table 1) and all bootstraps. MD, mean deviation; MAD, mean absolute
deviation; RMSD, root-mean-square deviation; cRMSD, centred RMSD.
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sample sizes. For both distribution functions deviations are
overall similar when ≥100 CWS were selected. Generally,
deviations are lower for the assumption of a normal
distribution. Differences in deviations between the two
distributions are small but more distinct for a low number of
CWS (≤50 CWS, Figure 5).

These results firstly show the robustness of QC level m2 to the
underlying assumption of distribution for a range of CWS sample
sizes. Secondly, it shows that even for CWS networks with a
relatively low number of stations per city such as 50–100 CWS,
CrowdQC+ yields comparable deviations in the quality-
controlled data set compared to networks with more CWS.
This highlights the applicability of CrowdQC+ for cities with
different CWS network sizes/densities. The fact that assuming a
Student-t distribution for the calculation of cut-off values in QC
level m2 leads to higher deviations, particularly for low number of
CWS, can be explained by the fact that the Student-t distribution
assumes heavier tails than the normal distribution. This leads to
lower (higher) critical Z-scores for the lower (upper) tail of the
distribution, which in turn leads to less values being excluded in
QC level m2 when assuming a Student-t distribution.

Based on the results, we suggest to apply the Student-t
distribution in QC level m2 if data sets of <100 stations are
checked. Considering the statistical hypothesis behind this QC
level, the use of the Student-t distribution leads to statistically
more robust cut-off values. As a side effect, it will lead to less
values being excluded from the already small data set.

Buddy Check
To illustrate the effect of the buddy check in QC level m5,
Figure 6 and Supplementary Figure S4 exemplarily display
the ta distribution in Amsterdam and Toulouse, respectively,
for a day- and night-time situation during a hot summer day.
Both figures show that those values that deviate too much from

the stations in the immediate surroundings are identified and
removed in QC level m5. Additionally, isolated sites are identified
and removed, as their quality cannot be assessed due to the lack of
available neighbours. In regions where the CWS data set is
heterogeneous, the filter retains all values. Here, the ta
distribution within the radius is wide and none of the values
can be considered a statistical outlier.

In order to highlight the effect of QC level m5 for longer
periods of time, Figures 7, 8 display data for Amsterdam for the
whole year 2019 (cf. Supplementary Figures S5, S6 for
Toulouse). Figure 7 displays scatter plots between PRWS and
CWS ta at levels m4 and m5. At the individual PRWS level
(Figures 7A,B), as well as considering the whole network of
stations (Figures 7C,D), deviations between PRWS and CWS are
reduced in all four statistical metrics after QC level m5.
Deviations after applying QC level m5 are especially lower for
daily maximum ta (Figure 7), compared to daily mean, daily
minimum, and hourly ta (all not shown). Hence, higher ta in
CWS data during daytime, likely resulting from radiative errors,
are now better filtered with the new spatial buddy check.
Summarizing, using information from neighbouring CWS to
filter likely faulty values in the whole data set is beneficial, also
highlighted by others (e.g., de Vos et al., 2019; Båserud et al., 2020;
Nipen et al., 2020; Chen et al., 2021).

Figure 8 further highlights that the improvement in the
statistical metrics is consistently found along the annual cycle,
with strongest improvement in the warmer months of the year
(April-August), when deviations are higher compared to the
rest of the months. Overall, MD is approximately 1 K during
summer and <0.3 K during winter at QC levels m4 and m5,
being within the specified accuracy of the Netatmo sensor
(Meier et al., 2017). For Toulouse, MD is relatively constant
throughout the year and always <1 K (Supplementary Figure
S5). MAD and RMSD are higher, yet ≤1.5 K after QC level m5

FIGURE 6 | Air-temperature (ta) distribution in Amsterdam for (A) June 29, 2019 13:00 UTC and (B) June 30, 2019 01:00 UTC as measured by CWS (circles) and
PRWS (squares). CWS data are displayed at QC level m4, crosses mark values that were removed in QC level m5 (radius: 3000 m, minimum number of buddies: 5,
alpha: 0.1). Note the different colour scales in the two subplots. Underlying landcover derived from the LCZ map (natural: LCZ A-F, built: LCZ 1-10, water: LCZ G).
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in all months. cRMSD shows that the unsystematic deviation
between CWS and PRWS is between 0.6 and 1.3 K in the
monthly means after QC level m5 in Amsterdam and
Toulouse. Annual averages show that mean CWS ta data
on a city scale is ∼0.5 and ∼0.8 K higher than PRWS data
after the main QC levels for Amsterdam and Toulouse,
respectively (Figure 8, Supplementary Figure S6).

In its current form, the buddy check neglects any spatial
gradient in ta in its calculations. Within cities, horizontal
gradients in ta might arise in particular from elevation
differences among stations on mountain slopes or due to
differences in land cover/land use. While the former is
addressed in CrowdQC+ with the height correction being
carried out, plus the additional check for elevation differences
among buddies, the latter is difficult to implement without
additional information on underlying surface characteristics.
Here, the concept of LCZs might be a suitable candidate to
characterise a station in terms of its local surroundings. Such
an (optional) addition could be a further extension of CrowdQC+
in the future, yet requires in-depths investigations and might

impair subsequent LCZ-based analyses. Per default, a radius of
3000 m is used in QC level m5, which is based on tests for the two
investigated cities (not shown) and similar to recommendations
by Båserud et al. (2020). In cities with heterogeneous surface
cover and morphology, a smaller radius might be more
appropriate, as ta will hence be “patchier,” especially during
dry, cloud-free, and calm conditions that promote spatial ta
gradients (e.g., Parry 1956; Oke 1973; Erell and Williamson
2007; van Hove et al., 2015; Arnds et al., 2017; Fenner et al.,
2017; Beck et al., 2018a). Analogously, for urban regions with
extensive and homogeneous surface cover and morphology, a
larger radius could be applied.

The buddy check is the computationally most expensive of the
QC levels. For data sets from several hundred or few thousands
of CWS and for extended periods of time such as a year (as in
this study), this filter might take several minutes. For near-real
time applications such as operational ta monitoring at (half-)
hourly resolution this would not be an issue, if a data set of the
past, e.g., 14 days is used to perform the complete QC. Further
developments of CrowdQC+ will focus on the improvement of

FIGURE 7 | Relation between daily maximum air temperature (ta) at PRWS and CWS in Amsterdam during 2019. (A) and (B) for one PRWS (station “2229”;
52.3719°N, 4.89568°E) and themean of all CWSwithin a 2000 m radius around the PRWS in the same LCZ type (2–compact midrise). (C) and (D) as themean across all
PRWS and all CWS. (A) and (C) display CWS ta at QC level m4, (B) and (D) CWS ta at QC level m5. MD, mean deviation; MAD, mean absolute deviation; RMSD, root-
mean-square deviation; cRMSD, centred RMSD; n_PRWS, number of PRWS; n_CWS, number of CWS; N, number of daily values.

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 72074715

Fenner et al. CrowdQC+

132

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


this QC level in order to reduce the time spent to perform the
buddy check.

Time-Constant Correction
Büchau (2018) determined τ of the Netatmo sensor (investigating
in total seven Netatmo stations) by conducting cooldown and
warmup tests in a laboratory environment. He determined a
mean τ across the sensors of 22.46 and 26.89 min for the two
experiments, respectively (Figure 2.3 a and b in Büchau 2018).
Based on these results, we apply a mean of these two values in the
time-constant correction, using τ � 1480.5 s. The effect of the
time-constant correction is illustrated in the following.

ComparisonMeasurementsWith One Netatmo Sensor
Firstly, we investigate data from a 1-year long comparison
measurement in Berlin in 2015 between one Netatmo sensor
and a reference sensor (Campbell Scientific CS215, accuracy
±0.4 K in range 5–40°C). Both sensors were set up at 2 m
above ground level, the Netatmo sensor inside a wooden
Stevenson Screen, the reference sensor inside a small lamella-
type radiation shield, actively ventilated during sunlit periods
(Figure 9A). Netatmo data was collected at the original 5-min
resolution (approximately) from the user interface of Netatmo,
reference data was sampled at 1-min resolution. This data set was
previously used in the study by Meier et al. (2017). Figure 9B

shows a distinct diurnal cycle in the mean deviation between the
two sensors. While in the morning hours after sunrise the
Netatmo sensor displays lower mean values than the reference
sensor, it shows higher values in the early afternoon.

Figure 9B further shows the benefit of applying the time-
constant correction (τ � 1480.5 s) to the Netatmo data. If the
correction is applied at the original temporal resolution of the
Netatmo sensor, the correction reduces the mean hourly
deviation in the morning hours by 0.5 K, yet increases the
deviation at noon by 0.2 K. The correction further leads to a
more “stable” deviation between the two sensors during
afternoon and night-time hours at approximately −0.3 K, likely
showing a systematic bias. The remaining stronger mean negative
and positive deviations in the morning and at noon, respectively,
are likely partly due to the slower thermal response of the
Stevenson Screen (Bryant 1968; Brandsma and van der
Meulen 2008; Harrison 2010) in which the Netatmo sensor
was placed, compared to the small lamella-type radiation
shield of the reference sensor (actively ventilated during sunlit
times).

When using the Netatmo API, different temporal resolutions
for obtaining the data can be specified, ranging from the original
resolution at approximately 5 min, over 30 and 60 min to 3 h,
1 day, 1 week, or 1 month (https://dev.netatmo.com/
apidocumentation/weather#getmeasure). Thus, Figure 9B also

FIGURE 8 | Deviations of hourly air temperature (ta) between CWS and PRWS in Amsterdam during 2019 per month and for the whole year for raw data, QC levels
m4, and m5. Deviations were calculated between each PRWS and each CWS within a radius of 2000 m around the respective PRWS, located in the same LCZ type as
the PRWS. Deviations were then averaged per month and year across all CWS and PRWS. MD, mean deviation; MAD, mean absolute deviation; RMSD, root-mean-
square deviation; cRMSD, centred RMSD.
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displays the effect of the time-constant correction applied at 30-
and 60-min data. For this, the original Netatmo data was
aggregated to mean values for the respective temporal
resolution prior to correction. With decreasing temporal
resolution, the effect of the time-constant correction also
decreases.

While for hourly resolution the time-constant correction
provides only a marginal difference, it is worthwhile to apply
in temporally higher-resolution data of the Netatmo sensor and
likely also other sensors with similarly large time constants.

Effects in City-Wide Data
Secondly, applying the time-constant correction to the hourly
data set in Amsterdam and Toulouse, minor to no differences
between the corrected and uncorrected data set with respect to the
statistical metrics are found (Supplementary Table S2). For daily
maximum ta the time-constant correction leads to higher
deviations, while for daily minimum ta overall lower
deviations are found. Statistical metrics for daily mean and
hourly ta are not affected.

In its current form, QC level o4 assumes the same value for τ
for all CWS and hence only works meaningfully with one type of
CWS in the data set. A possible future development of
CrowdQC+ and improvement of this QC level could be to
include information on the type of CWS, thus enabling the
correction of different types of CWS with regard to sensor lag
in the same data set.

APPLICATIONS OF THE
QUALITY-CONTROLLED DATA

To highlight the usability of quality-controlled CWS data for
urban climate studies, two applications are put forward.

In the first application, the annual and diurnal cycle in ta
difference (Δta) between two LCZ types is displayed for
Amsterdam, comparable to typical UHI analyses. Figure 10
displays Δta between LCZ 2, as the mean across the quality-

controlled CWS (Figure 10A) and across PRWS data
(Figure 10B), and the Schiphol airport PRWS. We follow the
approach by de Vos et al. (2020) and use the airport station as
the “rural” reference for both networks, acknowledging that this
is not a true rural reference site. Both sub-figures show the
characteristic cycles in Δta between urban and rural
environments that is found for mid-latitude cities, i.e., higher
values during night-time and the warmer months of the year,
and lower values during daytime (Oke et al., 2017). Yet,
distinctive episodes with higher and lower Δta than this
typical pattern are also found (visible in the vertical stripe-
like pattern), being related to the specific weather conditions
during this year. Two of such “stripes” are particularly
prominent in the second half of February 2019 with large
positive Δta during night-time, being episodes of unusually
high ta in Amsterdam with clear skies and no precipitation
(not shown). Such conditions promote distinct local-scale Δta
(e.g., Parry 1956; Oke 1973; Erell and Williamson 2007; van
Hove et al., 2015; Arnds et al., 2017; Fenner et al., 2017; Beck
et al., 2018a) Finally, Figure 10 highlights the strong agreement
between both networks when comparing both sub-figures.
This underlines the suitability of CWS data for quasi-
climatological analyses, if a multitude of quality-controlled
CWS are available.

In the second application (Figure 11), night-time ta distribution
for the month of July 2020 is displayed for Toulouse. July 2020 was
a month with heatwave-like conditions and only marginal rain.
Figure 11 shows a distinct night-time UHI for Toulouse of several
K in the monthly mean, both for CWS and PRWS data. Highest ta
was recorded in central districts of Toulouse with generally
decreasing ta towards the outskirts and rural areas, comparable
to model results from Kwok et al. (2019). Further, the systematic
difference between CWS and PRWSdata is visible (Figure 11). The
application highlights the benefit of using CWS data for mapping
of meteorological conditions due to their high density and spatial
distribution. Yet, the imbalance between number of CWS in built-
up areas and natural settings is also prominent (Chapman et al.,
2017; Fenner et al., 2017; Meier et al., 2017; Feichtinger et al., 2020).

FIGURE 9 | (A) Setup of the comparisonmeasurements between one Netatmo CWS, fixed in awooden Stevenson Screen (purple) and a reference sensor (orange)
in Berlin at site Rothenburg (52.4572°N, 13.3158°E) during 2015. (B) Mean diurnal cycle of air-temperature difference (Δta) between the Netatmo outdoor module and
the reference sensor during 2015. The yellow line (squares) corresponds to the mean data as shown by Meier et al. (2017). Netatmo data at the original temporal
resolution (∼5 min) was corrected using a time-constant value of 1480.5 s and the formula inOptional Quality-Control Levels section. The correction was applied at
different temporal resolutions (original/5, 30, 60 min). Afterwards, all data were aggregated to hourly mean values and the hourly mean values of the PRWS subtracted.
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CONCLUSION

The availability of CWS data in theoretically every region of the
world makes this data source an interesting choice for scientists
and practitioners to gain information on atmospheric conditions.
This holds even more true for cities, where atmospheric conditions
are highly heterogeneous and traditional measurement networks
are sparse. Yet, the data come with a number of uncertainties and
errors, which require targeted QC procedures.

In this study, theQCpackage CrowdQC+was presented, which is
a further development of the existing package CrowdQC.
CrowdQC+ extends that package and adds several additions and
functionalities, i.e., 1) a furtherQC level for additional spatial filtering
to mainly address remaining radiative errors, 2) an option to correct
CWS data for slow sensor response, 3) modifications to the existing
QC levels to enhance applicability, and 4) additional functionalities
for increased user-friendliness. The package is primarily designed to
quality-control air-temperature data from CWS. As its predecessor,
CrowdQC+ works without any meteorological reference data and

can thus be applied in basically every (urban) region with CWS data,
enabling large-scale urban climate studies based on CWS data.

Applying CrowdQC+ to two data sets from Netatmo CWS of
1 year forAmsterdamandToulouse, and comparing theCWSdata to
data from PRWS, it is shown that CrowdQC+ effectively removes
erroneous data and provides an improvement compared to
CrowdQC. Deviations between CWS and PRWS data on the city-
scale level and per station are lower after applying CrowdQC+ than
using CrowdQC in both investigated cities in all seasons, highlighting
the additional value of the newly-introduced functionalities. Yet,
deviations between CWS and PRWS data remain, which are likely
linked to remaining faulty values not identified by the QC, but also to
differences in network designs, sensor qualities, and station setups.
The trade-off of the reduced deviations and thus increased QC
performance of CrowdQC+ compared to CrowdQC is a lower
data availability after applying the QC. It is further shown that
CrowdQC+ can be applied to CWS data sets of different size, that
data sets of different duration can be quality-controlled, and that the
newly added functionalities of the package enable the QC to be
applied in operational mode for near-real time applications.

This study aims to be a step ahead in a continuous development and
enhancement of the package, retaining the core of the QC, which is the
applicability in regions without reference meteorological observations.
CrowdQC+ is an open-source tool under active development (https://
github.com/dafenner/CrowdQCplus), collaboration and participation
in further developments of the package are welcome. Future work
could focus on the evaluation of the QC with regard to other variables
such as air pressure or humidity, which can also be crowdsourced from
CWS. Testing the QC on CWS data sets of, e.g., tropical or desert cities
would also be of high value to understand its performance in different
background climates. Furthermore, future studies could investigate the
performance of the QC when applied to crowdsourced data sets
composed of measurements by different types of CWS.

DATA AVAILABILITY STATEMENT

CrowdQC+ v1.0.0, as described in this paper, is available as an R
package as Supplementary Material. The latest version of CrowdQC+
and the possibility to submit issues is available at https://github.com/

FIGURE 10 | Hourly air-temperature difference (Δta) for Amsterdam between (A) all CWS in LCZ 2 (compact midrise) and (B) all PWRS in LCZ 2, and PRWS at
Schiphol airport, LCZ D (low plants) during 2019 (ΔtaLCZ 2–LCZ D). CWS data are displayed at QC level o3 after application of CrowdQC+ in default settings (cf. Table 2).
CWS and PRWS data for LCZ 2 were first averaged across stations, then data at Schiphol airport subtracted.

FIGURE 11 |Mean air temperature (ta) in Toulouse during July 2020 03:00
UTC asmeasured by CWS (circles) and PRWS (squares). CWSdata are displayed
at QC level o3 after application of CrowdQC+ in default settings (cf. Table 2).
Underlying landcover derived from the LCZmap (natural: LCZ A-F, built: LCZ
1-10, water: LCZ G).
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dafenner/CrowdQCplus. Publicly available datasets were analyzed in
this study. This data can be found here: Netatmo CWS data can freely
be obtained via the company’s API at https://dev.netatmo.com/.
SRTM digital elevation data is freely available at https://srtm.csi.
cgiar.org. PRWS data for Toulouse is freely available at https://data.
toulouse-metropole.fr/explore/dataset/stations-meteo-en-place/
table/. PRWSdata for Amsterdam from theAAMS are available upon
request fromGert-Jan Steeneveld or Bert Heusinkveld atWageningen
University & Research. Data from the KNMI can freely be obtained at
https://dataplatform.knmi.nl/.
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Rapid urbanization across the world has put an enormous burden on our environment.
Cities from developing countries, in particular, are experiencing high air pollution levels. To
address this challenge, the new WHO global air quality guidelines and various nations are
mandating cities to implement clean air measures. However, these implementations are
largely hindered by limited observations, siloed city operations, absence of standard
processes, inadequate outreach, and absence of collaborative urban air quality
management (UAQM) governance. The world is experiencing transformative changes
in the way we live. The 4th industrial revolution technologies of artificial intelligence, Internet
of Things, big data, and cloud computing bridge gaps between physical, natural, and
personal entities. Globally, smart cities are being promulgated on the premise that
technologies and data aid in improving urban services. However, in many instances,
the smart city programs and UAQM services may not be aligned, thereby constraining the
cumulative advantage in building urban resilience. Considering the potential of these
technologies as enablers of environmental sustainability, a conceptual urban computing
framework “SmartAirQ” for UAQM is designed. This interdisciplinary study outlines the
SmartAirQ components: 1) data acquisition, 2) communication and aggregation, 3) data
processing and management, 4) intelligence, 5) application service, 6) high-performance
computing- (HPC-) cloud, and 7) security. The framework has integrated science cloud
and urban services aiding in translating scientific data into operations. It is a step toward
collaborative, data-driven, and sustainable smart cities.
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1 INTRODUCTION

Globally, growing economic opportunities fuel rapid
urbanization (United Nations, 2019). While aiding the
economy, this growth is affecting the environment and living.
For instance, air pollution is among the top five global causes of
mortality (WHO, 2018; Lelieveld et al., 2020). At the same time,
short- and long-term pollution exposure have severe health
impacts, such as chronic respiratory diseases, asthma, cancer,
and dementia (Balakrishnan et al., 2019). For emerging
economies, this burden is unproportionate (Landrigan et al.,
2018; Anenberg et al., 2019). For example, air pollution is a
major health emergency in India, with 1.67 million deaths,
accounting for 17.8% of total deaths (Pandey, 2021). Over 100
Indian cities exceed the National Air Quality and WHO
standards (CPCB, 2019). This air pollution burden has
translated into incremental health expenses, causing a loss of
about $95 billion, amounting to a 3% of Indian GDP in 2019 (CII,
Dalberg, 2021). Recently, the COVID-19 pandemic has
exacerbated it (Achakulwisut et al., 2019; Khan et al., 2021).

Governmental programs, such as the national clean air
program and smart city initiatives, are steps toward addressing
these challenges (India Smart City, 2015; CPCB, 2019). However,
these programs often run in parallel, thereby diminishing the
opportunity to synchronize the activities toward the common
goal of improving quality of life. Though pollution mitigation
policies are defined, a significant gap remains when implementing
them (UNEP, 2021). Consequently, smart cities struggle to show
sustainability benefits (Komninos et al., 2015; Parisar, 2020).
With less than a decade remaining for Sustainable
Development Goals 2030, there is an urgent need for
overarching solutions for cities.

Data-driven solutions are important for monitoring the
progress toward sustainability goals. Its criticality is reflected
in the statement of the United Nations Secretary-General in
2018, “The availability of quality, accessible, open, timely and
disaggregated data is vital for evidence based decision-making
and the full implementation of the 2030 Agenda and realization
of its ambitions of leaving no one behind.” Accordingly,
integrated impact and data-based environmental services are
increasingly promoted (Baklanov et al., 2018; González et al.,
2021). These services entail seamless access to interdisciplinary
data and processing resources for different stakeholders (Bibri
and Krogstie, 2020).

Such a service, urban air quality management (UAQM),
encompasses multi-sectorial functions, data and information
exchanges on pollution sources, mitigation, health burden,
socioeconomic impacts, and policy formulation. For its
effectiveness, real-time and near-real-time data communication
is required. However, these data are often created in silos or not
available in cross-sectorial usable form, necessitating integrated
data governance translating data into knowledgeable
information. Despite the number of smart city concepts,
research on urban data governance for sustainable
development is underestimated (Paskaleva et al., 2017).

Smart city technologies, such as the 4th industrial revolution
(4IR) technologies of Internet of Things (IoT), artificial

intelligence (AI), and cloud computing, are providing solutions
to these problems by ubiquitous data creation, efficient predictive
and prescriptive analysis, and effective information dissemination
(ITU, 2015; Mabkhot, 2021). In this context, urban computing
(UC) is an emerging theme connecting urban sensing, data, and
city services such as environment, transport, energy, and
economy, bringing insights into sustainable operations
(Kindberg et al., 2007; ITU 2020; Lytras et al., 2020).

Given the significant role of UC in urban sustainability, this
study provides a conceptual framework for next-generation
UAQM as part of ongoing interdisciplinary research on
developing environmental cyberinfrastructure such as the
system of systems (Kaginalkar et al., 2022). The ultimate
objective is to provide a cross-sector data governance
ecosystem for smart cities built from the UC framework
derived from our understanding of empirical evidence of 4IR
technology applications (Kaginalkar et al., 2021) and participative
research (Kaginalkar et al., in preparation).

The study presents the design of SmartAirQ—an UC
framework with multi-sector real-time and strategic data
governance and technology integration. SmartAirQ is a hybrid
cross-sector data framework with varied stakeholders/users, such
as researchers (atmosphere, air quality, health, economics,
machine learning (ML), and information technology),
governance (policymaker, municipality environment
department, and regulatory boards), citizens, and non-
governmental organizations as end users. The system has a
high-end distributed backend data and computing ecosystem
and user-specific decision support system (DSS), disseminating
easily understandable information. Although the framework is
described with Indian smart cities, the FAIR (Findable,
Accessible, Interoperable, Reusable) data-based architecture is
scalable across world cities (Wilkinson et al., 2016). With
worldwide air pollution concerns, SmartAirQ has broad
relevance and is likely to be suitable for emerging cities
(Pinder et al., 2019).

Due to the space limitation, this study focuses on the data
governance and framework features. This study is organized as
follows: Section 2 discusses the air quality and smart city
context, Section 3 describes the methodology, Section 4
discusses the SmartAirQ building blocks considered for the
design, Section 5presents the derived conceptual SmartAirQ
architecture, and Section 6 has representative use cases,
highlighting the data flow and stakeholder actions. This
study is summarized in Section 7.

2 THE CONTEXT

Urban air pollution is influenced by geography, meteorology,
morphology, natural events, and anthropogenic activities (Oke
et al., 2017). Apart from local impact, long-range transport
contributes to pollution and climate change (Baklanov et al.,
2016). The UAQM is determined by the information on hyper-
local pollutant source-concentration, its residency period,
transport from other regions, and pollution impacts on
socioeconomic conditions.
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Managing the urban air quality is a cross-functional process,
from identifying emission sources to actual removal from the
atmosphere for protecting human beings (Gulia et al., 2015).
UAQM is often supported by scientific research, policies,
continuous assessment of mitigation measures, and awareness
programs (Baklanov et al., 2020). It has close linkages with other
city functions, such as solid waste management, traffic,
infrastructure, health, industry, urban planning, and social
welfare, requiring timely access to multivariate data.
Improvement in its effectiveness necessitates city governments
for capacity building of data governance and intelligent decision-
making (UNEP, 2021).

In this context of urban governance, globally, smart cities are
promulgated as engines of urban resiliency, attracting the
attention of researchers, practitioners, and governments
(Albino et al., 2015). Often, in these smart cities, information
and communication technology is considered an enabler for
social, economic, and environmental transitions and
collaborative governance (Nam and Pardo, 2011). A number
of studies have attributed technology key characteristics to these
transitions to smart cities, such as big data (Hashem et al., 2016;
Paskaleva et al., 2017; Bibri and Krogstie, 2020), IoT (Zanella
et al., 2014; Ahlgren et al., 2016), AI (Azevedo Guedes et al., 2018;
Allam and Dhunny, 2019), cloud computing (Khan et al., 2015),
crowdsourcing (Stojanovic et al., 2016; Alvear et al., 2018),
software architecture (Viqueira et al., 2020; Majumdar et al.,
2021), and city services (Lv et al., 2018; Badii et al., 2019). Despite
these studies, standardization of UAQM data acquisition,
advanced data processing, and stakeholder participation
methods are limited (Creutzig et al., 2019).

In this context, India’s smart city mission provides an
opportune platform for environmental data governance (India
Smart City, 2015). Even though the mission is expected to address
environmental sustainability, there is a disconnect between the
smart city services and plans mandated by the national clean air
program (CPCB, 2019). Moreover, current smart cities are driven
by technology vendors or built infrastructure and have a limited
focus on environmental services (Randhawa and Kumar, 2017;
Smith et al., 2019). Even through some air quality information
portals with in situ1 data, low-cost sensors (LCS),2 andmodel data
for a few Indian cities (Beig et al., 2015; Jena et al., 2021) are
available, a multi-functional participative DSS across the value
chain of UAQM is not yet evident (Parisar, 2020; Verma, 2021).
Consequently, cities face implementation ambiguity, siloed
operations of stakeholders, and limited progress toward
pollution reduction. These gaps necessitate a data and
technology ecosystem enabling seamless cross-sector functions.

UC plays a multi-faceted role in UAQM with operation
digitalization, real-time data acquisition, data processing, and
dissemination. For instance, IoT helps cities access granular city
data by connecting physical systems and humans seamlessly
(Toma et al., 2019). Fast data processing with AI and HPC-
cloud services enables real-time data analytics and metadata

sharing (Bibri, 2019). Above all, the open data priorities of
smart cities are bringing values to cyber-physical-governance-
human systems by accessing and hyper-looping back the data for
further intelligence building (Wilkinson et al., 2016; Allam and
Dhunny, 2019). Considering this potential, this study discusses
design aspects of an institutionalized framework as a smart city
service tool for data governance and individual decisions.

3 METHODOLOGY

The methodology is built to help answer the following research
questions:

(1) What are the different data elements of UAQM in the context
of emerging smart cities and the value they bring in as an
interoperable system?

(2) How can technologies be optimally connected for cross-
sector data acquisition, aggregation, processing, modeling,
stakeholder participation, and dissemination?

(3) What can be the overarching design of UC-enabled UAQM
as a standard platform, scalable across smart cities?

To address these questions, we adopted the triangulation
method (Figure 1) of qualitative analysis by developing
convergence evidence of causal relationships (Yin, 2016; Sekayi
and Kennedy, 2017). It includes systematic framework analysis of
UC evidence through literature review (Given, 2008), smart city
case studies (Baškarada, 2014), and empirical insights through
stakeholder analysis (Reed et al., 2009). Involving stakeholders in
designing the environmental solutions is increasingly adopted as
an effective way of co-production of climate services bringing the

FIGURE 1 | Triangulation qualitative research methodology with
empirical evidence through literature review, case study analysis, and
participative stakeholder interviews.

1https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing.
2(https://ncap.carboncopy.info/caaqms/).
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synergetic research-practice-research perspective (Lim et al.,
2018; Vincent et al., 2018; Fragomeni et al., 2020). In
accordance, we followed an idealized design approach, wherein
“information on the futuristic system” is sought from the users,
leading to product realization (Ballejos and Montagna, 2011).

UAQM involves national, regional, and local cross-sector
stakeholders. These can be classified as follows: 1) those that
have a role in environmental governance and policies; 2) those
who are enablers and solution providers broadly referred to as
researchers and practitioners; and 3) those impacted by the
decisions and solutions (e.g., industry and citizens). Eliciting
stakeholder requirements and perception on data and
technologies, we conducted focus interviews with ten
participants, including members from national and state
regulatory agencies, doctors, air quality modelers,
policymakers, non-governmental organizations, National
Green Tribunal members, and city environment managers.
The participants were selected using purposive sampling by
identifying the experts through their current role and prior
project experience of authors with the experts. The interviews
had the following broad questions:

(1) What are the functional inter-linkages between the
stakeholders and how and which data are typically used or
shared?

(2) What are the technical requirements and challenges faced
while performing the air quality functions?

(3) How do stakeholders view the integration of smart city and
UAQM services?

The interview responses were transcribed and coded with
MAXQDA software by applying thematic typology (Kaginalkar
et al., in preparation). It was found that UAQM in Indian cities
has a strong dependence on interagency coordination, requiring
knowledge and a decision-sharing ecosystem. The interview
synthesis highlighted cross-sector gaps and data challenges and
generated insights on the next generation UAQM with 4IR
technologies. For example, an urgent need for intelligent
cross-sectorial data access, such as real-time vehicular
distribution on the road, was felt by the modelers. On one
side, there is plethora of data being generated, on the other
side, there is general sentiment that due to the limited access
of the meta data, stakeholders can not perform air quality data
analysis effectively. For instance, one non-governmental
organization member shared that though 15-minute
monitoring data is available from the pollution control board
site, extracting the quality controlled data for specific locality or
duration is time-consuming. The discussions also drew attention
to the fact that though technology companies deploy sensors and
servers in smart cities, the data and facilities are not available in
real time as integrated application platforms to all the
stakeholders.

The city environment manager response showed that current
technology usage in UAQM is generally limited to
administration, rather than its active use as an enabling tool
for planning, controlling pollution, and communicating decisions
among stakeholders. The participative research also highlighted

the need for sub-scale monitoring and exposure data,
computational resources, interoperability issues due to data
heterogeneity and difficulty in translating complex scientific
data into user understandable information. Though all the
stakeholders found potential in IoT and big data analytics for
data-driven UAQM, the non-alignment of smart city plans and
clean air program was a major gap. A manuscript detailing the
stakeholder analysis method and its outcome will be available by
Kaginalkar et al. (in preparation). The research synthesis led to
strength, weakness, opportunities, and challenges (SWOC)
analysis of UC offerings (Figure 2). The summary is presented
in this section.

3.1 Strengths
Augmenting the traditional monitoring methods, data fusion of
in situ, IoT, model, and satellite data typically yields better
spatiotemporal mapping (Lau et al., 2019). Hyper-local
emission source estimation and concentration prediction using
multiscale models aid in neighborhood-scale pollution mitigation
and outreach (Jena et al., 2021). LCS, wearable devices, social
media, and smartphones enable citizen participation (Skjetne and
Liu, 2017; Nyhan et al., 2019; Yarza et al., 2020). AI methods
improve LCS calibration and model prediction performance and
facilitate the integration of newer data sources and faster
processing (Bellinger et al., 2017; McGovern et al., 2017;
Zimmerman et al., 2018; Ameer et al., 2019). The high-
granularity data from the LCS typically has uncertainty and
may have limited utility for daily real-time pollutant level
predictions. However, they can be advantageous in “fit-for-the-
purpose” approaches, for example, building awareness,
education, exposure reduction, air quality model validation,
source apportionment, epidemiological studies, and hot spot
identification (WHO, 2021).

The inherent uncertainty in high-resolution numerical model
data is augmented by coupling with ML for bias correction and
pattern analysis (Cho et al., 2020; Ma et al., 2020). For this, HPC-
cloud services provide cost-effective urban informatics solutions
(Molthan et al., 2014).

FIGURE 2 | Urban computing SWOC analysis for UAQM.
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3.2 Weakness
IoT-based monitoring is yet to mature due to calibration and
maintenance issues. Standardizing sensor measurements and
communication protocols with data privacy needs more effort
(Syed et al., 2021). At the same time, fully AI-based methods still
face trustworthiness and ethical issues. Complex higher granularity
models and huge databases demand large HPC resources to predict
sub-local air quality (Michalakes, 2020). IoT and social media smart
city data is affected by confidentiality, data leakage, and access
control issues (Toma et al., 2019).

3.3 Opportunities
The ubiquitous and fast processing characteristics make UC a
candidate for UAQM. Interoperable data options, improvements
in air quality predictions and services, and the ability to connect
cyber-physical systems with the city’s socioeconomic-
infrastructure systems that include natural and anthropogenic
feedbacks provide opportunities to develop better smart cities
through governance actions (Mondschein et al., 2021). Examples
include graded action plans for pollution reduction, prompting
systems to pause production (e.g., open burning in the
underprivileged neighborhood) or changes in traffic flow
patterns. Such aspects can be integrated within the Smart City
environmental service framework.

Shared computational and data platform through cloud
services aids developers in designing participative
governance. The large urban covariate data with
deciphering capability of structured and unstructured data
of AI are bringing insights by including newer observations.
For example, sentiment analysis of social media aiding
understanding of mental health impact of pollution (Zheng
et al., 2019). The open data and ubiquitous technologies
enable citizen participation in environmental governance
(Constant, 2018; English et al., 2018).

3.4 Threats
Data-driven service has a major threat to data privacy and security in
smart cities (Cui et al., 2018; Ismagilova et al., 2020). Misuse and
biased data interpretation can lead to a skewed decision. Black box AI
methods face trust issues. Better anonymization and cyber security
procedures with improved authentication, encryption algorithm, and
blockchain methods may serve the purpose (Gharaibeh et al., 2017).

Faster technological growth with newer solutions can sometimes
hamper developmental completeness, for example, a newer
processor in the market or enhance ML algorithms. This can be
augmented with modular technical enhancements, wherein the
architecture can have flexible component connections with the
interface layers.

The study findings are characterized and organized into various
components; cross-sector processes, data interoperability, and user
attributes. We then applied the multi-case analysis method by
mapping gaps, challenges’ actionable knowledge, and technology
solutions to stakeholder attributes. This approach combined
multiple monitoring methods, state-of-the-art multiscale and
multi-sector data and models on HPC-cloud platforms, source
apportionment methods, satellite data extraction, data processing,
data management, and dissemination.

4 BUILDING BLOCKS

This section seeks an answer to the first research question of
“What are the different data elements of UAQM in the context of
emerging smart cities and the value they bring in as an
interoperable system?”

Increasingly, urban aspects are reflected in the form of digital
information enabling city functions in amore coordinated way. This
digital information creation has a life cycle with value creation at
each stage (GPAI, 2020) and enhancing partnerships among
stakeholders, supported by data and technologies deriving
knowledge and executing meaningful decisions (Figure 3).

UAQM stakeholders need cross-sector data access (Table 1). The
stakeholders/users of SmartAirQ, including state and national
regulatory agencies, multidisciplinary researchers, non-
governmental organizations, city environment managers, local
municipal departments, smart city IT centers, and industry, have
varied data usage patterns (Tables 1–4). The UAQM users strongly
rely on timely access to the information existing in the form of
instrument data, written records, laboratory samples, complex
model output, and governmental reports. This section gives a
spectrum of scientific and administrative data and the associated
technologies useful for accessing, processing, and disseminating it.

4.1 Data
Many of the urban datasets are part of open data portals of
national and local governments, global websites of scientific data,
Internet, and smart city platforms. They have spatiotemporal
heterogeneity with different spatial scales (sub-local, local,
regional, national, and global), temporal scales (minutes,
hourly, daily, weekly, monthly, and annual), types (structured
and unstructured), and domains (scientific, social, economics,
infrastructure, and governance) (Supplementary Material). The
real-time, historical data and metadata are classified into four
main types considering the static and dynamic nature of the data:
1) city characteristics, 2) monitoring and observations, 3)
modeling, and 4) city services (Figure 4).

4.1.1 City Characteristics
These define city static/semi-static data such as demography,
morphology, Land Use Land Cover (LULC), urban planning,
climatic conditions, industry, and socioeconomic characteristics
(Supplementary Table S1). Geographical details of the city are
required, as the location of the city determines air pollution
dispersion patterns, for example, coastal city or city in a valley.
For understanding and modeling the pollutant formation and its
dispersion, morphological data such as road type and length, building
type, height, and density and trees is required (Cárdenas Rodríguez
et al., 2016). Realistic representation of urban LULC also aids in
stimulating the planetary boundary layer structure, calculating the
thermodynamic and air pollutant transport functions (Sun et al.,
2020). Satellite-derived LULC classification, for example, from
Landsat and Sentinel, is a viable source for capturing sub-scale
granularity and temporal transitions (Saraswat et al., 2017).

A city’s socioeconomic information such as projected population
growth, residential area, business hubs, recreation areas, and industry
location contribute to the anthropogenic emission source
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identification (Guttikunda et al., 2013). Geo-referenced ward-wise
shapefiles and point shapefiles are part of the city’s geospatial
database. Geographical information system (GIS) data such as
place of interest, roads, buildings, location layers, and hospital
information are important components of the interactive DSS.

4.1.2 Monitoring and Observations
These are classified depending on the mode of observation
(Supplementary Table S2).

4.1.2.1 In Situ
This includes real-time and historical daily manual and continuous
monitoring stations from regulatory agencies3 and research
programs (Beig et al., 2015). Recently, smart city LCS data are
available in the public domain4. Monitoring datasets also include
pollution data on specific events, such as music events, rallies, dust
storms (Kedia et al., 2018), correlating human activities and
observations from airshed regions.

Monitoring is augmented by periodic instrument
maintenance information. The quality control data with
calibration information such as sensor type, aggregated
network information, gateway node, sensor ID, location,
parameters to be tested, statistical analysis, missing values,
error flags, and number of operational stations are classified in
the calibration datasets of SmartAirQ (Chu et al., 2020; Sahu
et al., 2021).

Ground and remote satellite data complement the sparse
monitoring data (Martin, 2008). For instance, data from
TROMPMI over Sentinel-5P gives daily high-resolution
coverage for pollutant measurements (Sentinel-5P). Another
example is that satellite data retrieved PM2.5 is used in
operational UAQM (Geng et al., 2021; Jena et al., 2021). In
addition to pollutants, satellite images of dust, wildfire data help
understand the emission sources (Engel-Cox et al., 2004).

Continuous emission monitoring system (CEMS) data from
industries is accessed by regulatory agencies for compliance and
mitigation actions. Control measure reports include compliance
data of periodic site visits (e.g., power plants). Non-numeric data,
such as information on inspection of laboratory infrastructure,
show cause or closure notice to polluters and environmental

FIGURE 3 | Integrated 4IR technology (text on the sides of the box) mapping with UAQM value-chain component (box).

3https://prana.cpcb.gov.in/#/home.
4https://iudx.org.in/.
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TABLE 1 | User-specific decision support system functionalities.

Stakeholder Application
service use cases

City environment manager • Ward-wise emission source-concentration data analysis—past and future projection
• Road segment real-time emission load and concentration information with a pollution heat map
• Low emission zone area and tax planning
• Ward-wise AQI trend analysis
• Control measure efficacy analysis with GIS plots for applicability and expected % reduction
• Current and model prediction data-based graded action plan for mitigation
• Current and future reduction objectives
• Urban planning with other city departments with “what-if” spatiotemporal scenario model output for pollution reduction

and health impact assessment
• Access past and current emission source and pollution data for tree plantation
• Access to health exposure data for compliance (e.g., ban on open burning)
• Access to pollution heat maps for planning new monitoring station
• Use of drones for pollution abatement in a hotspot area
• Sensor calibration data
• PUC database

Health professional • Vulnerable patient treatment with reduced pollution exposure advisory
• Asthma trigger alert
• Mental health analysis and advisory
• “What-if” scenario pollution exposure and disease correlation analysis

City transport department • “What-if” scenario model output for route planning
• Design of low emission zones
• Directing traffic to alternate routes in extreme pollution episodes through command and control
• Transport service authorization linked to PUC certification
• Planning multi-modal trips minimizing air pollution

City energy department • Dynamic carbon footprint driven energy costing
• Access to urban heat island data and energy usage for demand-supply management
• Pollution scenario-based energy pricing
• Future energy scenarios and GHG emissions of the city

Traffic department • Less polluted route navigation advisory
• Emission-pollution data-based congestion management
• PUC database

Urban planner • What-if scenario-green space planning
• Planning waste management sites based on pollution heat maps
• What if scenario analysis for walkway and cycle track planning
• New building permission based on the pollution footprints
• Infrastructure related control measure efficacy analysis

Infrastructure department • What-if scenario-building permission based on UHI and emission projections
• Low emission zone planning based on pollution trend analysis and hotspot information

Regulatory agencies • Emission standard compliance data analysis
• New industry approval based on what-if scenario of emission projections
• Local and non-local emission source characterization data analysis
• Trend analysis of toxic air pollutants (e.g., benzene 3-butadiene and formaldehyde)
• COVID lockdown city pollution impact trend
• Legal cases database and impact analysis

Health department • Ward-wise pollution exposure data
• Vulnerable population information
• Ward-wise disease burden
• Hospital records
• Creating awareness campaigns

Researchers • Source apportionment data analysis—sub-scale source characterization
• Multiscale/multi-sector model workflow selection and execution
• Future scenario modeling and assessment
• Sub-scale dispersion model skill analysis
• Hybrid numerical model and AI model for prediction skill improvement
• Health exposure assessment with “what-if” emission reduction scenarios
• Sharing of model data with other covariate researchers (e.g., air quality data with health assessment researchers)
• Work with city environment department to translate scientific data into information

(Continued on following page)
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clearance records of industry, building, and commercial
establishments such as malls, and public hearing records from
critical governance database (Verma, 2021).

4.1.2.2 Field Campaign
This includes special study or campaign datasets such as emission
inventory (EI), specific emission source impact (e.g.,
construction-based pollutant level), and health impact
assessment data such as mortality, emergency visits, and
affected population. Granular EI has activity data from
emission sources multiplied by emission factor to give
emission loads in each city grid for various pollutants
(Supplementary Tables S5, S8). Periodic EI with activity data
of anthropogenic sources: mobility, open burning, residential
heating, diesel generators, traffic, vehicle type, restaurants,
business activities, and natural sources such as wildfire and
dust storm are required for source attribution, dispersion
modeling, and mitigation assessment (Dalvi et al., 2006;
Behera et al., 2011).

In addition, the UAQM data repository includes historical
monitoring datasets and metadata such as short- and long-term
control measure impact efficacy analysis. Source apportionment
datasets with laboratory reports and receptor models
characterizing the city emission sources with source profiles
are needed for planning mitigation actions (Mircea et al.,
2020). A health exposure assessment database is prepared with
disease characterization attributed to particular air pollutants and
hospital records (Braithwaite et al., 2019; Katoto et al., 2021). It
also includes newer sources of personal physiological impact
information from wearable devices (Ranscombe, 2019).

4.1.2.3 Crowdsourcing
This includes two types of observations: 1) pollution sensing
using LCS and mobile phones and 2) health impact
information through wearable devices, mobile phones, and
social media. These are further classified as passive and active
data (Ghermandi and Sinclair, 2019). Examples of passive data
include social media streaming (sky images, emission source
photos, Tweets, and sentiments), smartphone activity data,
google activity data, and citizen feedback, for example, extreme
pollution event, traffic congestion, and open burning from
these datasets (Jiang et al., 2015; Charitidis et al., 2019).
Examples of active data include specific purposes, for
example, pollution impact on vulnerable population such as
school or focused study of control measure efficacy (Wu Y. C.
et al., 2015; Alexeeff et al., 2018; Castell et al., 2018; Dirks et al.,
2018). It also includes data streaming from crowdsourced LCS
websites.5

4.1.3 Modeling
Modeling data is used for three major purposes: understanding
the pollution sources, assessing their impacts, and predicting
future conditions. These datasets can be long (1–3 months),
medium (3–10 days), short (1–3 days), and nowcasting
(6–12 h). It includes multiscale (global, regional, and local)
weather prediction, real-time and future projection air quality
model data, multi-observation atmospheric and chemical data
assimilation, health impact, emission factors, and chemical

TABLE 1 | (Continued) User-specific decision support system functionalities.

Stakeholder Application
service use cases

Citizens • Air pollution current and future information on a pollution heat map with data and infographics
• Control measure trend analysis
• Long-term location specific pollution trend analysis for residence selection
• Outdoor exercise/activity planning based on sub-scale pollution exposure data projection
• Geo-fencing based hotspot pollution alert on mobile app
• Selection of less polluted mobility option
• Pollution footprint calculation based on mobility choice
• Less polluted route navigation advisory
• Emission zone based congestion tax warning on mobile app/city billboards
• Contribution to monitoring with crowdsourced data feeds
• Emission and pollution status awareness through AR/VR using city data
• Reporting of polluting event, e.g., open burning in the locality along with geocoding or photos

Industry • Contributing CEMS data
• Receiving alerts for reduced production in the event of extreme pollution
• Contribute the emission monitoring data
• Access pollution data information for future planning
• Control measure model scenarios for clean technology adoption

Non-governmental agencies • Governance mitigation action advocacy based on pollution trend analysis
• Control measure efficacy analysis
• Outreach for sustainable lifestyle adaption
• Pollution awareness for reduced exposure actions
• Contribution to city pollution reduction goal setting usingmonitoring, control measure data, and current and future efficacy

projections

5openaq.org, https://ncap.carboncopy.info/caaqms/.
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profiles (Baklanov and Zhang, 2020) (Supplementary Table S3).
Meteorology data consist of wind speed, direction, turbulence,
surface and boundary layer temperature, precipitation, humidity,
cloud cover, reflectivity, boundary layer depth, and mixing height
affecting pollutant concentration. Boundary layer and lower
mixing heights influence the pollutant concentration, and
wind speed and direction are responsible for its transport
(Oke et al., 2017).

Source apportionment data generated in campaign mode
with chemical mass balance models giving source
characterization estimates of particulate matter with ions,
metals, carbon-specific composition data, and chemical
profiles of different emission sources (Pipalatkar
et al., 2014; Gargava and Rajagopalan, 2016) form a critical
database.

Health exposure assessment model data with mortality,
morbidity, and disability-adjusted life years prediction
information (Fotopoulou et al., 2016) are the most critical data
required for policy decisions and mitigation efficacy analysis. In
addition, information on bio air allergens transmissions
combined with chemical pollution forms a health database for
clinical advisory (Klein et al., 2012).

4.1.4 City services
These databases include static and dynamic data generated by city
service departments or national ministries. It consists of fuel type
information, vehicle emission standards, sector-wise emission
standards, emission factors, daily road segment traffic count,
CCTV images, energy demand-supply data, mobility data from
smartcards, hospital records, congestion information, different
LCS certification data, pollution under control data, smartphone

activity data from vendors, Twitter feeds, multi-modal ridership
system, route navigation, control measures implementation
current and future plans, types of emissions sources to which
they are applied and its socioeconomic impact, yearly urban
environmental status report, industry regularization reports, air
quality Right to Information responses from government
departments, and hazardous waste management data (Verma,
2021) (Supplementary Table S4).

4.2 Technologies
Before answering the second research question of “How can
technologies be optimally connected for cross-sector data
acquisition, aggregation, processing, modeling, stakeholder
participation, and dissemination?” we first discuss the
technology potential in this section. The 4IR technologies,
in addition to traditional technologies, enable seamless access
of cross-sector data (Section 4.1) and faster processing
of data.

4.2.1 IoT
IoT with ubiquitous measurements and faster communication
enables more granular and better-informed decisions. We
consider two types of IoT devices in SmartAirQ: LCS and
wearable devices.

LCS provide cheaper and more flexible monitoring options
complimenting the expensive reference-grade stations
(Hagan et al., 2019). Its flexibility to mount on multiple
platforms aids in capturing dynamic pollution
characteristics for campaign studies (Apte et al., 2017).
SmartAirQ considers LCS for non-regulatory monitoring,
hotspots identification, pollution impact assessment on a
vulnerable population, awareness, selection of location for
regulatory stations, citizen sensing, health exposure
assessment, and control measure efficacy analysis
(Morawska et al., 2018).

IoT-based wearable devices enable cost-effective
epidemiological and individual exposure assessment (Haghi
et al., 2018). Wearable devices aid practitioners in the
personalized treatment of pollution-related allergies and
respiratory diseases (Piedrahita et al., 2014). SmartAirQ
will enable the processing of health parameters data
derived from crowdsourced data with data privacy and
security protocols.

4.2.2 Smartphones
SmartAirQ processes smartphone mobility data to predict
traffic-related pollution levels to quantify neighborhood-
scale mitigation and geotagged photos for exposure
guidance (Donaire-Gonzalez et al., 2016; Gately et al.,
2017). They are also effective via media for crowdsourcing
LCS data, photos, awareness, and real-time data dissemination
through mobile App.

FIGURE 4 | DataHub featuring representative cross-sector data.

8https://catalogue.iudx.org.in/.
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4.2.3 Social Media
Social media provides a new avenue to gather pollution
information (Wang et al., 2017; Charitidis et al., 2019). The
best practice example shared in the stakeholder interview,

showed that the real time traffic information extracted from
the Google mobility data can help city transport planners with
better public bus fleet management. The semantic analysis of
tweets can be used for mental health impact analysis (Du et al.,

TABLE 2 | Extreme pollution alert use case.

SmartAirQ plane Use case processes Actors/enabling service

Data acquisition - Monitoring sub-service accesses Regulatory agency
- In situ, smart city LCS data, crowdsourced LCS, satellite data Meteorology service
- Haze images from phone IUDX4

- Twitter and Facebook posts City municipality data service (smart city command
and control centre)

- Hotspot pre simulated model scenario data Scientific platform
- Past extreme pollution observation data Social media analytics
- GIS data Big data repository
- Traffic sensors and CCTV images
- Covariate data from city data repository and smart city services
- Hyper-scale air quality model and hotspot CFD model prediction data
- Hotspot pollution level training datasets
- Data from transport models
- Control measures action repository
- City socioeconomic data with demographic data

Data communication and
aggregation

- Internet, WiFi, Bluetooth, ftp using National Knowledge network Smart city communication service
- Data wrangling and normalization with uniform gridding Edge processing
- Monitoring and modeling data classification IoT broker services

Data processing and
Management

- Data calibration using ML methods Data analytics service
- Pollution heat maps with exceedance data calculation City environment manager
- Correlation of pollution levels with emission source information such as industry,
dust, traffic, CCTV, route information, open burning, solid waste

- Impact data correlation such as vulnerable population, traffic pattern using
OpenStreetMap

Intelligence -Pollution heat maps with monitoring data and ML methods AI services
-AQI calculation using NOx, SO2, CO2, O3, PM10, and PM2.5 data of previous day
observation, air quality model predicted data, weather observations, and ML
methods
- Flagging off of extreme polluted current and predicted areas using data mining and
pattern recognition algorithm operated on pre-calculated CFD model scenarios on
city environment department interface

- User-specific advisory preparation based on ML driven intelligence advisory using
model predicted data, covariate data such as traffic flow, solid waste, industry
emission, economy, weather, vulnerable population, social information, cost-
benefit data of various control scenarios with their spatiotemporal data analysis

Application services - City environment engineer triggers the three-tier graded action plan to application
plane using control measure service module mapped with predicted pollutions for
implementing graded action: immediate, in 3 days and 10 days

Intelligence service

- Control measure implementation advisory is shared with different service interfaces
in pushmode, such as transport department gets an advisory alert on its dashboard
for real-time rerouting of traffic; based on pollution load on road sectors automatic
traffic signal synchronization for congestion management; and emission zone
surcharge display through phone navigation or billboard display for citizens, highly
polluted industries and their location

service

- Automated messaging alerts are disseminated via email, websites, Facebook,
twitter, radio, mobile app through publishing service

City environment Manager

- Extreme pollution location with AQI and alert is communicated to health
practitioners as shared service

Traffic Department

- Citizens access the alerts, AQI information in the local language, and the pollution
heat map through mobile phone or portal or city displays for planning outdoor
activities

Industry pollution regulation authority
Health professionals
Citizens

Frontiers in Environmental Science | www.frontiersin.org April 2022 | Volume 10 | Article 78512910

Kaginalkar et al. SmartAirQ

148

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


2016; Upadhyay and Upadhyay, 2017; Zheng et al., 2019). These
datasets, in addition to other data in SmartAirQ DSS, enable city
managers to plan, evaluate the mitigation, and build awareness.

4.2.4 Satellite
Satellite data give concentration information along the column of
satellite sensors and on the ground. Geostationary satellite datasets
from NASA AQUA/MERRA MODIS and Sentinel-5P, NOAA
GOES-R, Hamamury, and CALLIPSO give continuous remote
sensed observations of AOD, PM2.5, PM10, OC, BC, NO2, SO2,
NH3, CO, VOC, and dust, aiding in emission trend analysis, filling
the observation gaps, sub-scale health exposure, and identifying non-
local sources (Wiedinmyer et al., 2011; Kulkarni et al., 2020). NASA

Landsat datasets characterize LULC features, source apportionment,
and extreme events (Gupta et al., 2006; Jena et al., 2021). SmartAirQ
has satellite-based LULC data creation; data fusion of in situ, LCS,
drones, ground sun photometer, and satellite data to create granular
pollution maps; and data assimilation in models, industry
compliance, and health impact assessment (Lau et al., 2019).
Recently, 1 km PM2.5 MODIS retrieved datasets for two decades
for India will be accessed through SmartAirQ (Dey et al., 2020).

4.2.5 Crowdsourcing
Citizen science brings an opportunity to conduct participative
governance, including policy design, awareness, and impact
assessment (Mahajan et al., 2020; Lepenies and Zakari, 2021).

TABLE 3 | Model as a Service HPC-cloud use case.

SmartAirQ plane Use case processes Actor/enabling service

Data acquisition - In situ, smart city LCS, satellite data (MODIS, LandSAT) initial and boundary
conditions from global ensemble weather forecast model

Regulatory agencies, meteorology agencies for global model
initial conditions

- Chemical boundary conditions from the global Mozart model
- Global and local EI
- Satellite-derived fire EI
- Population data
- Hospital health records
- Transport model data

Data communication and
aggregation

- ftp, API, internet Intelligence plane, cloud services
- Data wrangling with data classification
- Data calibration using ML methods
- Uniform gridding using land use regression methods
- Temporal classification (24 h average/8 h average)
- Units synchronization

Data processing and
management

- Weather and chemical data assimilation of satellite, in situ and smart city
LCS monitoring data

Air quality researcher, health researcher

- LCZ using WUDAPT tool (Ching et al., 2018)
- Regional WRF-Chem simulation for airshed region using EI and
meteorology data (Figure 5)

- “What-if” scenario simulation with integrated WRF-Chem, bio weather,
health exposure assessment model, and transport model

- Selection of computing resources using HPC-cloud service workflow
- Simulated data model repository with lossless compression

Intelligence plane - Data fusion of in situ, LCS, and satellite monitoring data using ML methods Hybrid modeling service, city municipality data service (smart
city command and control center)- Mapping of real-time gridded data with pre-calculated hotspot air quality

simulations of CFD model with data from WRF-Chem model as input
- Applying ML-based bias correction to CFD model output for improving
prediction accuracy

- Best fit selection using ML method such K-NN using previous years’ daily
data for training and previous day air quality and weather observation is
selected for accurate data prediction and for creating future projection
pollution heat maps using GIS

- AQI calculation using model
- Linking air quality model output with transport model output for creating
polluted route information

Application service - Model simulated gridded predicted and control scenario projection data
mapping to place of interest with pollution heat map

National, regional, and local regulatory board members,
citizen

- Visualization using 3D animation and VR software to view the pollution
transport across the city, e.g., in a densely built area

- Uploading of model-simulated data onto the DSS and dashboard service
- Selection of less polluted data service
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SmartAirQ enables crowdsourced emission-pollutionmonitoring
through LCS, mobile phone photos, and health impact data
acquisition.

4.2.6 Big Data and AI/ML
With the data mining of scientific and governance data, the urban
big data has utility in context-aware data-driven services such as
UAQM (Rathore et al., 2018). The UAQM data have big data
characteristics of large volume, variety with heterogenous data,
velocity with faster data processing, variability due to covariate
data dependency, and veracity with data privacy and security
(Fazziki et al., 2015; Octaviano et al., 2020). SmartAirQ data
architecture builds on the big data principles and technologies
such as Hadoop/MongoDB, SPARK, for real-time data
processing using cloud computing (Asgari et al., 2017; Huang
et al., 2018; Silva et al., 2018).

Hitherto, pollution studies and operational services were
limited to in situ observations and coarser models. With the
capability to interpret structured and unstructured data, ML
methods are used for data mining of large data by training the
data and pattern recognition. By building diagnostic, descriptive,
prescriptive, and predictive models from it, they enable better
actions (Sebestyén et al., 2021). For instance, Liu et al. (2021)
developed a correlation analysis of PM10, SO2, NO2, and O3 and
showed improvement in prediction data efficiency up to 86% by
applying regression models with reference-grade data and other
covariate data, such as meteorology using artificial neural
network. SmartAirQ uses such ML methods across UAQM
lifecycle, namely, random forest in improving LCS calibration
(Zimmerman et al., 2018), data fusion (Johansson et al., 2015; Lau
et al., 2019), parametrization (Wang et al., 2019), bias correction
(Haupt et al., 2021; Xu et al., 2021), extracting information from

TABLE 4 | Multi-variate data analysis use case.

SmartAirQ plane Use case processes Actors/enabling service

Data acquisition - Smartphone activity data (Google activity data), GPS data, CCTV images, in situ, smart city
LCS and weather observation data, traffic sensor, toll/emission zone RFID data through
real-time streaming

- IUDX8

- Social media posts, images - Regulatory agencies, meteorological
institutes

- Transport model data - Smart city traffic management service
- Crowdsourcing

Data communication and
aggregation

- ftp, API, internet, WiFi, Bluetooth, cellular network - Smart city ICT centre (command and
control centre)- Data wrangling with data classification

- Data calibration using ML methods
- Uniform gridding using land use regression methods
- Temporal classification (24 h average/8 h average)
- Units synchronization

Data processing and
management

- Real-time traffic data from sensors and CCTV images are accessed and tagged with date,
time, geospatial parameters

- Data fusion service citizens

- The data are dynamically classified with image processing for classifying 2, 3, 4W, buses,
trucks, number plate recognition using ML methods. The data also include crowdsourced
congestion images shared by citizens from smartphones and extracted from social media
posts

- Using the gridded monitoring and traffic data, real-time traffic emission estimates are
prepared. These data along with EI and dispersion model output are used to create
pollution load estimates along all road sectors. These estimates are then correlated with
satellite data extracted from AOD. Together, gridded dataset is created by pollution load
across the city grid

Intelligence plane - Hyper-local gridded pollution heat map is created using data fusion of different monitoring
source data

- AI services

- Data fusion methods are also applied for curating traffic data from traffic sensors, CCTV
images, toll data, and modeling data

- Using GPS navigation data, the travel time estimation of different routes with start and
destination points are created using covariate data from the GPS data and ML methods
and pollution route with time to travel dataset are created

- Geofencing with emission zone calculation

Application service - The alert information is pushed through mobile navigation app for drivers to choose the
routes

- DSS service

- Geofencing application alerts citizen about hotspot areas nearby and advise to take
actions such as wearing mask

- State regulatory agencies

- Updated pollution maps on web portal and mobile app - City environment department
- Emission zone toll charge activation - Smart city command and control centre

- Traffic police department
- Citizens
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unstructured data (Zheng et al., 2019), epidemiology (Bellinger
et al., 2017), and data sharing within the IoT devices (Ravì et al.,
2017).

4.2.7 Cloud Computing
The computing concept increasingly transitions to “moving
analysis to the data” rather than “data to analysis.” SmartAirQ
has cloud services with Data as a Service (DaaS), Model as a
Service (MaaS), and Platform as a Service (PaaS) connecting to
IoT devices, real-time and legacy data, models, and model
output to provide last mile services (Liu et al., 2017). It
supports data reusability through standardized data
workflows, user-specific metadata creation, and sharing.
SmartAirQ architecture has service orchestration tools
linking with smart city services such as transport, health,
economy, and energy. The technology stack has
cloud services and processing tools (Supplementary
Table S6).

4.2.8 Models
Modeling is an important tool for understanding
environmental processes and predicting future conditions.
SmartAirQ includes HPC-cloud service with cross-sector,
multiscale statistical, and numerical models such as
weather, global, regional, and local air quality models and
health impact assessment models (Baklanov and Zhang, 2020).
The top-down source apportionment method with receptor
modeling compares chemical and physical sample properties
with emission sources giving the type of the source and its
contribution information used in campaign mode (Gargava
and Rajagopalan, 2016).

The urban scale dispersion models use downscaled data of
initial and boundary conditions, emissions, observational data
assimilation, and chemical and physical equation calculations,
such as 3D turbulence, convection, boundary layer
calculations, transport, and urban heat island influences (Li
H. et al., 2020; Ghude et al., 2020; Ramacher et al., 2021).
Hyper-local computational fluid dynamics (CFD) models
capture pollutant flow around buildings and ventilation
coefficient (Santiago et al., 2017). SmartAirQ includes
health exposure assessment methods to understand the
cause-effect and the disease burden (Smith et al., 2017;
Ramos et al., 2018).

4.2.9 Decision Support System
Worldwide, DSS with model-based prediction and information
systems are gaining importance in air quality governance
activities (AirNow; Baklanov et al., 2020; LondonAir; Molina
et al., 2019). For example, Zheng et al. (2015) developed an air
quality prediction system using machine learning algorithm
application on current and past air quality and covariate data
such as point of interest, meteorology, traffic flow, and roads. By
integrating traditional data sources such as ground observation
and chemistry models with satellite, social media, and LCS data, a
prototype for hyper-local air pollution DSS (APDSS) for Hong
Kong has advanced data analytics and mining methods (Leung
et al., 2018). Through highlighting the importance of health risks,

the SMURBS6 system has an urban atlas derived from the fusion
of satellite data and sub-local exposure assessment data, real-time
LCS calibration tool, and emergency action module for industrial
accidents with data fusion of CAMS model, citizen observatory,
Sentinel-5P and MODIS data, and real-time source
apportionment. However, these modules appear as
independent components, and an integrated DSS facility is not
evident. Furthermore, very few of these go beyond the
information portal and include interactive data
communication leveraging the 4IR technology for sectorial
decisions (Zheng et al., 2015; Leung et al., 2018; Che et al., 2020).

The proposed SmartAirQ framework has not only the best of
the above features but also a multi-user secure and interactive
science cloud and linked operational service facility harnessing
cross-sector pollution mitigation and its integrated assessment,
including socioeconomic impacts supported by multiscale
modeling and data governance.

5 SmartAirQ ARCHITECTURE

The triangulation method synthesis addresses the third
research question of What can be the overarching design of
UC-enabled UAQM as a standard platform, scalable across
smart cities?

The literature prompts increasing interest in smart city
architecture (Santana et al., 2017; Habibzadeh et al., 2019).
However, its application context is often generic in nature or
addresses a single aspect of technology such as big data, IoT, or AI
(Fazziki et al., 2015; Ang and Seng, 2016; Dwevedi et al., 2018).
The SmartAirQ outlined in this study incorporates integrated
multiple 4IR technology applications by considering two major
aspects: scientific ecosystem and governance services executed
through HPC-cloud resources.

The SmartAirQ has utilities for national, regional, and local
users with bi-directional knowledge exchanges between
governance-governance (among different functional agencies),
citizens-governance (active participation and feedback), and
governance-citizens (dissemination). It builds on the living lab
concept, i.e., 1) creating value for stakeholders, 2) considering end
users as active partners, and 3) creating open processes for
interconnected socio-technological systems (Jensen and
Campbell, 2019; Steuri et al., 2020).

SmartAirQ system has a cloud-based plug-play ecosystem for
data analytics, modeling, aggregation, and user-specific
information built on advanced HPC resources and 4IR
technologies. It supports a data platform to create, simulate,
contribute, integrate, and disseminate data and metadata,
enabling cross-sector applications of pollution reduction
actions and policies (Figure 5). The SmartAirQ is designed
around modularity and flexibility as technology leapfrogs.

SmartAirQ has adopted multiple data planes typology with
service-oriented architecture (Habibzadeh et al., 2019). Some
planes operate independently and some as cross-functional

6https://smurbs.eu/solutions/.
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FIGURE 5 | SmartAirQ overview with cloud services and stakeholder access.

FIGURE 6 | SmartAirQ architecture with service planes.
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services (Figure 6). The data planes are characterized as (DI) data
acquisition plane, (DII) communication and aggregation plane,
(DIII) data processing and management plane, and (DIV)
application service plane with visualization. These planes are
supported by three cross-functional planes: (DA) intelligence
plane, (DB) data security and privacy, and (DC) HPC-cloud
service.

5.1 Data Acquisition Plane (DI)
Cross-sector data is collected from varied sources such as in situ
stations, LCS, weather observations, wearable devices,
smartphones, social media, different model outputs,
government records, city infrastructures, people, radars,
surveys, satellites, and GIS (Section 4.1). Each dataset has
different formats, access types, measurement intervals, and
time scales such as real-time, past, and future data
(Supplementary Table S7). These datasets are accessed
through open websites, ftp protocols, or service interfaces to
IoT devices or other smart city databases through RestAPI and
Spark streaming for social media or data portals. Acquired data
are mapped to Open Geospatial Consortium (OGC) standards
(van der Schaaf and Herzog, 2015) and IoT standards such as
SensorThingsAPI (Kotsev et al., 2018).

The data undergoes quality checks by removing garbage
data, range validation, missing values, and removing outliers.
The basic statistical methods such as root mean square error,
correlation coefficient, and mean bias are applied to check the
data quality. The LCS data is correlated with co-located
reference-grade stations for accuracy purpose. This plane
has provision for citizens to submit crowdsourced
monitoring and impact data. The data is anonymized with a
coding key.

5.2 Communication and Aggregation
Plane (DII)
This plane connects data from the acquisition plane to the
cloud environment. For real-time processing, low latency and
high throughput bandwidth is critical. The data from various
sources are communicated to the cloud layer through WiFi,
4G/5G network, internet, Bluetooth, or FTP. The data
transmission from the IoT network is facilitated by a
gateway using a wireless sensor network and IoT service
broker.

Then, the data are compressed or decompressed, stored,
normalized, and classified. It is classified as raw data or
metadata with data format information using data standards
(WCCD, 2021). The data classification has multiple ontologies,
such as parameter-wise, emission source types, ward-wise,
geotagged photos and tweets, exposure types, same temporal
interval, or same functionality datasets, for example, global,
regional, and urban weather, air quality model output, and
control measure scenarios. Data interoperability considers
various levels such as physical parameter, syntax, semantic,
pragmatic, dynamicity, spatial, temporal intervals, and data
constraints (Laniak et al., 2013). The interoperability is
achieved through the sensor web framework of Open

Geospatial Consortium, Web coverage service standards,
and API.

This layer has APIs for sharing the data with other smart city
services to process and manage interoperability issues.

5.3 Data Processing and Management
Plane (DIII)
This plane connects data from the communication plane and
creates metadata in response to the query from the application
service plane. It performs multi-functional processing using
mash-up web services methods (described below) with service
and user interface orchestration for integrating different city
services using the Hadoop environment (Atrouche et al.,
2015). The processing includes predictive, prescriptive, and
inferential analysis. This plane also has database management
and storage services using the HPC-cloud platform. The cloud
services are supported by Kubernetes and Docker tools. This
plane encompasses a variety of data processing methods
presented below.

5.3.1 Calibration
The monitoring data quality is improved by calibration
methods, such as range test, based on local climatic
conditions by mining historical extremes; single sensor
and sensor network spatial calibration using linear
regression coefficients with reference-grade sensors and
land use data (Masiol et al., 2018; Chu et al., 2020); and
persistence testing applied by calculating standard deviation
below the critical threshold, least square regression
(Morawska et al., 2018; Hagan et al., 2019), and multiple
regression trees (Simmhan et al., 2019). It also includes
CEMS sensor location calibration against standards
deployment protocols. This layer has statistical methods to
fill gaps in real-time and monitoring data either using
historical data mining or co-located station data.

5.3.2 Data analytics
The application query triggers different data processing methods,
including pollutant trend analysis, correlation, regression,
multivariate data analysis of weather, air quality, transport,
health exposure, energy cause-effect analysis, and interpolation
to create uniform gridded datasets. The statistical analysis is
performed using openAir libraries (Carslaw and Ropkins,
2012). This layer includes control measure efficacy analysis in
preventing and reducing polluting incidences, such as “what-if”
analysis change in vehicle emission standards and the impact on
air pollution levels in a region. Pollution heat maps of all the
criteria pollutants are processed for uniform gridding across the
city using the inverse-distance-weighing method and calculated
from past, current, or future data created from pollution data
fusion (Section 5.4).

This plane enables real-time micro-environment exposure
calculation based on real-time pollution data (Section 5.4),
mobility data, social media, wearable device data, and
pushing alerts or advisories through the application
service plane.
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5.3.3 Crowdsourced Data Processing
This layer conducts quality for the LCS as per the
crowdsourcing standards (EPA, 2015; Capineri et al., 2016).
Social media posts are processed with natural language
processing with taxonomy, language filters, and semantic
connections using ML methods (Charitidis et al., 2019;
Jiang et al., 2019). The classified data is then mapped to
create pollution data and impact database. Local climatic
zones (LCZ) with GIS are an important consideration due
to their ability to detail the localized LULC (natural and
anthropogenic) influences such as building height, building
cluster, open spaces, vegetation on pollutant concentration,
and dispersion (Wu J. et al., 2015; Shi et al., 2019).
Standardized LCZ classification methods and tools, such as
World Urban Database and Access Portal Tools (WUDAPT),
aid in better representation of LULC using crowdsourced
morphological data (Ching et al., 2018).

5.3.4 Air Quality Index Calculation
From the observation data, aggregated AQI is calculated for
awareness purposes with six categories: good, satisfactory,
moderately polluted, poor, very poor, and severe. AQ sub-
index and health breakpoints are evolved for eight pollutants
(PM10, PM2.5, NO2, SO2, CO, O3, NH3, and Pb). AQI are
predicted using past and current AQI, past and current
weather and model data, social media feeds, and ML
(Kosmidis et al., 2018; Castelli et al., 2020). SmartAirQ system
has query-based access to sub-local AQI values using GIS
visualization and advisory in infographics form for easy

understanding of impacted community and citizens, such as
the decision regarding school closure during extreme pollution
situation in Delhi.7

5.3.5 Workflow Orchestration
In response to the application service triggers, this layer
transforms the query requirements, connects different data
analytics components, allocates the cloud resources, and
automates the input-processing-output tasks with service-
oriented architecture services (Zanella et al., 2014). It involves
multiple job management with scripting and streaming
processing for real-time data access, batch processing, and
process optimization for DaaS, PaaS, and MaaS. The MaaS
connecting multi-sector model workflows with preprocessing,
simulations, and post-processing with model data exchanges has
OpenMI2.0 framework (Harpham et al., 2019). The workflows
run through the public and private cloud (Figure 7).

(1) Public cloud: end users will directly interact with the hosted
services that will expose various web applications developed
with angular, Django/spring boot framework. It will facilitate
users with data visualization using NCL graphics, Vapor, and
data analytics using openAir R libraries. OpenStreetMap used in
visualization will be exposed via GeoServer, and data can be
downloaded via ftp servers.

FIGURE 7 | Data processing and technology pipelines with public-private cloud and HPC.

7https://timesofindia.indiatimes.com/city/delhi/air-pollution-delhi-schools-to-
remain-shut-for-physical-classes-till-further-orders/articleshow/87831917.cms.
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(2) Private cloud: it will include middleware servers that host
several python, java-based microservices deployed as Docker
containers, which will be managed by Kubernetes.

5.3.6 Modeling
Various modeling interfaces can be integrated within the UAQM
(Kaginalkar et al., 2022). The modeling service layer has global
weather forecast models and global, regional, and urban air
quality models, such as source apportionment, statistical and
simple box dispersion and complex chemical transport models,
street-level CFD models, bioweather models, health exposure
assessment and socioeconomics impact evaluation models
(Baklanov and Zhang, 2020). The models are used for source-
concentration estimates, future predictions, and what-if control
scenario projections. The model workflow has data containers for
data acquisition of 1) global data weather forecast and chemistry
model datasets; 2) global, regional, and local EI datasets; 3) air
quality observations from regulatory stations, LCS, and satellite 4)
LULC data derived from LANDSAT datasets; and 5) weather and
air quality observations.

SmartAirQ prototype module consists of regional and
urban WRF, WRF-Chem model (Grell et al., 2005), and
CFD model OPENFOAM9. CFD modeling workflows can be
invoked in two streams: 1) running online CFD models for the
entire city and 2) running CFD models for hotspots as
precalculated scenarios and then pattern matching of real-
time data using ML methods. It also includes executing the
regional-urban-Gaussian dispersion model, such as AERMOD
(Cimorelli et al., 2005) to identify multiple hot spots and create
sector-specific graded action plans. Users can select further
data prediction improvement methods such as hybrid
modeling with lognormal/log-logistic statistical distribution
model (Gulia et al., 2017) for episodic cases or by running AI
models (Section 5.4).

Further, sub-local air quality models can be coupled with
health exposure models such as AirQ (AirQ+.) and BENMAP
(USEPA, 2014) for estimating exposure and “what-if” scenarios.
The model simulated data can be invoked through the query
system of the application service plane DSS (Section 5.5).

The model’s accuracy is improved by atmospheric and
chemical data assimilation, data fusion methods, and bias
correction using hybrid numeric and ML models. The air
quality models are executed in ensembles with different initial
conditions. The air quality models are supported by evaluation
tools for validation with observation data, such as AMET
(USEPA, 2016). The compute workloads needed for various
simulations and AI/ML engines using several libraries, such as
MPI, openMP, TensorFlow, Keras, CUDA, will be executed on
HPC clusters (Figure 7).

5.3.7 Database Management
Efficient data storage is critical in urban environment data
management as, every day, huge amounts of data are created
and processed. For example, daily three-day forecast Pune city

with 500 m WRF model generates ~17 GB, whereas ten-day
forecast for 400 m WRF-Chem model with a larger national
capital region of Delhi using chemical data assimilation
attributes to 210 GB. This layer is responsible for storing and
arranging data with spatiotemporal, sector-specific, impact-
specific labeling. It includes a raw data and metadata
repository with a periodic storage policy (e.g., few datasets);
weather and air quality observations are required as
climatology information for past trend analysis or training ML
models. For optimal storage, considering the end-user function of
the data, lossy or lossless compression techniques are adopted
depending on the data accuracy requirements. SmartAirQ
leverages distributed data access, wherein data will not always
be stored at a centralized location but organized on multiple
physical or virtual infrastructures. The repository also includes
information on apps, different model configurations, scripts, and
data connection between different models as workflows. Data
management services will have a big data framework using
Hadoop/MongoDB, which will house the data needed for
SmartAirQ. It will also have extraction transformation load
(ETL) channels implemented in spark, python, to ingest data
into the data store (Figure 7).

5.4 Intelligence Plane (DA)
This plane runs across all the above planes with AI methods,
improving the UAQM functionality and providing value addition
to the underlying technologies.

5.4.1 LCS and Model Data Calibration
ML-based calibration methods such as support vector machine,
random forest, K-nearest neighbor, and geospatial kriging are
applied to LCS data and covariate data to improve the accuracy
(Maag et al., 2018; Zoest et al., 2020).

5.4.2 Data Fusion
Overcoming the limitations of various monitoring methods, data
fusion processes monitoring data from in situ data, campaign
study data, satellite data, chemical transport models, and smart
city air quality LCS data using ML methods to create gridded
datasets of PM2.5, PM10, NO2, CO2, SO2, and O3 (Li et al., 2017;
Schneider et al., 2020; Viqueira et al., 2020).

Data fusion is executed in two ways: offline and real-time.
Generally, in the offline mode, data used in specific campaigns are
fused to create a newer dataset. For example, LCS, drones data,
and mobile LCS data on vehicles are combined to create an
emission source spatiotemporal map. These datasets are then
used to train the dataset for real-time feature extraction in data
fusion methods (Lau et al., 2019; Geng et al., 2021). Then, the data
created by data fusion method is compared with the in-situ
station data.

5.4.3 Cross-Sector Data Processing
Pollution reduction is dependent on emission source-
concentration information. Building scale LULC data is
prepared using satellite data and ML methods (Kerins et al.,
2020). This layer performs spatial (roads, buildings, place of
interest, and types of roads) and temporal classifiers based on9https://www.openfoam.com.
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artificial neural network and regression methods on cross-variate
data training models to improve pollutant concentration
predictability (Zheng et al., 2015). In this layer, ML methods
K-nearest neighbor and long short-term memory are applied for
traffic density assessment by vehicle count from traffic sensor
data, trajectory analysis, and visual classification from CCTV
images from smart city command and control data services for
congestion prediction (Majumdar et al., 2021). These datasets are
linked to pollutant level datasets and GIS data for less polluted
route navigation and emission zone surcharge advisory on the
mobile app.

LCS and social media data are used to identify emission
sources and control measures. This layer includes content
extraction and pattern recognition using natural language
processing and semantic analysis using ML methods (Zheng
et al., 2019). Data are then correlated to pollution
concentration data to predict future AQI and health impact
assessment data to be used by city managers and by health
practitioners (Yan et al., 2019). Satellite-derived emission
source data and pollutant and LULC data are correlated with
CEMS data for compliance monitoring (Kurinji and Ganguly,
2020).

This plane has provision for health impact data processing
using hospital records, traffic sensor data, mobile phone activity
data, wearable device data, ridership data, real-time and historical
meteorology data, social media, and gridded pollution data
generated from the data fusion layer and using ML methods
such as random forest, support vector machine, and multiple
regression methods giving pollution exposure information at a
location and time (Hu et al., 2014; Masiol et al., 2018).

5.4.4 Hybrid Models
ML methods are applied to air quality models, such as WRF-
Chem, to improve predictability by bias correction and for faster
processing (Ma et al., 2020). The processing is executed using
Keras, TensorFlow, PyTorch, NumPy, python scripts, and CUDA
environment.

The data processing pipelines involve various tools and
libraries, as shown in Figure 7 (Supplementary Table S6).

5.5 Application Service Plane (DIV)
Data processed in previous planes is accessed through a service
layer of the decision support system. This multi-user interactive
layer is activated through a GUI with query system, scheduler,
GIS, and data orchestration through the portal or mobile app
service (Table 1). The application services include sector-specific
raw data and metadata access and visualization. Public services
include alerts, pollution monitoring data, pollutant comparison
between different locations, exceptional events, future prediction,
and control scenario projection in the form of pollution
concentration maps, infographics, and virtual reality such as
dispersion trend analysis in a hotspot area. The pollution
maps created through data fusion of IoT data, model output,
and satellite, mapped with interactive GIS, enable citizens to
access localized pollution information through the query system,
such as deciding to reduce exposure (e.g., avoiding outdoor
exercise at selected location and time).

This smart city system has varied connotations for different
stakeholders, for example, for air quality researchers,
improving the accuracy of model prediction using high-
resolution models executed on advanced HPC systems or
using innovative methods using 4IR technology for reducing
pollution impact. In contrast, for non-governmental agencies,
it can be vulnerable location metadata derived from daily
station data for advocacy purposes or sub-local AQI
information to school authorities.

5.5.1 Visualization
Data visualization with GIS is an inherent component of the city’s
digital platform and DSS. Its usage runs across all the components
of SmartAirQ, from EI development to dissemination services
(Dalvi et al., 2006; Badach et al., 2020). WebGIS allows full view of
the city, standardized data access, interactive location-specific
query, and navigation (Gkatzoflias et al., 2013). SmartAirQ
architecture considers it a vertical plane running across all
other service planes.

Visual representation of data is triggered by user query or
sector-specific action in the form of infographics, plots, 3D
animation, augmented reality and virtual reality (AR/VR),
time-series graphs, trend analysis, correlation, exceedance,
prediction information, industry compliance reports, and AQI
display (Elbir et al., 2010; Li W. et al., 2020). The dynamic
visualization includes interactive navigation displaying
pollutant information along all the routes with an expected
time of arrival information. The application service has a
restful API for data exchanges. The scientific plots are viewed
through Vapor/NCL.

5.6 Data Privacy and Security Plane (DB)
As soon as the data are accessed, they are anonymized with
system-driven ID and personal or system-specific details,
such as department name, and the authority name is coded
into the independent key by applying cryptography
algorithms (Toma et al., 2019). The data has multi-layer
authorization. In an example of a collaborative research
case, first, the researcher creates EI with activity data and
emission factors in their own restricted space. Second, the
researcher provides permission to access this derived EI data
to the authorized member from the city environment
department through a password protection mechanism. In
the future, blockchain methods for secure data
communications can be explored (Benedict et al., 2019).

6 USE CASES

Moving now from theory to practice, we present use-case
scenarios that illustrate the applicability of the SmartAirQ
framework in UAQM functions.

These use cases present the cross-sector functionality
orchestration and decision services specific to the user
category. The consolidated actions undergo step-wise data
translation through different planes and technology
applications. The examples of use cases are drawn from
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Table 1. These use cases have stakeholders, users, and smart
city service components as actors. This section discusses the
example of the use case of emission control measure
mitigation. Additional use cases are presented in Tables 2–4.

6.1 Emission Control Measure Mitigation
Process Flow
6.1.1 Description
For pollution mitigation and its efficacy assessment, large data must
be brought together, linked, and inferred in the context in which it is
applied, which requires an efficient database management system
maneuvering cross-sector data and metadata.

In this use case, the control measures selection process is
instrumented by a local environment manager, considering the
business as usual scenario or future scenario projection data
analytics. It accesses the pre-simulated future projections using
dispersion models.

6.1.2 Data and Functionality Pathways
Emission factors and EI activity data generated from source
apportionment studies are uploaded by researchers through
the data acquisition plane (Figure 8). The system applies data
wrangling and data classification methods by data mining of
source categories and sub-categories. The city environment
manager selects business as usual scenarios and control
scenarios. The data are processed in the data processing plane
with a calculation of emission load, reduction factor, and
applicability ratio. Based on the query and user-selected
pollutant type, source type from the area, point or line,
scenario type, such as the closure of construction work in a
fixed time or banning diesel vehicles, emission factor selection,
and analytics mode, such as emission load in kg/year or ton/day, a
cumulated scenario is generated (Figure 9). The backend
calculations are executed using WRF-Chem and AERMOD
models projected simulations using cloud resources, and
analytics is conducted using R libraries.

FIGURE 8 | Cross-sector stakeholder functions for control scenarios orchestrated through the SmartAirQ planes.
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6.1.3 Outcome
The total % reduction is displayed either as plots or GIS-based heat
maps (Figure 9). In the decision chain, the manager links the data
with energy, transport, traffic, infrastructure department, and state
pollution control board members. The concerned stakeholders view
the applicability and feasibility of control measures with interactive
pollutant, source, control scenarios selection, comparison between
two locations, and so forth. The selected control measures are then
implemented by respective stakeholders.

6.2 Extreme Pollution
This use case involves an extreme pollution event in a city. In
response, the orchestration of services from the city environment
manager, traffic manager, scientists, citizens, and SmartAirQ
middleware services are executed, as shown in Table 2.

6.3 Modeling
In real-time operations, there can be a trade-off between models
due to computational complexity. This use case involves scientists

running model workflows (Table 3) using standard operating
procedures at different entry points on HPC-cloud (Figure 10).

6.4 Traffic Management
This involves data processing and management, intelligence
plane, smart city service, and citizens as actors (Table 4).

7 SUMMARY

For successful environmental services in smart cities,
seamless data exchanges and their systematic interpretation
for cross-sectorial decisions are essential. UAQM is a
multidimensional service involving policy formulation,
monitoring, prediction, awareness, enforcement, health
impact assessment, and mitigation. In the backdrop of
NCAP and India’s smart city mission, it is imperative to
develop an integrated open data and smart city information
ecosystem for UAQM.

FIGURE 9 | Interactive decision support system for future control scenario projection visualization (Kaginalkar et al., 2022) © Copyright [19 Jan 2022] American
Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is
determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright
Act (17 USC § 108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a
searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals
and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright
Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy).
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This study presented SmartAirQ, a conceptual integrated
data governance and 4IR technology framework for air
quality smart city service. It is primarily for researchers,
policymakers, and governance to enable actions for end-
users such as non-governmental organizations, citizens,
and health practitioners. The big data and cloud platform
built within SmartAirQ provide scalable, interoperable,
sustainable, and affordable solutions for scientific and last-
mile services. The cloud services enable participative UAQM
governance with data reuse and shared computing
resources, reducing the carbon footprint.

The data governance architecture opens up avenues to
formulate, implement, and evaluate control measures for
future actions and in real time at various scales and
sectors. SmartAirQ facilitates the inclusion of newer data
and citizen science information into the governance realm
with monitoring, exposure information, and perception. Its
predictive hybrid numerical and AI modeling system enables
cause (source apportionment) to effect (air quality
prediction) to impact (health assessment models) value
chain for hyper-local pollution risk reduction. It
brings two critical components under UAQM data
governance: cross-sector data with the computing
ecosystem and stakeholders as co-producers/co-owners
of data.

Well-defined data governance, harmonizing disparate data,
is the first step toward sustainable smart cities. With ever-
increasing urban data, a framework such as SmartAirQ is an
exemplary co-created smart city service with context-
dependent solutions for environmental issues that go
beyond the monitoring and modeling data information
portal. The SmartAirQ flexible architecture is scalable
across world cities, aiding in efforts toward Sustainable
development goals.

Although this conceptual framework is designed for ambient
urban air pollution, our follow-up work will report on the
interaction between the ambient and indoor air quality and
system deployment experiences.

The recent WHO global air quality guidelines (WHO,
2021) call for technologically driven, science-society
collaborative actions for pollution reduction. The
SmartAirQ framework is apt to facilitate these translations
for an effective UAQM.
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The scientific field of urban climatology has long investigated the two-way interactions
between cities and their overlying atmosphere through in-situ observations and climate
simulations at various scales. Novel research directions now emerge through recent
advancements in sensing and communication technologies, algorithms, and data
sources. Coupled with rapid growth in computing power, those advancements augment
traditional urban climate methods and provide unprecedented insights into urban
atmospheric states and dynamics. The emerging field introduced and discussed here as
Urban Climate Informatics (UCI) takes on a multidisciplinary approach to urban climate
analyses by synthesizing two established domains: urban climate and climate informatics.
UCI is a rapidly evolving field that takes advantage of four technological trends to answer
contemporary climate challenges in cities: advances in sensors, improved digital
infrastructure (e.g., cloud computing), novel data sources (e.g., crowdsourced or big
data), and leading-edge analytical algorithms and platforms (e.g., machine learning, deep
learning). This paper outlines the history and development of UCI, reviews recent
technological and methodological advances, and highlights various applications that
benefit from novel UCI methods and datasets.

Keywords: urban climate informatics (UCI), research agenda, novel data sources and sensors, big data, artificial
intelligence

1 INTRODUCTION

From Thermometers to Big Data: The Rise of Urban Climate
Informatics
Rapid urbanization is one of the defining features of the 21st century with substantial global
environmental impact compounded by climate change (Georgescu et al., 2013; Krayenhoff
et al., 2018; Masson et al., 2020b; Zhao et al., 2021). In cities, the combined effects of
population growth and climatic changes threaten urban livability through urban overheating
(Nazarian et al., under review), hazardous air quality (Chapman S. et al., 2017; Broadbent
et al., 2020), increased energy consumption, and extreme weather (Willems et al., 2012) (Li
et al., 2020b) with widespread health, socioeconomic, and ecological impacts. In response to
these challenges, numerous subfields of urban climatology have evolved over the last century
to carefully document, examine, and model urban climate at various scales.
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Sensors and observational methods have traditionally been
developed to assess built environment impacts on local air
temperature (Stewart, 2019) and quantify intra- and inter-
urban variability in the urban canopy layer (Núñez-Peiró
et al., 2021; Potgieter et al., 2021). Early weather and climate
observations were motivated by pragmatic needs, e.g., to support
agriculture or shipping, while the invention of the thermometer
and the barometer in the early 17th century enabled systematic
recording of weather conditions. In the late 18th century, the
Societas Meteorologica Palatina established an observational
network of calibrated instruments and an observation protocol
(“Mannheimer Stunden”), which enabled scientific climatic
studies. The approach aimed to encourage collaborative data
collection by providing calibrated sensors at no cost (Neves
et al., 2017). Although participation was limited to academic
institutions and companies, the philosophy resonates with
modern crowdsourcing and citizen science projects. Synoptic
weather analysis required real-time data exchange, which
became possible 50 years later with the invention of the
telegraph. The first weather map with data from 22 stations
was displayed at the World Exhibition in London in 1851.

Temperature maps became widely available with advances in
thermal remote sensing, which provides high-resolution surface
temperature distributions (Voogt and Oke, 2003; Zhan et al.,
2013; Stewart et al., 2021). In the 20th century, advancements in
aviation permitted unprecedented atmospheric 3D observations,
and in 1960, the launch of the first weather satellite TIROS
(Television and InfraRed Observation Satellite) opened a new
age of meteorology.

Technological progress has also impacted the field of urban
climatology. While research in the early 20th century
concentrated on Europe and was mostly descriptive, rapidly
increasing computational power in the late 20th and early 21st
century significantly advanced quantitative and systematic
scientific approaches in the Anglo-American realm (Mills,
2014). Numerical and climate modeling at building to regional
scales produced urban climate parameters at high spatial and
temporal resolution/coverage and facilitated what-if analyses
(Hamdi et al., 2020). At the same time, model outputs and
their availability to the research community increased with
computing and storage capacity.

Most certainly, big and fine-resolution urban datasets have
rapidly evolved with transmission rates exceeding 0.1 Petabyte
per day (Reichstein et al., 2019). This trend was driven by
increased availability, accuracy, and resolution of sensors and
datasets as well as changes in data policy. In remote sensing, for
instance, NASA and ESA granted free access to data archives,
which enabled new techniques such as time series analysis and
multi-sensor data fusion (Wulder et al., 2012).

Despite tremendous technological progress in research, the
application of traditional micrometeorological theory to urban
areas is still limited by the complexity and heterogeneity of the
built environment (Mills, 2014). Conventional observation
methods often fall short in providing fine-resolution spatial
and temporal urban data, which highlights the need for denser
observation networks and novel data sources. Additionally, urban
climate studies have traditionally ignored “human factors” that

lead to personal exposures to environmental stressors (Kuras
et al., 2017; Okokon et al., 2017; Nazarian and Lee, 2021). Lastly,
the risks for people and infrastructure are arguably more
important than the geographic extent and magnitude of the
hazard for planning and emergency response purposes, thus
requiring direct access to highly localized information on
human mobility (Moore and Obradovich, 2020).

The Cornerstones of Urban Climate
Informatics
Urban Climate Informatics (UCI) is an evolving research field
that originates from two established domains: Urban Climate
(concerned with interactions between a city and the atmosphere)
and Climate Informatics (research combining climate science
with approaches from statistics, machine learning, and data
mining) (Monteleoni et al., 2016). While Climate Informatics
focuses on computational approaches in climate science, UCI
takes a broader, multidisciplinary approach. UCI aims to explore
and understand complex urban climate systems and human-
environment interactions through new technological,
methodological, and systems thinking approaches. It
embraces more integrated and human-centric methods to
address urban climate challenges that are enabled by novel
sensing, non-traditional datasets, crowdsourcing, big data,
digital infrastructure, advanced analytics, and artificial
intelligence.

Four emerging technologies and methods can be noted as the
cornerstones of UCI (Figure 1). First, recent advancements in
environmental sensing have resulted in lower sensor size and
power consumption at reduced sensor costs. More importantly,
improvements in wireless data transmission (using various
methods such as Wifi, 5G, and LoRaWAN) and location
awareness of devices have enabled Internet-of-Things (IoT)
sensing, contributing to real-time and ubiquitous data
collection. Second, in addition to environmental datasets that
are actively collected by sensors, new urban datasets from various
sources emerge. These novel datasets include detailed
information on three-dimensional and heterogeneous urban
configurations as well as incidental and public domain data
that can be extracted from social media or the web. The
availability of organic datasets, such as mobility patterns in
cities, further contributed to understanding the population
exposure and impact of urban climate challenges (Li and
Wang, 2021). At the same time, a stronger emphasis on
citizen engagement and technology-use in daily activities has
evolved over the last decade. Driven by commercial trends (e.g.,
home automation sensors, smartwatches, wearables) and
solutions that are non-expert friendly, citizen science data
collection has become mainstream and is implemented in
education, entertainment, and social activities (Caluwaerts
et al., 2021). This contributes to ubiquitous and crowdsourced
data collection beyond the academic community (Irwin, 2018),
further enabling more realistic and human-centric solutions to
urban climate challenges. Third, state-of-the-art analytical
algorithms and computer systems have entered urban climate
analytics, providing an opportunity for more sophisticated data
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analyses, computational methods, and modeling approaches.
Artificial Intelligence (AI, including Machine and Deep
Learning) has been instrumental in characterizing urban areas
into local climate zones or climatic maps (Bechtel and Daneke,
2012; Xu et al., 2019; Demuzere et al., 2021; Demuzere et al.,
2022), which are paramount for observational and modeling
efforts in urban climatology. Lastly, the accessibility of digital
infrastructures for storage, analytics, and communication of
results have transformed various approaches, enabling global-
scale analyses of urban climate parameters such as surface and air
temperatures (Peng et al., 2012; Chakraborty and Lee, 2019;
Venter et al., 2021).

Collectively, novel data sources, sensors, and computing
methods have led to a paradigm shift in urban climate
analyses, significantly changing “how” we do science and
expanding research questions directed at the urban
atmosphere and its residents. This shift includes moving
beyond the traditional focus on city-atmosphere interactions
and tackling challenges of the Anthropocene, including climate
change, urban overheating, poor air quality, and climate injustice.
Most notably, four trends can be observed: 1) urban climate
research has moved towards comprehensive analyses of the

dynamics of urban climate and human-environment
interactions at fine temporal and spatial scales; 2) the research
focus has shifted from an assessment of local atmospheric
conditions in a city vs its rural surroundings (traditional UHI
definition) towards intra-urban hazard distribution and human
thermal exposure assessments; 3) highly accurate, expensive,
high-maintenance weather stations and air quality sensors
operated by experts are complemented by educational or
operational, lower-cost tools and data that were acquired for
non-urban climate purposes; 4) urban climate research teams
have become interdisciplinary spanning a wide range of expertise,
from architects and engineers to urban planners, computer
scientists, and local government representatives, which allows
more complex, solutions-oriented analyses from health sciences
to social justice and equity; and 5) research results are better
communicated to non-experts through new platforms and
visualizations (e.g., websites, social media, dashboards) to
maximize broader societal impact.

UCI has the potential to overcome current gaps and challenges
in urban climatology, which include but are not limited to 1) a
lack of human processes (e.g., anthropogenic heat, people’s
movement) in urban modeling; 2) observations that are not

FIGURE 1 | The four cornerstones of Urban Climate Informatics (UCI): Advances in Sensors (Section 2), Novel Data Sources (Section 2), Advances in Digital
Infrastructure (Section 3), and Advances in Analytical Algorithms and Platforms (Section 3). Increased accessibility to four pillars enables a wide range of UCI
applications (center).
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representative of atmospheric processes and human exposures
across space and time (e.g., for long-term climate studies or
model validation); and 3) limited data availability (e.g., urban
canopy parameters, urban morphology) and computing power
for urban climate modeling (Masson et al., 2020a; González et al.,
2021). This paper outlines the key trends in the development of
UCI, discussing novel technological and methodological
advances that enable future directions in urban climate
research. The following sections provide a general overview of
the UCI field as well as examples and discussions of novel sensing
and data sources (Section 2) as well as advancement in data
processing (Section 3).

2 NOVEL SENSORS AND DATA SOURCES

One of the key catalysts for the UCI field is the emergence of novel
and more expansive datasets resulting from several
interconnected developments, most importantly advances in
sensor solutions, communication technologies, and data
acquisition methods. Here, we detail how advancements in
sensors (Section 2.1), ensuing novel acquisition methods
(Section 2.2), and datasets (Section 2.3) have been used to
understand and address urban climate challenges.

2.1 Advancement in Sensors and
Communication Technologies
Advances in environmental sensing have greatly increased the
availability, resolution, and quality of observational data for
urban climate research. In the last decade, a major shift was
seen from research-grade sensors operated by experts to low-cost
devices, e.g., for citizen-scientists. New technologies not only
allowed sensing units to record a more comprehensive set of
parameters (such as standard meteorology, air quality, UV, and
noise), but also removed limiting factors in continuously
monitoring the built environment, such as power supply
(source and consumption) and sensor size. The sensor
technology revolution resulted in smaller sensors that could
easily be mounted to existing structures, required less energy
(or were sustained through solar panels), and eventually, were
cheaper. This process is similarly seen in satellite/remote sensing,
where the emergence of CubeSats has led to miniaturized
satellites for space research that have high potential to
enhance observations for urban climate applications (González
et al., 2021).

Such advances are further complemented with novel wireless
and ubiquitous communication technologies, such as WiFi, 3G/
4G/5G, and LoRaWan. While previous data-loggers required a
technician to connect to the sensor and (often manually) transfer
the data for further processing, wireless communication enables
automatic and seamless transitions of data from multiple devices
to servers. Removing the communication and scaling barrier has
led to the emergence of Internet-of-Things (IoT), where physical
sensors are connected to digital infrastructure and real-time
analytics (Sections 2.1 and 2.2); Web-of-Things (WoT), where
sensors and everyday objects are fully integrated into the web; and

Internet of Everything (IoE), with all-round connectivity,
intelligence, and cognition beyond computers, tablets and
smartphones.

Advances in sensors and communication methods greatly
contribute to observational studies in UCI. Low-cost sensors
with seamless data communication allow scientists,
practitioners, and citizens to utilize numerous sensors in a
variety of urban spaces with different user behaviors. Instead
of using sparsely-placed outdoor sensors to determine heat,
weather, or air quality, fine-grained and multi-parameter IoT
sensor networks have been successful in depicting the spatial and
temporal heterogeneity of environmental quality in educational,
commercial, and residential buildings and their outdoor
surroundings (Palacios Temprano et al., 2020; Luo et al., 2021;
Ulpiani et al., 2021). In addition to covering a larger spatial area
and determining hotspots of environmental stressors (Schneider
et al., 2017), IoT sensor networks contribute to predictive models
for weather (Chavan and Momin, 2017), energy consumptions
(Cheng et al., 2021) and air pollution exposures (Xiaojun et al.,
2015; Zhang and Woo, 2020); assist in determining the impact of
surface cover and urban design on microclimate (Pfautsch and
Tjoelker, 2020); and further raise citizen awareness on urban
environmental challenges. Lastly, advancement in sensor
solutions and communication methods lead to novel data
acquisition methods in cities.

2.2 Data Acquisition Methods
As existing sensing technologies improve over time, urban
climate science further benefits from emerging data acquisition
techniques. Novel observation methods take advantage of new
sensors and digital literacy of urban residents. Observations range
from mobile sensors mounted on various devices and humans to
crowdsourcing and volunteered geographic information (VGI),
where citizens and distributed private sensors provide a source of
geographic and environmental data (See et al., 2016). These
methods have long been neglected in atmospheric sciences,
mostly due to knowledge gaps and justified concerns in data
quality and standardization (Muller et al., 2015). However, these
novel data sources are predestined for urban analyses because
they are typically collected in the most populated places: cities.

Mobile Sensing and “Humans as Sensors”
Traditional urban climate research uses observational datasets
that determine inter- and intra-urban variabilities of climatic
parameters. As sensors have become smaller, wireless, and more
power-efficient, it is more feasible to gather such data through
mobile sensing, where the primary goal is increased coverage at
reduced costs. This has led to four measurement categories: 1)
portable weather stations, 2) vehicle-based sensors, 3)
smartphones, and 4) wearable and nearable devices.

Portable weather stations are moved through urban
environments using garden carts (Middel and Krayenhoff,
2019; Middel et al., 2021), golf carts (Häb et al., 2015), or
cargo bikes (Heusinkveld et al., 2014; Rajkovich and Larsen,
2016). Measurement campaigns often utilize research-grade
weather stations and monitor a comprehensive set of
parameters, providing valuable spatial data particularly in the
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face of extreme heat events. However, mobile sensors lack the
medium- or long- term temporal resolution of fixed sensors and,
more importantly, need post-processing methods to address
prolonged sensor response time in common weather stations
(Häb et al., 2015). Additionally, data outputs of mobile
measurements are often in time-series format, while the
sensors are non-stationary. The changing atmospheric
conditions impact observations that should be corrected
through time-detrending (Parlow and Foken, 2021). Lastly,
mobile sensors are subject to anthropogenic influences such as
heat from traffic and space heating/cooling equipment.
Accordingly, mobile data should be enriched with detailed
metadata to comprehensively interpret the observations.

Similar to portable weather stations, sensors mounted on
vehicles such as buses (Kang et al., 2016; Seidel et al., 2016),
trash trucks (deSouza et al., 2020), and cars (Ferwati et al., 2018)
have been used to traverse cities. Vehicle-based data are prone to
the same challenges as portable weather stations. Low-cost (and
therefore less accurate) sensors are frequently deployed due to
size and communication limits, yet they allow to assess behavioral
patterns and human-centric exposure to environmental stressors
such as air quality and heat (Fugiglando et al., 2018).

Mobile phones have become an attractive data source for
human-scale urban climate information, as there are currently
6.64 billion smartphone users in the world today. Various studies
have used phone battery temperature as a proxy for air
temperature to map thermal conditions in cities (Overeem
et al., 2013; Droste et al., 2017b). Data uncertainty increases
with solar radiation exposure (Cabrera et al., 2021), more extreme
weather, and precipitation, because the smartphone is most likely
enclosed. Although smartphone data for environmental
modeling are yet to be validated and scaled beyond academic
assessments, the importance of gathering continuous, real-time
feedback from urban dwellers should not be underestimated.
Assessing urban climate impact requires more in-depth focus on
humans exposed to environmental stressors in cities.
Accordingly, smartphone applications collecting data on the
human experience (e.g., thermal comfort vote and noise/
pollution discomfort) can obtain critical data points to
augment environmental parameters (Lassen et al., 2021).

Recent urban climate studies have used wearables and nearable
sensors for data collection. Here, we define wearables as smart
devices (e.g., smart watches, sensor patches, smart clothing) that
are worn by participants to obtain environmental parameters (e.g.,
air temperature and humidity) and physiological responses or
behavioral patterns and activities. Nearables refer to (low-cost)
sensors carried by individuals or placed in the immediate
environment of people. The National Science Experiment in
Singapore (low-cost wireless SENSg devices (Wilhelm et al., 2016)
is probably the largest deployments of wearables, with 50,000 sensors
carried by students for assessment of thermal comfort among other
objectives (Monnot et al., 2016; Happle et al., 2017). Wearable
sensors have been used to combine all three (environmental,
physiological, and behavioral) factors and have shown promising
results in predicting heat stress (Nazarian et al., 2021) and obtaining
non-obtrusive, real-time feedback (Jayathissa et al., 2019). As sensors
are frequently moved between indoor and outdoor settings, pocket

and palms, and are also influenced by the device CPU load,
interpretation of the data requires more in-depth investigations.

Crowdsourcing and Citizen Science
Crowdsourcing, i.e., collection of atmospheric data from non-
traditional distributed sources, has evolved as a cost-efficient
alternative for monitoring urban climates. While the use of
crowdsourced data in atmospheric sciences was in its infancy
half a decade ago (Muller et al., 2015), it has reached adolescence
quickly. Since 2015, a growing body of crowdsourcing literature
has focused on citizen weather station (CWS) data from
privately-owned, non-professional, low-cost stations connected
to the Internet. Early studies focused on network air temperature
(Bell et al., 2015; Chapman L. et al., 2017; Fenner et al., 2017;
Meier et al., 2017), but more recent analyses added other
atmospheric parameters including precipitation (De Vos et al.,
2017; Bardossy et al., 2021), air pressure (de Vos et al., 2020), and
wind speed (Droste et al., 2020). While the data quality of
individual stations remains low, many insights have been
gained on error sources, quality control, and filtering
algorithms (Meier et al., 2017; Hammerberg et al., 2018;
Napoly et al., 2018; de Vos et al., 2019; Mandement and
Caumont, 2020; Fenner et al., 2021). This development is
dynamic, and the uncertainty in crowdsourced CWS data
much depends on the parameter of interest and the network
density, but confidence increases that robust parameter estimates
can be derived for spatial averages or climatology. Other
crowdsourcing sensors of high interest are cars (Bröring et al.,
2015; Bonczak and Kontokosta, 2019) and smartphones, which
have been used to observe air pressure (Mass and Madaus, 2014;
de Vos et al., 2020) and air temperature (Overeem et al., 2013;
Droste et al., 2017a), amongst others (see previous section).

Amajor driver of advancements in crowdsourcing is the growing
number of applications. CWS have been used to analyze urban heat
islands (Meier et al., 2017; Varentsov et al., 2021; Venter et al., 2021),
hailstorms (Clark et al., 2018), and deep convection (Mandement
and Caumont, 2020); for high-resolution mapping of air
temperature (Venter et al., 2020; Vulova et al., 2020; Zumwald
et al., 2021); to derive boundary conditions for urban-climatemodels
(Jin et al., 2021); and for operational weather forecasts (Nipen et al.,
2020). Furthermore, CWS data have been combined with novel
datasets emerging in UCI (Section 2.3) such as high-resolution 3D
urban models, such that we better understand the role of urban
design and land cover on urbanmicroclimate (Potgieter et al., 2021).
Since crowdsourced data allow new types of analyses and improve
the accuracy of short-term forecasts, they have slowly gained
acceptance in the climatology community, but concerns about
data quality remain. For centuries, climatologists have developed
and advanced standards and protocols to make observations
comparable between places and decades; in the future, much of
this rigor must be applied to the quality control and filtering
algorithms of crowdsourced data.

Unmanned Aerial Vehicles
Observations from unmanned aerial vehicles (UAVs) are at the
smallest scale of remote sensing for monitoring land surface
dynamics. Unmanned aerial systems (UASs) produce high

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8674345

Middel et al. Urban Climate Informatics

170

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


spatial resolution data, sufficiently detailed to make field-level
decisions, and fill the gap between satellite and in-situ, near-
ground observations (Emilien et al., 2021). The genesis of UAS
dates back to 1849 and was, for a long time, driven by military
needs (Rakha and Gorodetsky, 2018). In the early 1970s, Konrad
et al. (1970) pioneered the use of UAVs in meteorology to study
the dynamics of the convective process, which requires fine-scale
data on the temporal and spatial structure of the atmosphere. To
overcome limitations of available platforms at that time (e.g.,
balloons, towers, and full-sized aircraft), the authors developed
and tested a small, radio-controlled aircraft with meteorological
sensing instrumentation as a versatile measurement platform.
Over the next decades, technical developments facilitated more
frequent uses of UAVs in atmospheric research. For example,
Leuenberger et al. (2020) evaluated the assimilation of boundary
layer observations gathered by “Meteodrones” into the numerical
weather prediction system at Meteoswiss and found that the
drone observations improved fog prediction. Chilson et al. (2019)
proposed an automated 3D mesonet based on autonomous UAS
stations to observe atmospheric profiles similar to standard
“mesonets”, which consist of surface-based, in-situ stations.
Although this work is in its infancy, a 3D network could
significantly enhance our monitoring capacity of
environmental variables in the lower atmosphere, improve our
understanding of atmospheric boundary layer processes, and
improve high-impact numerical weather prediction. Despite
the low cost and resolution advantages, drones still have
limited use in climatology, because they require additional
sensors beyond RGB imagery, and flight durations are short
(Yavaşlı, 2020).

Yet, UAVs have proven to be useful in an urban climate
context, as shown by Rakha and Gorodetsky (2018). Their
comprehensive review of thermal drones for energy audits
highlights that the increased accessibility, efficiency, and safety
of drones expedites the improvement and retrofitting of aging
and energy-inefficient building stock and infrastructure. This
finding is corroborated by Bayomi et al. (2021), who collected
thermal drone data to calibrate a building energy model for
improved performance and to assess building material
degradation, thermal bridging, and insulation failures. In
recent years, UAVs have been increasingly deployed to
measure 3D urban form (Gevaert et al., 2017) and to monitor
in-situ air quality (Kuuluvainen et al., 2018), but limitations such
as flight duration, payload capacity, and sensor dimensions,
accuracy, and sensitivity remain (Villa et al., 2016).

2.3 Datasets
New emerging datasets are key for representing realistic,
heterogeneous urban environments while driving insight into
the exposure of urban residents to climate challenges. These
datasets are obtained through planned processes gathering
information on defined research questions (purposeful data)
such as LiDAR point clouds, or secondary outcomes of
technological processes and platforms used in urban areas
(organic data) such as social media data. The source,
intention, and method of data collection further dominate
whether the dataset is structured, or more importantly, can be

activated for use in climate analyses (i.e., used to develop insights
or devise action). While the unprecedented volume of data is
offering exciting opportunities for better understanding and
quantifying urban climate challenges, the velocity (rate at
which the data are generated), veracity (truthfulness, accuracy,
and quality of data), and ownership (access to, possession of, and
responsibility for data) creates significant challenges for data use
in climate research and application. For instance, while data
policies of authorities have become considerably more open
over the past decade, data generated by citizens are often
legally “owned” by private companies, thus their long-term
availability depends on business interests and success. The
challenges of data ownership are manifested in access to 3D
urban models, where the development of Data as a Service (DaaS)
prohibits their dissemination for modeling or observational
studies. Lastly, new datasets raise novel challenges with respect
to privacy, most seen in human-scale data collection. Here, we
detail three novel data types that have been successfully collected
and used for urban climate analyses and discuss limitations in
research and application.

Big Data
Detailed, accurate 3D information on a city’s composition,
configuration, and morphology is key for urban climate
analyses and applications. The wide variety of building types,
architectural features, construction materials, and the
distribution of vegetation govern the interactions between the
city and its surrounding atmosphere (Middel et al., 2014; Oke
et al., 2017; Ching et al., 2018). Traditionally, 3D city models and
urban form parameters have been established using
photogrammetry (processing optical stereo imagery) or high-
resolution satellite images (Masson et al., 2020a). More recent
approaches use large point clouds (next section) or procedural
modeling (Nishida et al., 2018) to automatically generate
cityscapes (Ching et al., 2019a). In the advent of big data,
researchers started to repurpose large datasets that were
originally collected for non-urban-climate purposes, such as
street level photography. Street View image repositories from
Google, Baidu, Mapillary, Tencent have increasingly become
available and been used to characterize the built environment
using machine learning (feature detection and image
segmentation) (Keralis et al., 2020). A street canyon
perspective is more human-centric than bird’s eye view
imagery, which is particularly important for human thermal
comfort, health, and behavioral studies (Middel et al., 2019).
Past research has used Street View images to quantify street
greenery (Li et al., 2017; Lu, 2019), building age (Li et al., 2018),
building floor count (Iannelli and Dell’Acqua, 2017), sidewalks
and crosswalks (Hara et al., 2013; Berriel et al., 2017), urban land
use (Zhang et al., 2017), and sky view factors (Middel et al., 2018;
Zeng et al., 2018; Nice et al., 2020). Street level images have also
been used to conduct virtual neighborhood audits to assess
walkability (Yin and Wang, 2016), bikeability (Arellana et al.,
2020), traffic safety (Mooney et al., 2016), physical activity (Griew
et al., 2013), and human health (Keralis et al., 2020). Lastly, Street
View images have been linked to urban climate parameters such
as surface temperature (Zhang et al., 2019) and air quality (Apte
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et al., 2017). While street level imagery offers remote access to
urban form, design, and function, many providers have recently
restricted free image downloads. Other known constraints
include limited spatial and temporal availability (i.e., the user
does not have control over image acquisition season, date, time,
and location), images are usually taken in the center of the road,
not on the sidewalk, and they do not provide insight into
backyards. Yet, with more and more users volunteering
geographic information, uploading crowdsourced photography,
and more companies entering the mapping market, Street View
products will remain a valuable big data source for urban climates
studies.

LiDAR Point Clouds
Urban areas affect the atmosphere via their built materials,
distinct surface cover and urban structure. The latter refers to
the 3D urban morphology, or urban form, that determines albedo
and aerodynamic roughness, and controls radiative exchange and
airflow (Oke et al., 2017). With advances in remote sensing,
LiDAR (Light Detection And Ranging) systems have become a
well-established alternative to stereo photogrammetry for
generating digital urban models. Point clouds from airborne,
mobile, or terrestrial LiDAR yield 3D urban form at
unprecedented spatial resolution (Yan et al., 2015; Bonczak
and Kontokosta, 2019). Wang et al. (2018) reviewed urban
reconstruction algorithms for point cloud data, evaluated their
performance in modeling architectural elements (e.g., buildings,
roads, bridges, power lines, trees), and highlighted the generation
of 3D city models with multiple levels of detail (LoDs). In this
context, CityGML by the Open Geospatial Consortium has
emerged as a widely accepted standard for describing the
representation, storage, and exchange of digital 3D city and
landscape models (Gröger and Plümer, 2012). Higher levels of
detail require more data storage, and as such, pathways are
currently explored on how to represent multiple levels of
detail (LoDs) while optimizing storage. This relates to the
urban-scale space exploration (Lafarge, 2015) and the concept
of “fit-for-purpose” urban data as advertised by the World Urban
Database and Access Portal Tools project (WUDAPT, Ching
et al., 2018, 2019; Bechtel et al., 2019) that aims to find an optimal
solution across scales as a tradeoff between data complexity and
model accuracy.

Point clouds have myriad urban climate applications. Urech
et al. (2020) used LiDAR to reconstruct digital 3D landscapes and
devised a framework to generate future landscape scenarios by
manipulating the point cloud. This information was subsequently
used to inform the Discrete Anisotropic Radiative Transfer
(DART) model that estimates the 3D radiative budget of
urban and natural landscapes, and to assess changes in
thermal comfort in a neighborhood in Singapore. Dissegna
et al. (2019) calculated the leaf area density (LAD) of urban
trees from terrestrial LiDAR scans to quantify the contribution of
vegetation to the radiative budget of a city, which can mitigate the
urban heat island (UHI) effect and ultimately contribute to the
development of climate resilient urban spaces. Other studies used
airborne LiDAR data to map urban vegetation and LAD in
Vienna, Austria (Höfle et al., 2012) and Gothenburg, Sweden

(Klingberg et al., 2017), thereby indicating the important
ecological characteristics of urban vegetation that influence
urban climate through shading and transpiration cooling and
air quality through air pollutant deposition. The Urban Multi-
scale Environmental Predictor (UMEP), an urban climate service
tool (Lindberg et al., 2018), combines models and approaches for
fine-scale climate simulations. The tool includes modules to
derive digital surface models (DSM) and canopy digital surface
models (CDSM) from airborne LiDAR and has recently been
used in various heat exposure and mitigation studies across the
globe (Aminipouri et al., 2019; Kong et al., 2022).

Reviewing the latest advances of LiDAR-based mobile
mapping systems, Wang et al. (2020) identified challenges
related to reliable positioning, the need for more sophisticated
deep-learning architectures to classify point clouds, and AI
challenges to comprehensively understand semantics of
complex urban streetscapes. Nevertheless, the authors envision
that point clouds will give rise to a new category of geo-big data
and will play an important role in future monitoring, detection,
and modeling tasks.

Social Media
DataIn the era of information and communications technology,
urban geolocated social media data (SMD) offer new
opportunities to indirectly measure the impact of hazards on
society, to advance understanding of complex urban dynamics,
and to support decision-making for sustainability
transformations (Ilieva and McPhearson, 2018; Creutzig et al.,
2019). SMD from Flickr, Twitter, Foursquare, Facebook,
Instagram, etc. have the potential to fill important data gaps
that prevent researchers and practitioners from understanding
human-environment interactions. During the first IPCC Cities
and Climate Science Conference in Edmonton, Canada (Bai et al.,
2018; Frantzeskaki et al., 2019), SMD indicators of social,
ecological, and infrastructural change were highlighted in a
series of synthesis statements on the role, potential, and
research gaps of nature-based solutions for climate adaptation
and mitigation. Grasso et al. (2017) argue that micro-blogging
platforms such as Twitter may be used as a distributed network of
mobile sensors that react to external events by exchanging
messages. They found significant associations between the
daily increase in tweets and extreme temperatures during a
2015 summer heat wave in Italy, indicating that the daily
volume of Twitter messages can indicate local heatwave
impacts, improve preparedness measures at the regional and
local level, and thus reduce heat vulnerability. Young et al.
(2021) came to a similar conclusion when studying Twitter
data to detect different scales of response and varying attitudes
towards heat waves in the United Kingdom (United Kingdom),
the United States of America (US), and Australia. They
performed a sentiment analysis, i.e., the field of natural
language processing that aims to extract the attitude conveyed
in a body of text. The United Kingdom and US had similar levels
of positivity during the heatwave, while Australians were more
negative, with a significant sentiment increase as temperature
decreased. By quantitatively reviewing 169 studies that use data
from social media and social networking sites to better
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understand human-environment interactions (Ghermandi and
Sinclair, 2019), suggest that SMD offers unprecedented
opportunities in terms of data volume, scale of analysis, and
real-time monitoring. At the same time, challenges remain,
including the integration of different types of information in
data matching, the development of quality assurance procedures
and ethical codes, an improved integration with existing methods,
and the assurance of long-term, free, and easy-to-access provision
of public social media data (Ghermandi and Sinclair, 2019).

3 ADVANCEMENTS IN DATA PROCESSING

The emergence of new digital infrastructure and analytics
algorithms and platforms is a major driver of UCI. Cloud
storage and computing allow bigger data volumes to be stored
outside of the sphere of physical storage and processed directly in
the cloud. Furthermore, novel analysis methods (e.g., AI or edge
computing) complement previous advancements and remove
some privacy and security concerns of previous approaches
that analyzed the impact of urban climate on residents.

3.1 Algorithms
Climate is increasingly becoming a data problem (Jones, 2017).
For example, the compressed climate model output for the sixth
Coupled Model Intercomparison Project (CMIP6) is estimated at
18 Peta Bytes, which is five times the size of the CMIP5 archive
(Balaji et al., 2018). The research field “Climate Informatics”
encourages collaborations between climate scientists and
machine learning researchers to help bridge the gap between
data and understanding and to accelerate discovery in climate
science (Monteleoni et al., 2016; Huntingford et al., 2019).
Machine Learning (ML) techniques have been used to find
complex patterns and networks in large data, insights that
might otherwise depend on expert judgment or physical-based
rules (Jones, 2017). ML also speeds up the development of
parameterizations in weather and climate models (or their
sub-components, e.g., land surface models), either by
completely replacing physically-based parameterizations by
data-driven neural networks or by harnessing ML to calibrate
or “tune” the many free parameters involved in their formulation
(Couvreux et al., 2021; Hourdin et al., 2021; Pal and Sharma,
2021). In urban climate studies, the use of ML or other artificial
intelligence (AI) techniques such as deep learning has been
primarily used to derive urban form and land cover from
image datasets. Ma et al. (2019) reviewed 200 remote sensing
studies and found that deep learning was predominantly used in
urban applications. Xu et al. (2019) employed convolutional
neural networks (CNNs) and ground-level images to classify
urban areas into climate zones, while Zhou et al. (2021) and
Yoo et al. (2019) used deep learning, CNN, and random forest to
map LCZs from remotely sensed images. Deep learning has also
been used to predict air pollution in urban areas using satellite
data (Lee et al., 2021) and Street View images (Suel et al., under
review). Venter et al. (2020) applied a random forest model to
Sentinel, Landsat, LiDAR, and crowd-sourced air temperature
measurements to model hyper-local urban air temperature

distribution concluding that the resulting maps can
complement and validate traditional urban canopy models.

3.2 Digital Infrastructure and Platforms
Platforms for Big Earth Observation Data
As discussed in the introduction, many urban climate studies rely
on remotely sensed Earth Observation (EO) data, which has
become increasingly more available, accurate, and fine-scaled. EO
products are frequently used to assess the surface urban heat
island (SUHI), perform land cover classifications, and provide
input for models of urban surface-atmosphere exchange (Voogt
and Oke, 2003). Many EO datasets are delivered on a daily basis,
providing a massive amount of remotely sensed data that places
us in an age of big EO data (Chi et al., 2016). Over the last decade,
cutting-edge platforms have been developed to support a new
generation of spatial data infrastructure based on cloud
computing, distributed systems, MapReduce systems, and web
services. These systems address challenges related to big EO data
management heterogeneity, storage, processing, analytics,
visualization, sharing, and applications (Li et al., 2020c)
Importantly, the development of data infrastructure enables
the application of data standards to data layers developed by
diverse stakeholders and addresses challenges regarding data
interoperability and integration. In their review, Gomes et al.
(2020) define “platforms for big EO data management and
analysis” as computational solutions that provide
functionalities for data management, storage, and access; that
allow processing on the server side without having to download
large datasets; and that provide a certain level of data and
processing abstractions for EO community users and
researchers. Seven platforms currently match this definition:
Google Earth Engine (GEE) (Gorelick et al., 2017), Sentinel
Hub (Sinergise, 2018), Open Data Cube (Open Data Cube,
2021), System for Earth Observation Data Access, Processing
and Analysis for LandMonitoring (SEPAL, FAO, 2021), OpenEO
(Pebesma et al., 2017), the JRC Earth Observation Data and
Processing Platform (JEODPP, Soille et al., 2018), and pipsCloud
(Wang L. et al., 2018; Gomes et al., 2020). GEE is probably the
most widely used platform in urban climate studies.

Amani et al. (2020) reviewed 450 GEE-related journal articles
and found 40 papers on urban topics, including urban planning,
development and extent; urban morphology; and urban
temperature and heat island studies. For example, Cheng et al.
(2018) and Zhang et al. (2020) used GEE to develop global maps
of manmade impervious areas. Li M. et al. (2020) mapped urban
3D building structure, i.e., building footprint, height, and volume,
for Europe, the United States, and China using random forest
models in GEE. Huang et al. (2018) and Duan et al. (2019) used
GEE to map urban green spaces and urban forests in China using
Landsat and Sentinel-2 imagery, respectively. In a series of papers,
Demuzere et al. (2019a, 2019b, 2020, 2021) converted the off-line
single-city Local Climate Zone (LCZ) mapping strategy (Stewart
and Oke, 2012; Bechtel et al., 2015) into a GEE-based procedure
that allows for the creation of continental-scale LCZ maps,
including a web-application (LCZ generator, https://lcz-
generator.rub.de/) that makes LCZ mapping fast and easy.
Bechtel et al. (2019b) assessed the SUHI from MODIS and
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Landsat against LCZ maps for 50 global cities, and Chakraborty
and Lee (2019) computed the SUHI from MODIS for over 9500
urban clusters and examined how vegetation controls
spatiotemporal SUHI variability. Benz et al. (2017) analyzed
global shallow groundwater temperatures by processing and
integrating land surface temperatures, evapotranspiration data,
and snow cover in GEE. The availability of LCZ mapping has also
enabled a consistent comparison with three-dimensional urban
data (Section 2.3) for different cities, providing detailed city-
descriptive input parameters for climate models (Lipson et al.,
under review).

Big Earth data and related platforms introduced disruptive
changes in EO data management and analysis (Sudmanns et al.,
2019). Yet, despite their advancements, challenges remain. For
example, Gomes et al. (2020) report that none of the investigated
platforms offer all ten required EO capabilities presented by
Camara et al. (2016) and Ariza-Porras et al. (2017). Besides
technical challenges, organizational and political challenges
exist that are partly unsolved or not discussed, such as security
issues (e.g., storing datasets or algorithms on non-proprietary
platforms) or increasing costs for developing and maintaining
such platforms. These issues lead to the question whether Big EO
data platforms will continue to provide reliable data and services
in the future (Sudmanns et al., 2019).

Cloud Computing
In recent years, cloud computing services have become
increasingly affordable. Third-party providers such as Amazon
Web Services (AWS), Microsoft Azure, and Google Cloud host
and maintain scalable computing infrastructure, i.e., customers
are only charged for the infrastructure they use. Several recent
urban climate studies have used cloud computing for modeling
sky view factors (Dirksen et al., 2019), to run WRF (Goga et al.,
2018), simulate microclimate with ENVI-met (Crank et al., under
review), and predict neighborhood air pollution (Triscone et al.,
2016). Cloud services also gain popularity in crowdsourcing and
IoT applications. For example, Fauzandi et al. (2021) designed
and implemented a low-cost sensor system for UHI observations
using AWS, and Kulkarni et al. (under review) used an AWS
database to store biometeorological observations and people
counts from an IoT device in a public park. Similar to Big EO
data platforms, cloud computing has limitations related to server
availability (e.g., downtime during service outages), security, and
privacy. Cloud computing also offers limited control and
flexibility because the infrastructure is managed by the service
provider, not the urban climate researcher, and is often tied to a
specific vendor (the service provider). Despite these limitations, it
is expected that cloud computing will play a major role in UCI as
simulations become more complex and datasets increase in size.

4 CONCLUSION AND OUTLOOK

The field of urban climate has greatly advanced our
understanding of city-atmosphere interactions since the first
weather map was created in the mid-19th century. Driven by
sensing and modeling physical phenomena, urban climate

research in the past decade has integrated multidisciplinary
methods and practices complementing the core principles in
atmospheric science. UCI parallels this development,
embracing various scientific disciplines such as data science,
geospatial analyses, urban design, health, and policy. A clear
paradigm shift can be seen from focusing on city-atmosphere
interactions to tackling grand challenges of the Anthropocene,
including climate change, urban overheating, poor air quality,
and climate injustice. New advancements enabled by UCI offer
unprecedented opportunities to understand these grave problems
and support a variety of applications.

UCI facilitates the development of adaptation and
mitigation strategies for urban climate challenges by
pushing the boundaries of observational networks, model
resolution, and domain size to yield unprecedented details
on hazard distribution. High resolution 3D city data paired
with detailed thermal properties of the urban fabric enable
urban climatologists to answer questions about optimal tree
placement, the amount of available shade, and heat retention
in urban canyons. Digital twins–virtual city models integrating
various datasets, real-time sensing, and predictive models of
underlying atmospheric processes–are on the rise and will
eventually allow analyses of complex city-atmosphere
interactions at fine temporal and spatial scales. Although
still in their infancy, Digital Twins have already been used
to support collaborative and participatory urban planning and
aid in hyper-local air pollution mitigation (Dembski et al.,
2020). The City of Zurich uses Digital Twins to simulate urban
climate, noise, air pollution, and create future scenarios for
decision-making (Schrotter and Hürzeler, 2020).

Computational steering (interactively changing parameters
during simulation) has the potential to transform how we
parameterize and run urban climate models. The future of
urban climate may even be in the cloud! In parallel, as sensing
capabilities grow, cities will become smarter through sensors
embedded in the urban fabric. These future directions in UCI
research and application are instrumental in achieving the vision
of climate-sensitive urban design and planning.

In recent years, the focus of urban climate has shifted from
UHI studies towards intra-urban hazard distribution and human
thermal exposure assessments. Emerging research aims to
combine climate analyses with various urban data layers to
achieve more comprehensive vulnerability and inequity
analyses. For example, Harlan et al. (2006) investigated heat-
related health inequalities related to microclimate considering
socioeconomic status, ethnicity data, and urban form and
configuration descriptors. Results showed that residents in
hotter neighborhoods were more vulnerable because of fewer
resources to cope with heat. Servadio et al. (2019) analyzed health
outcomes and air pollution exposure in Atlanta using various
data layers and found that areas with majority African-American
populations exhibited significantly higher exposure to poor air
quality. Considering the social dimensions of atmospheric
impacts in neighborhoods allows to further identify “hotspots”
with vulnerable populations that are unproportionally affected by
hazards. This is further enabled by novel digital communication
platforms (such as public data dashboards) that use simplified
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data visualizations as well as easily comprehensible metrics and
indicators to communicate the relevance of urban climate data for
urban dwellers. The contributions of UCI to public engagement
not only bridge the communication gap and inform residents
about the extent of urban climate challenges, but also enable
people to make individual decisions that can minimize exposure
to environmental stressors in cities. Lastly, the emergence of
“humans as sensors” and citizen science in UCI is key to not only
inform urban dwellers, but also devise the most effective solutions
for improving human health and wellbeing in the face of
increased climate challenges.

Novel approaches always entail barriers that need to be
overcome, and UCI is no exception. With respect to novel
sensors and data sources, guidelines and best practices must
be established to guarantee standardized methods for
crowdsourcing, IoT sensing, data curation, processing, storage,
and metadata documentation. In addition, long-term availability
of data must be secured. While public entities have recently
adopted more open data policies, citizen-science generated
data are often legally owned by private companies and
dependent on short-term business interests. Another emerging
concern is data privacy, which needs careful consideration at the
design phase of any implementation.

While big, unprecedented data sets offer exciting
opportunities to better understand the Earth System, our data
collection ability currently outweighs our usage and analysis
capacity. Too often, available data are not activated, leaving
behind unused potential. Moving forward, the focus should
not only be on new data collection but also drawing
meaningful insight from data sets already available. Also, with
inflating raw data, processing chains require higher attention,
highlighting the important role of open-source quality control
packages.

Finally, as human-centric data collection through mobile
devices becomes more mainstream, the digital divide must be
addressed. While smart technology enables wide-scale, human-
centric data collection, more affluent areas will have more access
to those technologies, further contributing to urban climate
inequity.

Cities are living, breathing ecosystems that include physical,
socio-economical, and behavioral processes. UCI seeks to
understand and respond to such complex, dynamic human-
environment interactions through novel technological,
methodological, and systems thinking approaches, achieving
more integrated and human-centric assessments of urban
climate challenges in future research and application.
Moving forward, UCI will undoubtedly shape the urban
climate research agenda for upcoming decades and
positively impact fundamental, applied, and policy-relevant
research.
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MaRTiny—A Low-Cost
Biometeorological Sensing Device
With Embedded Computer Vision for
Urban Climate Research
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Extreme heat puts tremendous stress on human health and limits people’s ability to work,
travel, and socialize outdoors. To mitigate heat in public spaces, thermal conditions must
be assessed in the context of human exposure and space use. Mean Radiant Temperature
(MRT) is an integrated radiationmetric that quantifies the total heat load on the human body
and is a driving parameter in many thermal comfort indices. Current sensor systems to
measure MRT are expensive and bulky (6-directional setup) or slow and inaccurate (globe
thermometers) and do not sense space use. This engineering systems paper introduces
the hardware and software setup of a novel, low-cost thermal and visual sensing device
(MaRTiny). The system collects meteorological data, concurrently counts the number of
people in the shade and sun, and streams the results to an Amazon Web Services (AWS)
server. MaRTiny integrates various micro-controllers to collect weather data relevant to
human thermal exposure: air temperature, humidity, wind speed, globe temperature, and
UV radiation. To detect people in the shade and Sun, we implemented state of the art
object detection and shade detection models on an NVIDIA Jetson Nano. The system was
tested in the field, showing that meteorological observations compared reasonably well to
MaRTy observations (high-end human-biometeorological station) when both sensor
systems were fully sun-exposed. To overcome potential sensing errors due to different
exposure levels, we estimated MRT from MaRTiny weather observations using machine
learning (SVM), which improved RMSE. This paper focuses on the development of the
MaRTiny system and lays the foundation for fundamental research in urban climate science
to investigate how people use public spaces under extreme heat to inform active shade
management and urban design in cities.
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1 INTRODUCTION

The year 2020 marks the Earth’s warmest 10-year period with an
average increase in global temperature of 1.3 °C above pre-
industrial levels. Extreme heat and related heat waves put
tremendous stress on individuals’ health and well-being and
limits their ability to work, travel, and socialize in outdoor
settings. Globally, extreme heat and associated heat wave
events are occurring more frequently and longer (Masson-
Delmotte et al., 2021). Future trends of urban warming
indicate the need for adaption measures to promote resilience
in the population. The outdoor urban environment is a complex
arrangement of urban forms and materials that impact how heat
is experienced by pedestrians at the microscale. In hot, dry cities
pedestrian comfort is strongly dictated by the availability of shade
(Middel et al., 2014; Colter et al., 2019). Pedestrian may respond
to microscale outdoor conditions by changing their walking path
from Sun to shade or vice versa based on their heat exposure.

The most common way to report urban heat is air
temperature, which has been shown to be insufficient to
quantify personal heat exposure (Harlan et al., 2006; Kuras
et al., 2017). A more human-centric metric that emphasizes
the heat load on the human body is the Mean Radiant
Temperature (MRT). MRT objectively quantifies the total
short- and longwave radiation the human body is exposed to
at a given location and time (Kántor and Unger, 2011). This
includes longwave radiation emitted from surrounding surfaces,
such as asphalt parking lots or concrete walls, and shortwave
radiation from the Sun. MRT roughly equals air temperature in
the shade but can be 30 °C higher in the Sun, making a person feel
much less comfortable when it is hot. In warm, dry climates such
as the desert city of Phoenix, Arizona in the USA, MRT is the heat
metric that best describes how people experience heat (Middel
et al., 2016). MRT is also a crucial input parameter for calculating
outdoor human thermal comfort indices such as PET (Höppe,
1999) and UTCI (Jendritzky et al., 2012).

MRT has been successfully used in urban climate and human
biometeorology research to predict heat-related mortality and
outperformed air temperature as predictor (Thorsson et al.,
2014). Using computer simulations, MRT was estimated to
assess the impact of tree planting strategies on human thermal
exposure under climate change in Vancouver, Canada
(Aminipouri et al., 2019) and to perform thermal comfort
routing in Tempe, Arizona, USA (Middel et al., 2017).
Observational studies have quantified the benefit of shade for
thermal comfort of different shade types including trees,
engineered structures, and urban form (Lee et al., 2018;
Middel et al., 2021). Accurate, high resolution MRT
measurements require expensive equipment, such as the
biometeorological instrument platform MaRTy (Middel and
Krayenhoff, 2019), but lower-cost alternatives such as the gray
38 mm globe thermometers and cylindrical thermometers have
been developed (Thorsson et al., 2006; Brown, 2019; Vanos et al.,
2021).

Active shade management in cities is important, especially in
the Southwestern US, to provide shade where people work, travel,
and socialize outdoors, because cooling benefits are hyperlocal.

While a large body of literature has investigated shade and
microclimate in hot regions (Ali-Toudert and Mayer, 2007;
Emmanuel et al., 2007; Shashua-Bar et al., 2009; Coutts et al.,
2016), little information exists on how people use public spaces
and when and where they are exposed to outdoor heat. We close
this gap by developing a novel low-cost, portable, smart IoT
weather station (MaRTiny) that can measure passively the local
meteorological conditions, the heat exposure at the given location
and count people in the shade and Sun. Connecting hyperlocal
meteorological conditions with space use data captured by a
camera reveals behavioral patterns of shade and Sun preferences
that vary by time of day, location, and ambient conditions.
MaRTiny, as a passive sensor package, designed for hot, dry
climates, can provide local heat exposure, such asMRT, and space
use data without using external database.

Our contributions can be summarized as follows:

1. MaRTiny Weather Station—A low-cost and compact IoT
weather station that records air temperature, relative
humidity, globe temperature, and wind speed at 1-min
intervals. Globe temperature was converted to MRT using
an empirical model in the literature and compared with high-
endMRTmeasurements, resulting in a root mean square error
(RMSE) of 10.0°C for observed 6-directional measurements vs
globe temperature measurements.

2. MaRTiny Vision System—A low-cost, low-powered, compact
and smart vision system driven by state-of-the-art AI
algorithms. This system counts pedestrian and is also
capable of identifying if a pedestrian is under the cooling
effect of shade. From our observations, we calculate a precision
of 95% for pedestrian detection and an accuracy of 80% for
shade detection.

3. Machine Learning based MRT—We developed a novel
machine learning model that relies only on a few
meteorological parameters and is robust to changes in its
surrounding environment. This model corrects errors
introduced by the low-cost IoT sensor, such as slow
response time, shape, color and material inconsistencies,
etc., and predicts MRT with an accuracy of RMSE = 4°C.

This research paper is focused on the engineering and
development of a low-cost, portable IoT weather stations for
MRT measurement. The study does not focus on a large-scale
scientific study of human exposure in outdoor spaces, but rather
the engineering and data science challenges of estimating MRT
with a combined hardware-software system.

2 BACKGROUND AND RELATED WORK

2.1 Mean Radiant Temperature Sensing
MRT is typically determined with integral radiation
measurements using the so-called 6-directional method
(Höppe, 1992). Three net radiometers are orthogonally setup
to measure the longwave and shortwave radiation in six
directions. The radiative fluxes are then summarized into a
temperature value using the Stefan-Boltzmann Law:
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MRT �
�����������������∑6

i�1Wi akKi + alLi( )
alσ

4

√
− 273.15 (1)

where Ki and Li are the directional shortwave and longwave
radiation fluxes, respectively; ak and al are absorption coefficients
for short- and long wave radiation fluxes, respectively; σ is the
Stefan-Boltzmann constant; and Wi are factors that weigh the
directional fluxes to match the cylindrical shape of the human
standing body (0.06 is used for sensors pointing up and down,
0.22 for lateral sensors). This method is limited by cost with three
net radiometers that cost $5k each.

A more affordable but less accurate method to estimate MRT is
using a black globe thermometer. Globe thermometers such as the
Kestrel Heat Stress meter ($500) have been used to quantify the heat
load of pedestrians, athletes, and outdoor workers in various studies
(Johansson et al., 2014). Thorsson et al. (2006) developed a low-cost
globe thermometer using a thermocouple in a gray ping pong ball
(< $100). The acrylic gray color of the globe almost matches the
average albedo of the combination of the human skin and clothing to
reliably estimate MRT (Olesen et al., 1989; Thorsson et al., 2006).
Albedo variations based on clothing and skin color are large between
people and cannot simply be represented by one color alone, hence
this gray globe can provide an accurate estimate for the average
combined albedo which can be used as a reference.

Various convection coefficients have been developed for globe
thermometers to improve MRT estimations from globe
temperature (Oliveira et al., 2019; Manavvi and Rajasekar,
2020; Acero et al., 2021; Alfano et al., 2021). Those coefficients
are usually derived under specific outdoor conditions and cannot
be generalized easily. Here, we will use an empirical model for
acrylic gray globe temperature Tg developed by Vanos et al.
(2021) in Phoenix, AZ based on air temperature Ta, wind
speed Va, globe thermometer diameter D = 38mm, and
emissivity ϵ = 0.97 of the globe:

MRT � 1.6Tg − 0.339Ta − 8.69 + 273.15( )4+{
0.24 + 2.08Va

0.5 + 1.14Va
0.667( )

1.6Tg − 0.339Ta − 8.69 − Ta( )108)}1/4 − 273.15

(2)

2.2 MRT Modeling
Due to limited sensing resources, MRT measurements across space
and time are usually sparse. To address this gap, microclimate and
radiationmodels calculateMRT using information on the built form
and meteorological data. For example, RayMan (Matzarakis et al.,
2010) is a point-based, single location model that requires
hemispherical fisheye photos as input and calculates MRT based
on the horizon limitation and standard weather information. ENVI-
met (Bruse and Fleer, 1998) is a 3D gridded computational fluid
dynamics (CFD)model in urban climates studies to assess heat at the
neighborhood level. ENVI-met and RayMan calculate MRT based
on Sun position to calculate the direct solar radiation and other
radiative fluxes. However, Crank et al. (2020) found that both
models do not perform well in extreme heat cases and struggle
with complex urban forms. Acero and Herranz-Pascual (2015) also
report deviations in MRT simulations from globe thermometer
readings, especially under clear sky conditions, and Krüger et al.

(2014) found that all approaches discussed above (ENVI-met,
RayMan, and globe thermometer observations) overestimate
MRT when compared to ISO calculations. Currently, no model
can accurately estimate MRT in the absence of detailed urban form
parameters.

2.3 Pedestrian Counting
Much research has been developed for pedestrian counting and
crowd estimation. Sensor-based techniques (Zappi et al., 2010;
Wahl et al., 2012; Raykov et al., 2016; Lau et al., 2018) use passive
infrared (PIR) and proximity sensors to monitor moving
pedestrians. Although these setups are compact and low-cost,
they have a low accuracy and misclassify often, and work best
only under certain environmental conditions. Alternatively,
network-based techniques (Kjærgaard et al., 2012; Weppner
and Lukowicz, 2013; Depatla et al., 2015) use Bluetooth and
WiFi networks for crowd sensing.

Recently, machine learning techniques low-level image feature
extraction methods (Chen et al., 2013, 2012), such as Haar
cascade (Viola and Jones, 2001) and HOG (Histogram of
Oriented Gradient) (Dalal and Triggs, 2005; Yao et al., 2020)
combined with regression models like SVM (Support Vector
Machine) (Yao et al., 2020) or detectors like AdaBoost (Viola
and Snow, 2003). State-of-the-art methods leverage deep
convolutional neural networks for crowd estimation using
individual detection (Wu and Nevatia, 2005; Brostow and
Cipolla, 2006; Wang and Wang, 2011; Stewart et al., 2016; Liu
et al., 2019) and using perspective maps (Chan et al., 2008;
Lempitsky and Zisserman, 2010; Zhang et al., 2015).

Further, there are works revolving around analysis of crowd
behaviour in urban areas (Hoogendoorn and Bovy, 2004;
Hashimoto et al., 2016; Lee, 2020) and their relation with
thermal comfort (Arens and Bosselmann, 1989; Givoni et al.,
2003; Eliasson et al., 2007; Eom and Nishihori, 2021). We do not
aim to outperform any existing pedestrian counting techniques,
but to combine them with a weather station as a single setup.

2.4 Research Gaps
In summary, thermal exposuremeasurements in tandemwith public
space use assessments are crucial for active shade management in
cities, but accurate MRT measurement setups are expensive and
bulky. Low-cost systems such as gray globe thermometers have been
developed but are not connected to the cloud for easy data storage
and analysis. In addition, such low-cost sensors can suffer from over-
and under-estimation ofMRT at various times of the day as noted in
previous literature. None of the existingMRT sensing platforms have
vision capabilities, and space use is often assessed through time-
consuming manual observations. Finally, physics-based MRT
models require detailed 3D data of the urban environment to
model radiation flux densities and sun-exposure. Our MaRTiny
system aims to address all these gaps.

3 SYSTEM OVERVIEW

The MaRTiny system is a compact, Internet-of-Things (IoT),
low-cost sensing and vision/recording/surveying platform (see
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Figure 1). Its primary functionality is to measureMRT for a given
sun-exposed location using off-the-shelf meteorological sensors
and a custom-made globe thermometer. MaRTiny measures air
temperature, relative humidity, wind speed, and globe
temperature, which are used to calculate MRT (see Eq. (2)).
In addition, MaRTiny is outfitted with a camera to detect and
count people in the shade and Sun. This data helps analyze
pedestrian behavior in public spaces (e.g. identifying the number
of people who utilize shade, umbrella, bicycles and transportation
etc). Privacy is preserved by only storing quantitative metrics (e.g.
pedestrian count) and discarding the captured images after
analysis.

The entire system transmits data to a cloud database via WiFi.
It is powered by a single power source of 20 W which is split
among different components according to their power ratings.
MaRTiny was built under $200 using different micro-controllers
and AI edge devices. MaRTiny is envisioned to be a useful
scientific platform to capture MRT data and correlate it with
pedestrian behavior in outdoor settings at a fraction of the size/
cost of existing solutions. No active human labor is needed for
data collection which helps save funds, time, and heat exposure
for researchers.

3.1 MaRTiny Weather Station
MaRTiny has four types of sensors to collect meteorological data
every minute—multiple temperature probes/thermometers, UV
sensor, humidity sensor, and anemometer (wind speed sensor)
(see Figure 2 and Table 1 and Table 2 for details). Two
temperature probes are utilized for globe and air temperature
respectively. Globe temperature is measured using a gray ping-
pong ball attached on top of its probe. The globe’s gray color
almost matches the albedo of the human skin. The globe
thermometer and the derived MRT emulate the
omnidirectional thermal exposure for a human body as a

function of radiation, air temperature, and velocity, and thus
are an accurate low-cost solution to net radiometers (Thorsson
et al., 2006). Air temperature is measured using a downward
hanging white cup that shades the attached temperature probe.
The white cup reflects most of the solar radiation instead of
absorbing it to provide an air temperature “free” from the
influence of solar radiations. The UV sensor is used to
measure the UV intensity and train the machine learning
model to estimate MRT based on all measured parameters.
MaRTiny is powered by a DC adapter of 5V/4A, which is
shared by both systems (weather station and vision system).
The anemometer is supplied with 9 V power by stepping up
the primary voltage source. This setup can be easily scaled with
more sensors without compromising on space and power. In
practice, low-cost sensors are subject to noise and variation,
which can yield errors in MRT estimation using Eq. (2) as we
show later in Section 5. To solve this problem, we introduce a
machine learning model to robustly estimate MRT despite these
inaccuracies.

3.2 MaRTiny Vision
Along with meteorological parameters, MaRTiny requires vision
capabilities including object detection and identification as well as
shade detection in outdoor areas. We leverage the NVIDIA Jetson
Nano, a low-cost and low-powered edge device to run state-of-
the-art deep learning models. The Jetson Nano features an ARM-
based micro-processor built with a Nvidia V100 GPU
programmed through Nvidia’s low level API TensorRT engine.
It has configurable power consumption modes of 5W and 10W.
As we perform computationally heavy tasks, we have configured
the Jetson Nano to 10W mode. To capture video, we utilize a
compact MIPI (Mobile Industry Processor Interface) camera and
stream the data to the Jetson Nano using a gstreamer pipeline.
Vision data is sent to AWS via an external USBWiFi on-board. In

FIGURE 1 | Top view of MaRTiny setup. Jetson Nano is attached with cooling Fan along with camera and WiFi module. Arduino boards are connected to different
meteorological sensors.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8662404

Kulkarni et al. MaRTiny

184

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


the next section, we describe in detail our deep learning networks
to detect pedestrians in shade.

3.3 Data Logging and Communication
To read meteorological sensor data, we use an Arduino Uno
microcontroller. The Uno board communicates with a
NodeMCU micro-controller featuring an ESP8266 architecture
that has an inbuilt WiFi module, flash memory, and supports the
PEM (Privacy Enhanced Mail) file system (see Figure 2). Sensor
data are continuously read in a loop by the Uno with a small 1 ms
delay to avoid overheating. Data are collected in a buffer, and an
average is calculated for every minute, which is then transmitted
to the NodeMCU board. The Uno acquires around 80 readings
per minute. Both boards communicate via the serial
communication protocol UART (universal Asynchronus
Receiver/Transmitter).

The NodeMCU communicates securely with the online database.
We utilize AWS DynamoDB, a NoSQL flexible database that can
handle unstructured data. All the necessary security PEM files are
stored in the NodeMCU’s flash memory for authentication of
MaRTiny. Using these files, NodeMCU establishes a
communication path with AWS through the MQTT protocol, an
extremely lightweight publish/subscribe messaging protocol

designed for IoT. Once the communication is established, Node
MCU waits for bytes of data to be received from the Uno board.
Sensor data collected by Uno is sent to NodeMCU via serial
communication every minute, which is then transmitted to
DynamoDB using the MQTT protocol.

4 MACHINE LEARNING ALGORITHM
DEVELOPMENT
4.1 Machine Learning for Accurate MRT
Estimation
As MaRTiny is a low-cost, compact alternative to the MaRTy
sensing platform (Middel and Krayenhoff, 2019; Middel et al.,
2020, 2021), the replacement of highly accurate sensors has
drawbacks including less accuracy and sensor lag (Häb et al.,
2015). We noticed these inaccuracies caused serious errors in the
calculated MRT values (Figure 7). In particular, MRT was
sensitive to the positioning and orientation of the MaRTiny
relative to MaRTy (e.g the MaRTiny was shaded in one of the

FIGURE 2 | Block Diagram of the MaRTiny setup along with communication protocols. Five sensors are configured to Arduino Uno and the collected data is
transmitted to NodeMCU using Serial Communication which is further sent to AWS database using MQTT Protocol.

TABLE 1 | List of meteorological parameters measured by MaRTiny.

Meteorological parameters

Parameter Description Unit

Ta Temperature of the surrounding air °C
Tg Temperature in the gray globe °C
UV Medium and long wave UV radiation mW/cm2

RH Relative Humidity %
WS Wind speed m/s

TABLE 2 | List of electrical MaRTiny parts, costs, and meteorological sensor
accuracies.

Part List

Sensor Part no Cost ($) Accuracy

Temperature Probe DS18B20 9 ±0.5 °C from -10 °C to +85 °C
Humidity Sensor DHT22 5 2–5% from 0 to 100%
UV Sensor ML8511 5 1%
Anemometer Adafruit 40 worst case 1 m/s
Arduino Uno 20
Node MCU ESP8266 7
CSI Camera IMX219 20
Nvidia Jetson Jetson Nano 108
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test, which resulted in lower MRT values, while MaRTy’s net
radiometers were partially sun-exposed).

To overcome this limitation, we formulate MRT estimation as
a supervised learning problem. This requires labeled ground-
truth MRT values to be provided in correspondence with our less
robust meteorological sensor data. In Section 5, we discuss data
collection consisting of paired MaRTy and MaRTiny
measurements to create this labeled data. This allows us to
train a machine learning model to estimate MRT accurately
from MaRTiny sensor data. We explored both traditional
machine learning methods using a support vector machine
(SVM) as well as a deep learning-based artifical neural
network. These two algorithms are versatile and well-known
in machine learning as they satisfy universal approximation
theorems (Cybenko, 1989; Hammer and Gersmann, 2002). In
particular, we observed an SVMwith RBF (Radial Basis Function)
kernel achieved the highest accuracy on our evaluation dataset in
Section 5. This method is also computationally lightweight and
can be easily deployed on the Jetson Nano for performing
inference, i.e. the process of using a trained machine learning
algorithm to make a prediction.

4.2 People and Shade Detection
4.2.1 Shadow Detection
To perform shadow detection in an image, we use the deep
learning model Bi-directional Feature Pyramid with Recurrent
Attention Residual Modules (BDRAR) (Zhu et al., 2018),
visualized in the upper branch of Figure 3. BDRAR network
takes a single image as input and outputs a binary shadow map as
output in an end-to-end manner. First, it leverages a
convolutional neural network (CNN) to extract feature maps
at different spatial resolutions. It then employs two series of
recurrent attention residual modules to fully exploit global and

local context for these feature maps. The features captured by
shallow layers exploit shadow details in the local regions and the
features captured by deep layers understands the overall shadow
region of the image. Figure 4 provides an example of shadow
maps produced by the network.

4.2.2 Object Detection
For object detection, we utilize the state-of-the-art YOLOv3
network (AlexyAB, 2016) visualized in the lower branch of
Figure 3. The model is trained on 80 different classes of the
Microsoft COCO dataset. The YOLOv3 algorithm can be built
using two different frameworks - DarkNet and MobileNet
(Redmon et al., 2016). The MobileNet framework is
computationally light but has low accuracy, hence we decided
to use the Darknet framework. YOLOv3 has a mAP (mean
Average purpose) of around 57 (Redmon and Farhadi, 2018)
and has been proven to be efficient in crowd places (Hsu et al.,
2020). Since the YOLOv3-darknet model is large and
computationally expensive to run on the NVIDIA Jetson
Nano, we converted it into a simple neural graph using
Nvidia’s TensorRT. This allowed the model to run successfully
on the Nano with a application-sufficient frame-rate of 4fps.

4.2.3 Pedestrian in Shade Detection
An image is a 2D representation of the 3D world, so it is difficult
to determine the exact location of a pedestrian on the ground and
their distance from the camera. We introduce a simple approach
to identify pedestrians in shade without determining their
position in 3D space. First, a binary shadow map from
BDRAR indicating the presence of shade per pixel is
computed periodically (in our case, every 15 min as shade
does not vary significantly). For every MIPI camera frame,
YOLOv3 outputs objects with their bounding boxes consisting

FIGURE 3 | System Overview of the MaRTiny Vision using different types of Neural Networks. The top network represents BDRAR network, responsible for shade
detection and the bottom network represents Yolov3. Shade map and bounding box of pedestrian is fed into the pedestrian algorithm to check number of people in
shade and sun.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8662406

Kulkarni et al. MaRTiny

186

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


of pixel coordinates for the corners. Our algorithm calculates the
IOU (Intersection over Union) of the bounding box with the
shade map. We consider a person to be in shade if 40% of the
bounding box region is inside the shade map (i.e. IOU = 0.4).

Calculating IOU without considering the pedestrian’s
position with respect to shade can lead to errors. For
example, in Figure 5, one person is sun-exposed and the
other person is in the shade. The IOU of the bounding box
with the shadow map equals 60% in the first case and 40% in
the second case. The IOU for the first case is high due to
background shade and shadow cast by the person’s body. This
is the most common type of error that occurs at different
orientations of a person; therefore, it is necessary to
distinguish between shade from a person and shade from
the surroundings. Our algorithm first checks if the
bounding box edge is in the shade. A person does not have
to be completely in shade to feel the cooling effect, hence we
consider only the bottom half i.e. 50% of the bounding box as a
ROI (Region of Interest). We then calculate the IOU between
this region and the shadow map. An IOU of 80% (which
implies an IOU of 40% of the complete bounding box) is
considered as the optimum value for a person to experience the
cooling effects of shade. The ROI and IOU can change based
on the environment and application. Pedestrian count under
Sun and shade along with other relevant counts (umbrellas,
pets, and bicycles) are reported to the online database, and the
frame with identifying features is discarded. This allows our
device to preserve the privacy of the individuals being observed
which is necessary for public deployment.

5 SYSTEM EVALUATION

5.1 Data Collection
For evaluation, we collected a custom dataset of ground truth
MRT values for two sun-exposed outdoor locations for 3 days in

Tempe, Arizona, United States. For validation purposes, the
MaRTy human-biometeorological platform (Middel and
Krayenhoff, 2019) was paired with the MaRTiny system for
simultaneous data logging. Figure 6 illustrates the paired
setup, the top box corresponding to MaRTiny and the bottom
setup corresponds to MaRTy. We can clearly see the difference in
scale between both the setups. In addition, an image dataset was
collected for evaluating object and shade detection. Images from
the MIPI camera were stored at random intervals along with the
bounding boxes of the interested objects. Ground truth bounding
boxes were drawn manually using tools such as AlexyAB, (2016);
Tosmonav, (2020) for 30 images consisting of around 50 different
objects. Precision and Recall for each object were calculated and
then used to calculate mAP (mean Average Precision). The same
images were used to evaluate shade detection using IOU
(Intersection Over Union) metrics. Small video snippets were
stored at random intervals which helped to cross-verify the
number of people in a given time frame. All the images and
videos were stored in an AWS S3 bucket and were deleted after
testing.

5.2 MRT Estimation
We first evaluated the performance of MaRTiny in estimating
MRT values. We utilize Eq. 2 with the sensor data on-board to
calculate MRT. MaRTy logs data every 2 s, and MaRTiny stores
data every minute, hence we calculated 1-min averages for
comparison. Ground truth MRT was calculated using Eq. 1.
Figure 7 shows MaRTiny MRT results in green and MaRTy’s
ground truth calculation in red. A significant error in MaRTiny’s
estimation of MRT was found in the mornings with an MSE of
around 10°C. The error is due to the spatial offset between the two
devices, which caused the gray globe thermometer of the
MaRTiny sensor to be partially shaded by a nearby palm tree
in the mornings while MaRTy’s net radiometers were sun-
exposed. A palm tree has a narrow shadow pattern covering
only portions of the whole MaRTy and MaRTiny setup (see

FIGURE 4 | Examples of shadow maps produced by BDRAR network. Note how the network works well for dark pixels without mistaking them for shade effect.
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Figure 6). For a detailed discussion of limitations, please see
section 6 (Discussion and Limitations).

To overcome these issues, we utilized our supervised
learning approach using both SVM and ANN. Machine
learning models were trained on selected meteorological
parameters - air temperature, globe temperature, humidity
and UV intensity, which were comparatively more accurate
and less prone to noise. We used around 12,000 data points for
training and 3,000 for testing from a range of dates, times, and
locations in the sensing period. These training points were fed
as vectors into the scikit-learn package in Python for training
SVMs and ANNs. 5-fold cross-validation was used to tune
model hyperparameters such as learning rate. A separate
dataset for evaluation consisted of around 700 data points
from a single location collected in a day as is the usual
application for this algorithm.

Since there is a non-linear relation of globe temperature and
air temperature with MRT given in Eq. 2, machine learning
models need to understand complex non-linear relations between
these parameters. A SVM with RBF kernel and a neural network
with ReLU (Rectified Linear Unit) activation function are
example of such models. In Table 3, we present a comparison
of SVMs with three different kernels and a traditional artificial
neural network (ANN). We report the Root Mean Square Error
(RMSE) for both the testing and evaluation datasets. Note that the
results of linear and polynomial SVM kernels justify our earlier
assumption and the results of SVM with RBF kernel as well as the
ANN achieved the best performance in quantitative metrics.
From Figure 8 we can see the performance of SVM with RBF
kernel, which is almost linear with the ground truth.

We trained our ANN on a i7 CPU. We set our learning rate α
to 0.001, which took around 5 min and 300 epochs to converge.

FIGURE 5 | Images of a person with bounding box and shadowmap of the surrounding. Using our algorithm, we can detect that the person in the first image is sun-
exposed and the person in the second scenario is in shade.
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FIGURE 7 | Part I: Performance of MaRTiny weather station along with trained ML model tested between 05-21-2021 to 05-23-2021 in Tempe, Arizona.
Comparison of calculated MRT values with SVM model. Note the dips in the calculation due to the shading effects of the environment experienced by the MaRTiny
system, which is corrected by the SVM Model.

FIGURE 6 | MaRTy and MaRTiny setup. The top white box corresponds to MaRTiny and the entire bottom setup corresponds to MaRTy.
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Although this model performs slightly better on the test dataset
than the SVM-RBF model, performance is identical on the
evaluation dataset. The SVM model is also computationally
lighter and can be easily trained and deployed on edge devices
such as Jetson Nano.

5.3 Shade and Object Detection
For object detection, we leverage the YOLOv3 architecture
(Redmon and Farhadi, 2018). While not a state-of-the-art
object detector, this model is computationally lightweight in
comparison to more modern object detection models. Further,

the object detector needed to be compatible with both the
TensorRT engine which we utilize on the NVIDIA Jetson
board as well as the Python dependencies and packages
necessary to run BDRAR as well as itself. Future research
could investigate the optimal choice of object detector with
shade detection (or a joint-model) for enhanced application
performance. Although the model is out-of-box, we wanted to
evaluate its performance in the environment suitable for the
MaRTiny device and hence, we collected a small custom dataset
and evaluated performance on these images. This evaluation on
custom dataset should only be considered as a secondary
evaluation while we still refer the reader to the main
evaluation mentioned in the original study (Redmon and
Farhadi, 2018) for the full performance of the object detector.

The standard evaluationmetric used for any object detection is
mAP (mean Average Precision). Bounding boxes were manually
drawn using the tool for the dataset consisting of 30 images and
IOU was calculated with the bounding boxes predicted by our
model. Precision and recall is calculated for a series of different
IOU thresholds ranging from 0.5 to 0.95. A precision-recall graph
is constructed and the area under this graph provides us the mAP
value of around 55%, which is close to the value reported in their
study (Redmon and Farhadi, 2018). For our application IOU
threshold of 0.5 gives us the optimal results. We also achieved an
Average Precision of more than 85% for the class of Pedestrian,
which is important for our application (Figure 9).

Evaluation of shadow detection is done on a per pixel basis,
which is a binary evaluation method. A dataset consisting of
30 shade images was collected from different location and
time. We manually annotated these images using the tool
Tosmonav, (2020). We use the pre-trained BDRAR model to
evaluate these images and calculated IOU of the shadow map
with the ground truth and found a precision of 90%. This is
not the most effective method to calculate model accuracy
due to the irregular shapes, human error in annotation and
small dataset and hence we also refer readers to the evaluation
metrics of the original paper (Zhu et al., 2018). We evaluate
our pedestrian in shade detection algorithm on a custom
dataset of 50 images collected using MaRTiny. We have
manually compared the detected values from our

FIGURE 9 | The graph shows the performance of object detection on
different classes of images collected during evaluation.

FIGURE 8 | Part II: Performance of MaRTiny weather station along with
trained ML model tested between 05-21-2021 to 05-23-2021 in Tempe,
Arizona. Performance of SVM Model on test dataset, which is almost linear
with ground truth.

TABLE 3 | Performance of different supervised machine learning models for MRT
estimation.

Machine Learning Algorithms for MRT

Algorithm RMS-Test RMS-Eval

SVM-Linear 16.8 20.2
SVM-Poly 12.0 10.0
SVM-RBF 4.6 3.9
ANN 3.2 3.8
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algorithm with the ground truth and plotted a confusion
matrix to obtain an accuracy of around 80%. Test data
consisted of different shading effects and relative positions
of pedestrian. Since this kind of testing has not been carried
out before, our result can act as a baseline for future tests. The
accuracy can be improved on edge cases where pedestrian is
partially exposed to Sun at different orientations. Figure 10
and Figure 11 provides examples of MaRTiny Vision where
YOLOv3 detects different objects and works along with
BDRAR to determine if a pedestrian is in shade or sun.

6 DISCUSSION AND LIMITATIONS

This systems engineering study introduced a novel low-cost
device that combines meteorological sensing with computer
vision to estimate MRT and space use. While previous work
has mainly focused on assessing the accuracy and precision of
various sensors and on advancing MRT simulation tools, our
contribution focuses on developing a low-cost hardware and
software setup that can be used by non-experts such as city
staff and citizen scientists. We also explored the use of state-of-

FIGURE 11 | Sample images of Shade Detection and Pedestrian Counting. The top two rows are example of shade map estimation carried at different time and
environments (Trees, Buildings, Empty Spaces) and last row has sample images captured by MaRTiny for Object Detection (Pedestrian and Bike).

FIGURE 10 | Example of Pedestrian detection along with masks using Yolov3 algorithm (left) andMaRTiny performing pedestrian detection in shade and sun (right).
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the-art machine learning techniques to improve MRT estimation
from low-cost sensors.

This article introduces the setup of the novel MaRTiny system
to monitor biometeorological conditions and people’s use of
public spaces with changing weather conditions. An empirical
study must follow to collect robust data over a long period of time
to systematically analyze the relationship between thermal
conditions and space usage. In addition, the MaRTiny
biometeorological setup must be fully calibrated against NIST
certified sensors before deployment, as it is built using off-the-
shelf sensors with low accuracy (see Table 2).

While an RMSE of 10 °C between 6-directional MRT
observations and globe temperature derived MRT may seem
large, it is on the order of magnitude of errors reported by
other authors and quite common for outdoor MRT
measurements in heterogeneous built environments. Acero
et al. (2021) found an RMSE of 7.4 °C for the standard
ISO7726 coefficient between the 6-directional setup and a
standard black globe. Vanos et al. (2021) found an average
difference of -1.6 ± 7.2 °C between an acrylic gray globe and
integral radiation measurements on a solar roof that was not
subject to shading from the surrounding built environment. Most
recently, Lee et al. (2022) reported a large mean difference of
13.2–21.6°C on sunny days between globe thermometer MRT and
traditional MRT measurements.

Globe thermometers have various shortcomings, mostly
related to the indirect measurement of incident radiative
fluxes, which is highly sensitive to globe size, shape, material
properties/assumptions, color, and wind speed (Vanos et al.,
2021). Guo et al. (2018) and Chen et al. (2014) found
significant impacts of wind speed on MRT obtained from
globe thermometers, and Teitelbaum et al. (2020) point to
errors from free convection. Globe thermometers also have a
long response time (Nikolopoulou et al., 1999) that grows with
globe diameter. MaRTinies are operated in stationary settings,
which reduces the error, but they will not be able to respond
quickly to changing cloud conditions. Lastly, globe thermometers
are known to overestimate MRT during high incoming solar
radiation periods and an underestimate at low solar elevation
(Thorsson et al., 2006; Acero and Herranz-Pascual, 2015; Vanos
et al., 2021).

The presented machine learning model is a proof-of-concept
and is not a reliable MRT predictor in its current state. Our work
demonstrates the potential of SVM models for MRT estimation
but requires future data collection with identical
micrometeorological conditions for all sensors, ideally for a
full year, to build a robust model. The RMSE we calculated for
our two testing days is high due to a palm tree that shaded the
globe thermometer during the morning hours. RMSE is < 4°C
when the morning hours are discarded. We included those hours
in our proof-of-concept to illustrate that a SVM model can
overcome errors that are introduced by sensor setup. However,
for a robust SVM model that can be used in a scientific study, all
sensors should be subject to the same micrometeorological
(shading) conditions.

With respect to the vision system, the BDRAR network
exhibits minor inaccuracies in the shadow map estimation and

Yolov3. Although it performs well when detecting pedestrians in
crowds, it struggles when an individual person occludes another
person in the video feed. The shade detection works well but can
misclassify a person as shaded or sun-exposed when intersecting
the position of a person with the shadow mask, because the
algorithm does not take into account the 3-dimensional nature of
the shade and person in the scene.

7 CONCLUSION

Advancements in sensor technology have led to smaller, more
portable, and more affordable sensors that facilitate low-cost
sensing for many applications. In the domain of urban
climate, low-cost sensing has gained popularity for
crowdsourcing and citizen science studies, but is also
increasingly used to build IoT sensor networks, for example,
to monitor air pollution (Xiaojun et al., 2015) or thermal
conditions in occupational settings (Sulzer et al., 2022).

MaRTiny leverages edge devices that are low-cost, low-
powered, and yet computationally capable of running state-of-
the-art machine learning algorithms. Integrating a vision system
and people detection into the biometeorological sensing system
enables in-depth analyses of how weather and microclimate
conditions impact people’s walking behavior in public spaces,
including the use of shaded and sun-exposed areas. Once
calibrated, the system will be deployed in City of Tempe parks
and at playgrounds to inform municipal decision-making on
targeted investments for cooling infrastructure in public spaces.
The MaRTiny system is an example of how the emerging field of
Urban Climate Informatics can support heat mitigation efforts
through non-traditional observational methodologies.
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In urban climate studies, datasets used to describe urban characteristics have traditionally
taken a class-based approach, whereby urban areas are classified into a limited number of
typologies with a resulting loss of fidelity. New datasets are becoming increasingly available
that describe the three-dimensional structure of cities at sub-metre micro-scale
resolutions, resolving individual buildings and trees across entire continents. These
datasets can be used to accurately determine local characteristics without relying on
classes, but their direct use in numerical weather and climatemodelling has been limited by
their availability, and because they require processing to conform to the required inputs of
climate models. Here, we process building-resolving datasets across large geographical
extents to derive city-descriptive parameters suitable as common model inputs at
resolutions more appropriate for local or meso-scale modelling. These parameter
values are then compared with the ranges obtained through the class-based Local
Climate Zone framework. Results are presented for two case studies, Sydney and
Melbourne, Australia, as open access data tables for integration into urban climate
models, as well as codes for processing high-resolution and three-dimensional urban
datasets. We also provide an open access 300m resolution building morphology and
surface cover dataset for the Sydney metropolitan region (approximately 5,000 square
kilometres). The use of building resolving data to derive model inputs at the grid scale better
captures the distinct heterogenetic characteristics of urban form and fabric compared with
class-based approaches, leading to a more accurate representation of cities in climate
models. As consistent building-resolving datasets become available over larger
geographical extents, we expect bottom-up approaches to replace top-down class-
based frameworks.

Keywords: urban, climate, model, spatial, data, open, morphology

1 INTRODUCTION

A transformation is underway in how urban form and fabric are described for urban climate
modelling and observation studies. For the last 50 years, datasets used in urban environment or
climate studies have typically described urban areas using types or classes in a “top-down” approach,
whereby regions of a city, and sometimes surrounds, are classified based on a limited number of
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urban surface and land-use characteristics (e.g., Masson et al.,
2003; Jackson et al., 2010; Stewart and Oke, 2012; Demuzere et al.,
2020). In more recent years, very high resolution (sub-metre)
urban datasets have become increasingly available that resolve the
characteristics of individual buildings and trees over entire cities,
regions and continents (PSMA Australia, 2020; Biljecki et al.,
2021; Sirko et al., 2021).

These new building-resolving datasets are transforming the
way cities can be represented in urban climate models, as spatial
dataset parameters are no longer tied to a class type but can be
defined for each model grid at any resolution from the “bottom-
up” (Figure 1). Where available, these new datasets can be used to
produce direct inputs for climate modelling studies at the grid
level, or to inform locally appropriate parameter choices in
traditional class approaches. The transition to a bottom-up
approach, however, is ongoing as many regions do not have
access to this urban element-resolving data, and many urban
climate models are designed to rely on a class approach when
defining urban area characteristics (Masson et al., 2020).

Enhanced accuracy in the representation of urban areas in
climate modelling is vital. Cities experience the dual burden of
global warming from increased greenhouse gas emissions, and
localised warming due to urbanization. This urban heat differs
not only from the non-urbanised surrounds but also spatially
within a city due to differences in urban density and surfaces. To
fully understand the interaction between climates of cities and
assess the role of both current and future urbanization in urban
climate challenges, it is important for this intra-urban variability
to be captured when modelling a city’s climate (Martilli et al.,
2020; Potgieter et al., 2021).

Accurate representation of urban areas requires description of
four categories of features in both the urbanized areas and
surrounds: a) form (urban and vegetated morphology), fabric
(materials and surface cover), function (land use and
anthropogenic effects), and regional geographic factors
(topography and distance from water). Due to computational
costs, however, mesoscale models are unable to resolve all urban
features while modelling atmospheric processes spanning the
entire region. Instead, urban canopy models are defined that
assume simplified building geometry in a “building-averaged”

approach. The most common geometrical assumptions used in
urban models are bulk (1-dimensional), canyon (2-dimensional)
or block array (3-dimensional) (Nazarian, 2022). Different
modelling assumptions then require different types of
morphological and surface cover inputs (outlined in Table 1),
further distinguished by the representation of sub-models for
vegetation impact and/or thermal comfort characteristics within
the street canopy. Accurate urban descriptions are of even greater
importance with local and micro-scaled modelling (at sub 10 m
resolutions) and in three dimensions, with models such as PALM
(Fröhlich and Matzarakis, 2020), ENVI-met (Bruse, 1999),
VTUF-3D (Nice et al., 2018), and SOLWEIG/UMEP
(Lindberg et al., 2018), as the improved model input can result
in more realistic output.

Historically, urban areas have been captured in models via
land use classification. This is often done by just one urban
land type, where different urban regions are represented with a
constant set of parameters. Single class approaches have been
used in both global models (if urban areas are represented) (Li
et al., 2016; Katzfey et al., 2020) and in mesoscale models
(Argüeso et al., 2014). Moving beyond one urban land-use
class, cities in global or mesoscale models have also been
classified on levels of urban density (Ma et al., 2018; Oleson
and Feddema, 2020) or by dividing urban areas into different
categories such as residential, commercial, and industrial
(Chen et al., 2016). These methods provide information on
urban form and/or function but fidelity is limited by the
number of defined classes.

In a key development, Stewart and Oke (2012) proposed Local
Climate Zones (LCZ). LCZs classify city form, fabric, and
function into 10 urban classes, and non-urban land cover
types into seven classes. The primary motivation for
developing LCZs was to improve the description of sites in
observational studies in a move away from the historical
urban-rural differentiation when investigating urban heat. The
classification has been widely used to determine appropriate
urban and rural sites for traditional urban heat island intensity
calculations (Siu and Hart, 2013) and to explore variability in
intra-urban air temperatures in observation studies (Núñez-Peiró
et al., 2021; Potgieter et al., 2021).

FIGURE 1 | Schematic of the transformation of city-descriptive data from top-down derived urban classifications (ranging from a single urban class to the ten urban
classes defined by the LCZ system, left to right) to gridded model input of parameters (right) over large geographical areas, that are derived bottom-up from building and
tree resolving datasets.

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 8663982

Lipson et al. A Transformation in City-Descriptive Input Data

197

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


LCZs have also become commonly used in urban climate
modelling, with LCZ classes being integrated into urban land
cover classification in mesoscale models (Brousse et al., 2016;
Zonato et al., 2020). World Urban Database and Access Portal
Tools (Ching et al., 2018), a community led initiative to collect
worldwide data on urban form, fabric and function, at its lowest
level of detail produces LCZ maps of cities and their surrounding
areas. The maps are produced via users classifying small
subsections of a city as training data, which are then used in
machine learning algorithms to classify the entire region of
interest. More recently, WUDAPT workflows have been
streamlined into open, online services (e.g., the LCZ
Generator; Demuzere et al., 2021).

A limitation of the LCZ approach in the context of numerical
modelling is that LCZ parameters are provided as a range of
values with substantial overlap between classes, while urban
canopy models typically accept explicitly defined values.
Common methods of dealing with these challenges include
using the midpoints of the LCZ range proposed in Stewart
and Oke (2012) for each LCZ used (Mughal et al., 2019), or
setting the parameters for LCZ ranges using additional datasets
that provide local knowledge (Hirsch et al., 2021).

These traditional top-down approaches, although useful for
widespread analyses where data may be lacking, have limitations
in that there is often a level of local knowledge or estimation
required when setting parameter values, and that outputs are not
likely to be consistent between different users and regions. New
urban datasets are emerging that directly characterize the 3D
urban form produced via methods such as LiDAR and aerial
photography observations. Among these high-resolution datasets
is the emergence of 3D building models that provide
comprehensive representation of built environments in cities
across large geographical extents (Biljecki et al., 2016; Biljecki
et al., 2021). These novel datasets allow a bottom-up assessment
of parameters required to accurately represent intra-urban
variability in urban form in climate models, and some have
been used to configure models at city-scales (e.g., Simón-
Moral et al., 2020). Potential datasets include very high-
resolution (~1 m) surface cover data, three-dimensional
building or tree data, as well as incidental and public domain
data that can be extracted from social media or the web,
contributing to a multi-disciplinary approach to urban climate
research, i.e., urban climate informatics (Middel et al., 2022).
Coverage of suitable bottom-up datasets, especially at a global

scale, remains a challenge. Global datasets of high-resolution
impervious surface maps (Zhang et al., 2020; Sun et al., 2022) or
urban dwellings (e.g., the Global Urban Footprint (GUF) (Esch
et al., 2012)) are becoming available but lack important
characteristics such as land cover types and feature heights.
The Copernicus Land Monitoring Service updates the
CORINE Land Cover dataset (Büttner, 2014) providing 27
land cover classes at 6-year intervals but only provides
coverage of Europe (39 countries). Some promising global
morphology datasets derived from satellite data have begun to
be reported (Esch et al., 2022), but as of writing are not yet
publicly available.

In this paper, we use high-resolution, element-resolving
datasets to 1) create maps which define actual urban form
through the different urban parameters necessary for urban
climate models, gridded to appropriate scales, without the
fidelity limitations of class approaches and 2) improve
traditional class-based approach parameter choices with local
data. We use the Australian cities of Sydney and Melbourne as
case studies and describe how to extract precise and localized
ranges of model parameters using the continental-scale Geoscape
datasets (PSMA Australia, 2020) of individual building geometry
with ~1 m accuracy (Geoscape Buildings v2.0, 2020), 2 m land
surface (Geoscape Surface Cover v1.6, 2020) and tree
characteristics (Geoscape Trees v1.6, 2020). These parameter
values are then compared with those calculated by the LCZ
method (Stewart and Oke, 2012) via a distribution assessment
and presented as data tables for integration into urban climate
models.

2 MATERIALS AND METHODS

This section details the city-descriptive data used and processed
in this analysis. Two data sources are considered: 1) Local Climate
Zone (LCZ) maps which represent a top-down approach for
characterizing urban neighbourhoods based on local urban form,
and 2) the Geoscape datasets that represent the bottom-up
method for detailing three-dimensional form at the level of
individual buildings and trees. While the LCZ maps are
defined and developed at local scales, building-resolving
datasets require reprocessing to resolutions suitable for
observation and modelling studies. The list of urban
parameters that are available through processing both data

TABLE 1 | City-descriptive parameters for various modelling purposes.

Model type Input parameters

Urban canopy models
Bulk (slab) model Built fraction, roughness length
Canyon model Plan area density (or building fraction), aspect (or height-to-width) ratio, mean building height, building height standard

deviation, displacement height, roughness length
Block array model Plan area density (or building fraction), wall area density, mean building height, building height standard deviation,

displacement height, roughness length
Sub-models
Vegetation model Tree fraction, low vegetation (grass/shrubs) fraction, bare earth fraction, water fraction, tree canopy height, roughness length
Thermal comfort model Sky view factor, roughness length, displacement height, roughness length

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 8663983

Lipson et al. A Transformation in City-Descriptive Input Data

198

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


sources are included in Table 2. These parameters cover a range
of inputs required by urban climate models pertaining to surface
cover, morphology, canopy attribute, and thermal attributes
(Table 1).

Sydney and Melbourne greater regions are selected for this
analysis as they represent the largest metropolitan areas in
Australia with a population of 5.4 and 5.1 million, respectively
(census data obtained by Australian Bureau of Statistics in
June 2020). The climate subtype of Sydney and Melbourne is
classified as temperate with warm summers and cool winters,
according to the modified Köppen-Geiger classification system
used by the Australian Bureau of Meteorology and based on a
standard 30-year climatology (1961–1990) (Bureau of
Meteorology, 2021).

2.1 Local Climate Zone Datasets
To provide a standardized landscape classification for both
Sydney and Melbourne, maps of local climate zones (LCZs) at
100 m resolution are obtained from the LCZ Generator tool
(Demuzere et al., 2021) as part of the WUDAPT initiative
(Bechtel et al., 2015; Ching et al., 2018). The LCZ Generator is
available as a web-based platform that enables the LCZ mapping
of global cities using freely available satellite imagery and
machine learning algorithms. The LCZ classification requires
valid training areas (obtained using local insight) as input
parameters and uses an automated cross-validation approach
(Bechtel et al., 2019) to provide an accuracy assessment.

The resulting LCZ maps of Sydney and Melbourne are shown
in Figures 2, 3, respectively (Conroy, 2021; Nazarian, 2022).
There were 13 LCZs identified in greater Sydney (8 built-up and
five natural classes) with three dominating built-up categories:
sparsely built, open low-rise, and compact low-rise (Figure 2A).
In greater Melbourne, 14 LCZs were classified (8 built-up and six
natural classes) with open low-rise and sparsely built areas
representing more than 80% of the built up LCZs (Figure 3-
left). The higher percentage of low plants in greater Melbourne
can be explained by the larger number of local farms in the area. A
higher percentage of compact low-rise neighbourhoods in Sydney
is observed in older inner-city suburbs that are often water-bound
and in the proximity of the central business district areas. Overall,
both cities only have a small percentage of compact LCZs
presented (19 and 6% of built-up LCZs for greater Sydney and
Melbourne, respectively) a consequence of the low-density
suburban sprawl which comprises most Australian cities.

2.2 Geoscape Derived Datasets
2.2.1 Land Cover Data
An independent high resolution dataset of two-dimensional land
cover (Geoscape Surface Cover v1.6, 2020) was used to define
surface cover fractions and enable comparison with the LCZ
approach. The Geoscape surface data consists of 10 surface type
categories at 2 m resolution, collected through remote sensing
between 2017 and 2019, with coverage of all Australian towns and
cities with populations greater than 200 persons. Coverage

TABLE 2 | List and symbols of urban parameters available through LCZ maps and our bottom-up method (BUM) using building and tree resolving datasets. The name of
each parameter in the final processed dataset is also shown.

Parameters used in urban climate modelling Symbol LCZ BUM Parameter name

Surface cover
attributes

Building fraction (or plan area density) λp Yes Yes building_fraction
Tree fraction λvt No Yes tree_fraction
Low vegetation fraction (grass, shrubs etc.) λvl No Yes lowveg_fraction
Water fraction λwa No Yes water_fraction
Bare earth fraction λbe No Yes bareearth_fraction
Impervious surface fraction excluding buildings, as defined in Stewart and Oke, (2012) λif Yes Yes roadpath_fraction
Total built fraction (including buildings, roads) λtb No Yes total_built
Total pervious fraction (including vegetation, water, bare earth) λtp Yes Yes total_pervious

Morphology attributes Frontal area density λf No Yes frontal_density
Wall area density λw No Yes wall_density
Building height (mean) (noted in Stewart and Oke, (2012) as “height of roughness elements” for
urban LCZ 1-10)

Havg Yes Yes building_height

Building height (maximum) Hmax No Yes building_height_max
Building height (standard deviation) Hstd No Yes building_height_std
Tree height (mean) (noted in Stewart and Oke, (2012) as “height of roughness elements” for
natural LCZ A-F)

HTavg Yes Yes tree_height

Tree height (standard deviation) HTstd No Yes tree_height_std
Terrain roughness class — Yes No —

Sky view factor ψ Yes Yes skyview_factor
Canyon aspect (or height-to-width) ratio h/w Yes Yes height_to_width
Roughness length Macdonald et al. (1998) z0,mac No Yes roughness_mac
Roughness length Kanda et al. (2013) z0,kan No Yes roughness_kanda
Displacement height Macdonald et al. (1998) zd,mac No Yes displacement_mac
Displacement height Kanda et al. (2013) zd,kan No Yes displacement_kanda

Thermal attributes Surface admittance μ Yes No —

Surface albedo α Yes No —

Anthropogenic heat output QF Yes No —
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outside of urban areas is also available at 30 m resolution across
the Australian continent (not used). Accuracy of land cover
classification is greater than 90% (Geoscape Surface Cover
v1.6, 2020). Using the 2 m urban data for two Australian
cities, Sydney and Melbourne, we resample the ten Geoscape
surface classes into six primary categories and two secondary
categories (Table 3) at 100 m resolution. Cloud and shadow
categories are not retained but are used to rescale other
fractions so that primary and secondary categories each sum
to 1 within grids.

2.2.2 Morphology Data
Three-dimensional morphology data are derived from the
datasets of buildings (Geoscape Buildings v2.0, 2020) and trees
(Geoscape Trees v1.6, 2020). The buildings data consist of
geolocated outlines of buildings within Australia with area
greater than 9 m2 (approximately 15 million buildings), along
with associated building metadata such as roof height. Trees data
are raster-based with canopy height at 2 m resolution. Buildings
and Trees datasets were collected through remote sensing
(predominantly between 2017 and 2019) and processed
through automated and manual processes using satellite-
derived Digital Surface Model (DSM) or Digital Elevation
Model (DEM) and aerial-derived stereo digitisation
information. Vertical accuracy is approximately 0.1 m for
aerial and 1 m for satellite derived building and tree heights.

Horizontal accuracy is approximately 0.2 m for aerial and 2.5 m
for satellite derived positioning (Geoscape Buildings v2.0, 2020;
Geoscape Trees v1.6, 2020).

With these datasets we derive a range of gridded
morphological statistics that are commonly used in urban
modelling and observational studies (source code available in
Supplementary Material). First, we calculate each building’s
external wall area by multiplying building perimeter with
building height (defined here as the average of building roof
and eave heights), and each building’s frontal area is calculated by
averaging the cross-sectional area of a building in two cardinal
directions. These building-specific parameters are then used to
calculate gridded statistics.

The gridded mean, maximum and standard deviations of
building height (Havg,Hmax, Hstd) are calculated, with
building footprint area used to weight Havg so that buildings
with larger plan area have greater influence on grid height
statistics. Wall area density (λw) is calculated by summing the
building wall area within a grid and divided by the grid plan area.
Frontal area density (λf) is calculated by summing building
frontal areas and dividing by grid plan area (Grimmond and
Oke, 1999).

For gridded values, the centroid of a building is used to assign
the grid in which the building parameters will be placed. Trees are
treated differently, as the underlying canopy height data are as
rasterised canopy height at 2 m resolution. Tree-related

FIGURE 2 | Local Climate Zone map of greater Sydney, Australia (B) obtained using local training areas and LCZ Generator tool (Demuzere et al., 2021) shown
together with the histogram distribution of LCZ classes across the area (A).
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parameters mean height (HTave) and standard deviation of
height (HTstd) are therefore derived from any part of a tree
which falls within a 100 m grid.

Some urban models, such as TARGET (Broadbent et al., 2019)
or UT&C (Meili et al., 2020), use inputs such as canyon aspect
ratio (h/w) or sky view factor (ψ) for configuration. Although
difficult to define for typical real-world urban areas (Masson et al.,
2020), these parameters can easily derived from established
parameters if the simplified geometric assumptions inherent in
many urban models are used. For example, for a repeating two-

dimensional street canyon geometry, canyon aspect ratio is
(Masson et al., 2020):

h/w � λw

2(1 − λp), (1)

where λp is the plan area density. Similarly, sky view factor can be
calculated as (Masson et al., 2020):

ψ �
���������
(h/w)2 + 1

√
− h/w. (2)

FIGURE 3 | Same as Figure 2 for greater Melbourne, Australia.

TABLE 3 | Surface cover categories for the original Geoscape data and the derived dataset.

Geoscape surface cover
classes

Derived dataset

Dataset primary classes Dataset secondary classes

Buildings Building_fraction Total_built
Road and Path Roadpath_fraction Total_built
Built-up Areas Roadpath_fraction Total_built
Trees Tree_fraction Total_pervious
Grass Lowveg_fraction Total_pervious
Unspecified Vegetation Lowveg_fraction Total_pervious
Bare Earth Bareearth_fraction Total_pervious
Water Water_fraction Total_pervious
Swimming Pool Water_fraction Total_pervious
Cloud (Used to rescale other fractions) (Used to rescale other fractions)
Shadow (Used to rescale other fractions) (Used to rescale other fractions)
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In this dataset h/w and ψ are calculated in this way, enabling
their use as inputs for urban models which use infinite canyon
geometry assumptions. For models relying on different geometric
assumptions,Havg, λp and λw should be used, as these parameters
relate directly to their real world analogues (Masson et al., 2020).

To calculate momentum fluxes and wind profiles, some
models require aerodynamic roughness lengths (z0) and/or
zero-plane displacement height (zd). Many practitioners have
derived empirical relations for these aerodynamic
characteristics based on morphological inputs (Grimmond
and Oke, 1999). Two methods commonly used in models
are Macdonald et al. (1998) and Kanda et al. (2013).
Calculations proposed by Macdonald et al. (indicated by
subscript mac) are derived from wind tunnel studies using a
matrix of bluff bodies with constant height and spacing. Kanda
et al. (indicated by subscript kan) incorporated data from
computational fluid dynamic simulations in domains with
more realistic city geometry, and accounts for building
height variability as well as average and maximum heights.

Using Macdonald et al. (1998), the zero-plane displacement
height zd,mac and roughness length z0,mac are

zd,mac � [1 + A−λp(λp − 1)]Havg (3)

z0,mac � [(1 − zd,mac

Havg
) exp[ − {0.5βCD

κ2
(1 − zd,mac

Havg
)λf}

−0.5
]

×]Havg

(4)
where A � 4.43, β � 1.0 (for staggered arrays), CD � 1.2 (drag
coefficient), κ � 0.4 (von Karman constant).

Using Kanda et al. (2013), the zero-plane displacement height
zd,kan and roughness length z0,kan are

zd,kan � [c0X2 + (a0λb0p − c0)X]Hmax, (5)
z0,kan � (b1Y2 + c1Y + a1)z0,mac, (6)

where a1 � 0.71, b1 � 20.21, c1 � −0.77, a0 � 1.29, b0 � 0.36,
c0 � −0.17, and

X � Hstd +Havg

Hmax
, 0≤X≤ 1.0, (7)

Y � λpHstd

Havg
, Y≥ 0. (8)

Macdonald and Kanda derivations of zd and z0 are derived for
each grid.

FIGURE 4 | A sample of Geoscape data at original building level as well as processed data at 30 m, 100 m, and 300 m resolutions for sky view factor (SVF). Other
variables shown in Supplementary Material.
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2.2.3 Processing and Resolution
We produce output at three resolutions (30, 100, and 300 m) to
obtain gridded maps of city-descriptive parameters listed in

Table 2. Figure 4 shows how different resolutions impact
calculations of gridded sky view factor from the high-
resolution building height data for a freely available sample

FIGURE 5 | Select derived parameters for the Sydney region at 300 m resolution. Equivalent for Melbourne in Supplementary Material.
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of the Sydney data (https://geoscape.com.au/get-sample/).
Figure 5 shows spatial maps of Sydney at 100 m resolution
for a selection of the derived parameters. Our source code for
producing outputs are included in Supplementary Material.
We also make openly available a 300 m resolution derived
dataset for the Greater Sydney region (Lipson et al., 2022), with
outputs available in NETCDF and TIFF formats.

Surface cover fractions are calculated by summing all 2 m
land cover categorical cells within each 30, 100 or 300 m grid,
and dividing by the total cell instances within the larger grid.
Gridded morphology characteristics are calculated by

averaging (or finding the maximum and minimum) values
for individual buildings where their footprint centroid falls
within a grid.

When processing Geoscape data, the grid resolution has a
critical impact on the calculated morphology parameters
(Figure 4). While higher resolution may be desirable for
some use cases (e.g., micro climate modelling), high
resolution may not be appropriate for parameters intended
to represent neighbourhood-scale characteristics. For
example, canyon height-to-width ratio (h/w) and sky view
factor (ψ) (Eqs 1, 2) have less coverage at the highest

FIGURE 6 | The range of building surface fraction or plan area density (λp) as suggested by Stewart and Oke (2012) per LCZ (yellow boxes), compared with the
range obtained from building-resolving surface data (Geoscape) for greater Sydney (A) and Melbourne (B). The coloured boxplots are obtained from Geoscape data at
100 m resolution and overlaid with individual datapoints found per LCZ in each region. The percentage of LCZ per region is noted on top of graph. White circles and
yellow lines show the mean value for Geoscape and LCZ categories, respectively.
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resolutions (30 m) because they are undefined where building
fraction covers the entire grid cell (Figure 4). Where a building
footprint falls across multiple grid cells, our algorithm places
the calculated parameters for building footprint and wall area
in the grid cell that holds the centroid of building. This
assumption makes it feasible to efficiently derive maps
across large geographical areas, but leads to greater errors
at higher resolution. This is because the morphology
characteristics of a large building are assigned to a single
grid cell, leading to underestimation or undefined
morphology parameters in adjacent grids at high resolutions.

One alternative method is to divide each building that falls
within multiple grids into smaller buildings with shared walls.
This solution, however, increases the computational cost by

more than 250 times in our small-scale tests, which meant it was
not feasible to implement across a large geographic area such as
Sydney. This solution also leads to overestimation of external
wall area properties and associated parameters such as λw, λf,
h/w and ψ, so was not further utilised in this study. Another
alternative is to use building footprints to define amorphous
polygons around each building block, then calculate average λf
for each polygon through a series of intersecting lines (Simón-
Moral et al., 2020). This method however does not overcome the
problems associated with dividing properties of larger blocks
into multiple grid cells except through computationally
expensive intersection methods.

The most appropriate output resolution will depend on the
use case and available computational resources. Stewart and

FIGURE 7 | Same as Fig.6 for pervious fraction (including vegetation and water cover).
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Oke (2012) define the intended scale of LCZs as spanning
hundreds of metres to several kilometres in horizontal scale.
For our comparison between Geoscape and LCZ outputs we
used 100 m resolution to align with the native resolution of
the LCZ generator output (Demuzere et al., 2021). Additional
plots of parameter/resolution sensitivity (as in Figure 4) and
for Melbourne outputs (as in Figure 5) are available in
Supplementary Material (Supplementary Figures S2–S5)
showing gridded building footprint fractions, pervious
fractions, mean building heights, and canyon aspect ratios
calculated from the high-resolution building footprint and
building height data.

2.2.4 Comparison of LCZ With Derived Morphology
Maps
Fine-grained data on urban form and fabric can inform numerical
climate models which rely on categorical urban classifications.
Through the WUDAPT project, several mesoscale climate
models—including Weather Research Forecasting (WRF)—are
now able to incorporate LCZ maps at 100–1,000m resolutions
(e.g., Brousse et al., 2016). Typically, the dominant LCZ type
within a model grid is used to determine model parameters. More
realistic inter-grid variability may be achieved by interpolating LCZ
parameter values from higher-resolution maps to the model grid
(Zonato et al., 2020). In either case, providing locally appropriate

FIGURE 8 | Same as Figure 6 for height of roughness element (geometric average of building heights (LCZs 1–10) and tree/plant heights (LCZs A–F)
corresponding to Stewart and Oke (2012). Note- roughness height for LCZ 1 compact high-rise is given in Stewart and Oke (2012) as >25 m.
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parameter values for each LCZ class has the potential to improve
model performance compared with using generic LCZ characteristics.

To find locally appropriate LCZ characteristics, the
coordinates of Geoscape-derived data are matched with
LCZ maps at 100 m resolution. The Geoscape dataset is
then grouped based on the corresponding grid’s LCZ
categorization. Results are shown with a boxplot
visualization, indicating mean and median values as well as
data frequency distribution in each LCZ. The recommended
parameter range and mean value for each LCZ class (Stewart
and Oke, 2012) is also shown. This comparison focuses on six
out of seven geometric and surface cover parameters defined
for LCZs, covering pervious and impervious surface fraction,
plan area density, sky view factor and height of roughness

elements. Terrain roughness class is not included as it is not
available through the Geoscape dataset.

3 RESULTS

Figures 6–10 compare the recommended parameter ranges
defined by Stewart and Oke (2012) for each LCZ class with
local values obtained from the Geoscape surface cover, building
and tree data for greater Sydney and Melbourne.

For plan area density (Figure 6), the recommended LCZ range
by Stewart and Oke (2012) shows reasonable agreement with the
bottom-up data, although local values for both Sydney and
Melbourne are generally lower. The difference is greatest in

FIGURE 9 | Same as Figure 6 for canopy aspect (heigh-to-width) ratio.
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compact mid-rise (LCZ2), compact low-rise (LCZ3), large low-
rise (LCZ8) and sparsely-built (LCZ9). The lower than
recommended plan area density is seen consistently in both
cities. This indicates that, although the WUDAPT instructions
to derive LCZ classes were followed (including training data
provided by local experts), differences with the original LCZ
definitions can occur. The significant number of outliers in
Figure 6 (and Figures 7–10) indicate the large variability of
morphology characteristics within an LCZ class, as well as
possible misclassification from the LCZ process.

Comparing the pervious fraction (Figure 7), the locally
derived values are higher than recommended LCZ ranges in
almost all built-up densities, except heavy industry. This
difference is seen in both cities. Overall, this indicates that
Australian cities have a higher percentage of vegetation and

water even in compact neighbourhoods compared with LCZ-
based definitions. Greater disparity occurs in categories for which
there are few identified cells within the domain, for example
LCZ1 (Compact high-rise) and LCZ4 (Open high-rise). For the
natural land covers, good agreement is seen between both
datasets.

Figure 8 compares the height of roughness elements in both
datasets, as defined by Stewart and Oke (2012) as the geometric
average of building heights in urban LCZ (LCZ 1-10) and tree/
plant height for natural LCZs (LCZ A-F). The mean roughness
height is significantly lower than the recommended range for the
high-rise LCZ categories (LCZ 1 and LCZ3), particularly in
Melbourne. This is likely because of different notions of what
comprises a compact or open high-rise neighbourhood in
Australian cities, and because compact and open high-rise

FIGURE 10 | Same as Figure 6 for sky view factor.
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TABLE 4 | City-descriptive parameters for Melbourne and Sydney for built-up local climate zones (LCZ 1-10). Mean values are calculated with gridded morphology and surface cover obtained from building-resolving 3D
dataset (Geoscape) for each LCZ within each city’s map.

LCZ 1 LCZ 2 LCZ 3 LCZ 4 LCZ 5 LCZ 6 LCZ 7 LCZ 8 LCZ 9 LCZ 10

SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL

Mean building height (m) 40.06 22.91 11.61 12.18 6.15 6.96 21.12 8.76 8.38 5.88 6.24 8.80 8.61 4.54 6.74 9.06 9.31
Max building height (m) 54.97 29.90 16.43 16.18 8.46 9.32 27.89 11.56 11.20 8.10 8.55 10.55 9.75 5.86 8.47 10.78 11.11
Standard deviation of building height (m) 18.13 8.81 3.95 4.01 1.73 1.88 8.61 2.66 2.49 1.66 1.85 2.55 2.10 1.48 2.34 2.49 2.80
Wall area density (-) 2.49 1.26 0.82 0.92 0.45 0.60 0.91 0.59 0.62 0.34 0.43 0.46 0.46 0.08 0.19 0.47 0.40
Frontal area density (-) 0.67 0.37 0.24 0.25 0.13 0.17 0.26 0.16 0.17 0.10 0.12 0.13 0.12 0.02 0.05 0.13 0.11
Mean tree height (m) 15.50 8.55 9.30 7.26 6.83 5.31 11.09 6.67 6.75 7.49 6.22 7.89 6.33 8.20 9.13 7.92 5.98
Standard deviation of tree height (m) 6.72 4.02 4.04 2.77 3.30 2.06 4.49 3.08 3.09 3.98 2.89 3.23 2.19 4.08 4.26 3.30 2.20
Plan area density (-) 0.48 0.36 0.37 0.44 0.32 0.37 0.35 0.31 0.34 0.24 0.27 0.28 0.30 0.04 0.07 0.34 0.19
Tree fraction (-) 0.04 0.07 0.16 0.05 0.14 0.08 0.11 0.18 0.19 0.25 0.18 0.07 0.03 0.26 0.22 0.09 0.04
Low vegetation fraction (-) 0.02 0.10 0.08 0.06 0.18 0.16 0.08 0.19 0.16 0.25 0.30 0.13 0.19 0.55 0.55 0.13 0.14
Water fraction (-) 0.07 0.06 0.02 0.01 0.01 0.00 0.01 0.02 0.00 0.01 0.00 0.05 0.00 0.01 0.01 0.02 0.08
Bare earth fraction (-) 0.05 0.05 0.05 0.04 0.06 0.08 0.05 0.03 0.03 0.05 0.04 0.15 0.14 0.09 0.09 0.09 0.14
Impervious fraction (-) Stewart and Oke, (2012) 0.35 0.37 0.32 0.40 0.29 0.31 0.39 0.27 0.27 0.21 0.20 0.32 0.34 0.05 0.07 0.34 0.41
Total built fraction (-) 0.83 0.73 0.69 0.83 0.60 0.68 0.74 0.58 0.61 0.44 0.47 0.60 0.64 0.09 0.14 0.67 0.60
Total pervious fraction (-) 0.17 0.27 0.31 0.17 0.40 0.32 0.26 0.42 0.39 0.56 0.53 0.40 0.36 0.91 0.86 0.33 0.40
Canopy aspect ratio (-) 4.56 1.72 0.77 1.20 0.38 0.56 0.78 0.49 0.53 0.25 0.34 1.05 0.76 0.05 0.13 0.61 0.38
Sky view factor (-) 0.28 0.52 0.57 0.51 0.71 0.62 0.55 0.66 0.63 0.79 0.73 0.71 0.70 0.95 0.89 0.70 0.77
Mean Roughness Height (m) Stewart and Oke,
(2012)

40.06 22.91 11.61 12.18 6.15 6.96 21.12 8.76 8.38 5.88 6.24 8.80 8.61 4.54 6.74 9.06 9.31

Displacement height (m) Macdonald et al. (1998) 32.21 16.25 7.21 8.50 3.54 4.37 12.31 4.82 4.97 2.72 3.22 5.27 5.33 0.81 1.67 5.48 4.24
Roughness length (m) Macdonald et al. (1998) 2.52 1.76 0.84 0.61 0.30 0.29 1.98 0.63 0.46 0.31 0.29 0.40 0.29 0.14 0.32 0.43 0.62
Displacement height (m) Kanda et al. (2013) 60.96 28.34 13.61 15.12 6.82 7.97 25.08 9.37 9.29 5.79 6.61 9.61 9.04 3.06 5.28 9.60 8.95
Roughness length (m) Kanda et al. (2013) 3.77 2.22 0.79 0.65 0.25 0.24 1.95 0.49 0.37 0.24 0.24 0.37 0.25 0.13 0.29 0.37 0.45
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neighbourhoods in Australian cities are less homogenous,
i.e., high-rise buildings are surrounded by a range of different
buildings with variable heights. This heterogeneity in the grids
classified as “high-rise” consequently reduces themean roughness
height. The difference between the two maps is less pronounced
in mid-rise LCZs, while LCZs with low building heights (such as
compact/open/large low rise, sparsely built, and heavy industry)
closely follow the recommended LCZ ranges. For natural land
cover, when roughness height is calculated based on tree height
(Stewart and Oke 2012), the bottom-up approach gives results
within the recommended range for trees, but overestimates
roughness element height in LCZs with low vegetation or no
vegetation. This again could be caused by real urban
heterogeneous surfaces including a scattering of higher
roughness elements.

Two morphological parameters are also compared: Canopy
aspect ratio (Figure 9) and sky view factor (Figure 10). These
calculations are based on the assumption of a repeating, two-
dimensional canyon geometry (Section 2.2) and depend on the
calculated plan area and wall density (Masson et al., 2020) (λp
and λw, respectively). These assumptions and resultant
parameters do not account for vegetation. Accordingly, the
comparison between these datasets are focused on built-up
LCZs. In both Sydney and Melbourne, canopy aspect ratio in
the majority of built-up LCZs is lower than the recommended
range. This is because of the generally lower plan area density
of locally defined categories (Figure 6), and because vegetation
is not accounted for in our calculation of sky view (Eq. 2).

Although these results highlight some differences with
recommended LCZ parameter values, the outputs provide
valuable input data for urban climate models. The defined

LCZ maps, when used to configure a model in Sydney or
Melbourne, can now be informed with accurate local
parameter values for each class. As such, we provide tables
of urban LCZs (LCZ1-10; Table 4) and natural LCZs (LCZA-
G; Table 5) for both Sydney and Melbourne for use in future
modelling exercises. Mean values are calculated by comparing
LCZ maps with 100 m morphology and surface cover data
derived from Geoscape datasets. These provide a more
accurate representation of local surface cover and
morphology than the mid-point of the recommended LCZ
ranges from Stewart and Oke (2012).

4 DISCUSSION

Numerical urban analysis has been experiencing two critical
transformations in the last decade. First, new datasets are
being generated using novel methods describing urban form,
fabric, and function at higher resolutions than previously
achieved (Mills et al., 2021). Second, the growth of computing
power—roughly doubling every 2 years (Leiserson et al., 2020)—
has enabled more sophisticated models to resolve urban processes
at higher resolutions. Nonetheless, many urban modelling studies
have been unable to represent true intra-urban variabilities
because they rely on class-based approaches to describe urban
surface parameters.

In this paper, we presented a methodology to derive city-
descriptive data for urban climate models using sub-metre
resolution datasets which resolve individual urban elements.
We have produced new gridded datasets which do not rely on
classes. In addition, we have been able to complement established

TABLE 5 | City-descriptive parameters for Melbourne and Sydney for natural local climate zones (LCZ A-G). Mean values are calculated with gridded morphology and
surface cover obtained from building-resolving 3D dataset (Geoscape) for each LCZ within each city’s map.

LCZ A LCZ B LCZ C LCZ D LCZ E LCZ F LCZ G

SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL SYD MEL

Mean building height (m) 6.29 8.97 3.71 5.71 4.24 4.89 11.68 4.56 7.74 8.15 6.17
Max building height (m) 8.86 11.45 5.82 6.39 5.67 5.31 12.26 5.56 8.59 9.67 6.63
Standard deviation of building height (m) 2.46 3.96 1.67 1.79 1.53 1.45 3.40 1.34 2.06 2.60 1.18
Wall area density (-) 0.14 0.14 0.05 0.09 0.07 0.06 0.42 0.09 0.30 0.13 0.09
Frontal area density (-) 0.04 0.04 0.01 0.02 0.02 0.02 0.12 0.03 0.08 0.04 0.03
Mean tree height (m) 6.92 7.97 8.22 8.39 7.80 7.69 5.94 7.48 6.25 9.61 6.64
Standard deviation of tree height (m) 3.45 4.09 4.03 3.58 3.49 2.86 2.13 3.00 2.09 3.61 2.19
Plan area density (-) 0.01 0.01 0.01 0.02 0.01 0.01 0.07 0.01 0.05 0.00 0.00
Tree fraction (-) 0.72 0.62 0.29 0.16 0.11 0.04 0.01 0.03 0.02 0.02 0.01
Low vegetation fraction (-) 0.22 0.33 0.60 0.66 0.70 0.78 0.07 0.32 0.28 0.01 0.03
Water fraction (-) 0.02 0.01 0.02 0.02 0.06 0.03 0.30 0.17 0.07 0.96 0.90
Bare earth fraction (-) 0.02 0.01 0.06 0.10 0.09 0.12 0.15 0.40 0.47 0.01 0.04
Impervious fraction (-) Stewart and Oke, (2012) 0.01 0.01 0.02 0.05 0.03 0.03 0.40 0.06 0.11 0.01 0.01
Total built fraction (-) 0.02 0.03 0.02 0.06 0.04 0.04 0.47 0.07 0.16 0.01 0.02
Total pervious fraction (-) 0.98 0.97 0.98 0.94 0.96 0.96 0.53 0.93 0.84 0.99 0.98
Canopy aspect ratio (-) 0.09 0.08 0.04 0.05 0.04 0.04 8.87 0.06 0.36 0.08 0.06
Sky view factor (-) 0.92 0.93 0.97 0.95 0.96 0.97 0.81 0.95 0.81 0.93 0.95
Mean Roughness Height (m) Stewart and Oke, (2012) 6.92 7.97 8.22 8.39 7.80 7.69 11.68 4.56 7.74 9.61 6.64
Displacement height (m) Macdonald et al. (1998) 1.28 1.27 0.57 0.79 0.70 0.57 5.27 0.87 3.48 1.35 1.17
Roughness length (m) Macdonald et al. (1998) 0.37 0.56 0.14 0.18 0.15 0.11 0.86 0.17 0.31 0.53 0.33
Displacement height (m) Kanda et al. (2013) 4.98 6.12 2.91 3.26 2.97 2.63 9.21 3.12 7.16 5.14 2.87
Roughness length (m) Kanda et al. (2013) 0.36 0.51 0.16 0.18 0.17 0.12 0.52 0.16 0.29 0.53 0.13
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methods by updating default class-based parameters with those
derived from local characteristics.

The code and examples for processing data layers are provided
as Supplementary Material, enabling future city-descriptive
maps to be developed for other regions using Geoscape data,
as well as informing other studies with similar building-resolving
datasets. The derived land cover and morphology dataset for the
Greater Sydney region at 300 m resolution is made openly
available (Lipson et al. 2022).

All building-resolving data contain errors which depend on the
collection and processing methods. The base Geoscape data used
here has a vertical accuracy of ±0.1 m for aerial and ±1m for satellite
derived building and tree heights (Geoscape Buildings v2.0, 2020;
Geoscape Trees v1.6, 2020). The horizontal accuracy is ±0.2 m for
aerial and ±2.5 m for satellite derived building positioning (although
consistent translational errors minimise errors in the derived
morphology characteristics). In comparison with top-down
methods, the mid-range building height values for LCZs can
differ with the Geoscape-derived values by dozens of metres
(Figure 8), well outside the range of Geoscape errors. Top-down
methods remain valuable where building-resolving data is
unavailable.

The strength of the methodology described here is
manifold. First, the building resolving data used is derived
in a consistent manner at continental scales. Such large-scale
and consistent datasets reduce uncertainties associated with
class-based approaches which rely on ad-hoc human training
and machine learning. Ad-hoc or inconsistent training data
can lead to incorrect classification (Bechtel et al., 2017; Stewart,
2018), while machine learning inherently obscures the
algorithm’s decision-making processes, making replication
or adaptation difficult. Second, class-based approaches can
omit some parameters required by numerical modelling
systems. Our bottom-up method provides additional
parameters for defining the form of urban areas and
surrounds that are important for quantify the impact of
mitigation strategies using modelling approaches
(Krayenhoff et al., 2021). Lastly, the traditional class-based
approach is limited by the fidelity of class system (i.e., the
number of defined classes) while the bottom-up approach
described here capture the unique characteristics of a city’s
fabric and form by detailing variability at the grid scale. This is
a methodological difference; instead of defining more
subclasses at increasingly high fidelity and defining their
recommended parameters, the properties of urban
morphology can be captured from the building scale and
applied at the desired resolution directly, enabling a more
accurate characterization of real urban form in urban climate
models.

The methods detailed here provide a useful approach for
obtaining critical city-descriptive parameters for climate
models, but several limitations persist. First, common
geometric assumption used to calculate some morphology
parameters (such as canopy height to width ratio and sky view
factor) fall short in representing realistic urban
configurations (as discussed in Section 2.2.3). Second, a
method for resampling categorical class-based maps (the

LCZ system) to different resolutions is not well-established
in the literature, limiting the comparison of values at different
resolutions. Thirdly, the data for large datasets may be
remotely sensed and incorporated over time, and so should
be updated regularly to account for rapid urbanization
processes and changes in urban land cover and use.
Furthermore, a key challenge in implementing this
methodology relate to the availability of high-resolution
datasets that resolve individual buildings and trees.
Consistent and complete global high-resolution datasets
are not yet publicly available. These challenges are likely to
decrease as more data becomes available, though being
significantly affected by different local data policy and
resources (Mills et al., 2021). Finally, we still have limited
available information on urban fabric and function, even at
local scales. A description of the spatial distribution of
materiality, for instance, is hard to achieve and hard to
implement in models in a realistic way. These issues
require more detailed attention in the future.
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We introduce and demonstrate new measurement and modeling techniques to fully

resolve the spatial variation in shortwave and longwave radiant heat transfer in the

outdoor environment. We demonstrate for the first time a way to directly resolve the

shortwave radiant heat transfer from terrestrial reflected and diffuse sky components

along with the standard direct solar radiation using an adapted thermopile array and

ray-tracing modeling techniques validated by 6-direction net radiometer. Radiant heat

transfer is a major component of heat experienced in cities. It has significant spatial

variability that is most easily noticed as one moves between shade and direct solar

exposure. But even on a cloudy and warm day the invisible longwave infrared thermal

radiation from warm surfaces makes up a larger fraction of heat experienced than that

caused by convection with surrounding air. Under warm or hot climate conditions in

cities, radiant heat transfer generally accounts for the majority of heat transfer to people.

Both the shortwave (visible/solar) and the longwave (infrared/thermal) have significant

spatial variation. We demonstrate sensor methods and data analysis techniques to

resolve how these radiant fluxes can change the heat experienced by >1 kWm−2 across

small distances. The intense solar shortwave radiation is easily recognized outdoors, but

longwave is often considered negligible. Longwave radiation from heat stored in urban

surfaces is more insidious as it can cause changes invisible to the eye. We show how it

changes heat experienced by >200 Wm−2. These variations are very common and also

occur at the scale of a few meters.

Keywords: radiant heat transfer, thermal sensors, urban heat, longwave, shortwave, thermopile array

INTRODUCTION AND BACKGROUND

The measurement of heat impacts on people in the built environment is critical to understanding
and addressing issues of human health, climate, and urban design. Climate change is increasing
average temperatures across the globe, with the most recent Intergovernmental Panel on Climate
Change (IPCC) assessment reporting a higher average temperature increase across the last century
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of 1.59◦C over land compared to ocean, and additionally
stating that cities will intensify human-induced warming locally
(IPCC, 2021). Heat is also increasing even more in urban
areas due to radiative trapping and anthropogenic emissions
of heat (Oke, 1982). These temperature increases all represent
surface air temperatures. As we and others have shown, surface
temperatures can easily be >30◦C warmer than air temperatures
reaching extremes above 60◦C (Yang and Li, 2015; Meggers
et al., 2016; Middel and Krayenhoff, 2019; Aviv et al., 2021).
We argue that the direct radiant heat transfer from these hot
surfaces not only add to the heat experienced from warmer
urban air temperatures, but actually have significantly larger
impacts than the warmer air on urban dwellers. In this paper
we will demonstrate new techniques that produce novel results
describing the complex longwave, shortwave, and reflecting
components of radiant heat transfer as it bounces through the
urban environment independent of air temperature.

The general population largely associates heat with air
temperatures, but in warm climates the majority of heat
experienced by people in the urban environment is in the form
of radiant heat transfer (Hoppe, 1992; Thorsson et al., 2007;
Johansson et al., 2014; Middel et al., 2014; Lindberg et al., 2016).
We have built human body heat models (Teitelbaum et al.,
2020), and built experimental radiant pavilions (Chen et al.,
2020; Teitelbaum et al., 2022), which have both demonstrated
how as air temperatures approach skin temperature the body’s
necessarymetabolic heat rejection can become almost completely
dependent on radiant heat heat transfer. We argue it is
therefore critical to explore new ways to model and measure
radiant heat transfer that include its complex geometric and
spectral properties.

Background
Radiant heat transfer is the exchange of heat by the emission
and absorption of electromagnetic radiation between surfaces.
Governed by blackbody radiation physics described by Planck,
the temperature of surfaces drives the emission of thermal
radiation, including between people and their surroundings.
Radiant heat transfer occurs across the full spectrum of radiation,
and as the emission is related to temperatures there are two
dominant modes of radiant heat experienced: solar shortwave
radiation and terrestrial longwave radiation. The sun, at around
5000K, emits shortwave light peeking around 0.5–1 micron
wavelengths that we have evolved to see with our eyes, but that
also brings around 1 kWm−2 to the surface of the Earth. The
Earth, including those of us existing on it, are only around 300K
and therefore emit largely in the longwave wavelengths of 8–15
micron, creating a dynamic exchange between surfaces on the
planet that is invisible to the human eye.

For shortwave radiation there is an intuitive association
of heat felt from the intense solar direct beam, and an
understanding that black materials (low albedo and heat
absorption) will absorb more of this heat than white materials
(high albedo and heat reflection). The longwave radiation is
not visible to the human eye and it is not transmitted via an
intense direct beam, but rather is diffusely emitted and exchanged
between surfaces, which makes the view factor to surrounding

surfaces and their varying temperatures critical in understanding
radiant heat impacts. While finding shade from the sun is an
obvious strategy to reduce radiant heat, it is nearly impossible for
a human to adapt to the diffuse longwave heat surrounding them
in the urban environment. In addition, even in the shade the
diffuse shortwave radiation that diffusely reflects off high-albedo
surfaces is also non-trivial.

In this paper we build on previous work that strives
to better characterize the invisible longwave radiant heat
along with the shortwave components coming from all
directions. As demonstrated by the work of the mobile
human-biometeorological station (MaRTy cart) experimentally
in previous work at Arizona State University (ASU) in Tempe,
Arizona (Middel and Krayenhoff, 2019), we can measure
precisely the longwave and shortwave radiation using the 6-
direction net radiometer setup, and move through a variety of
locations demonstrating that lateral longwave and shortwave
radiation dominate heat experienced with invisible longwave
being the dominant flux. This work showed that MRT reached
above 75◦C, and that these sites were above asphalt or concrete.
It also demonstrated the benefits of green surfaces like trees
in reducing sky view factor and Mean Radiant Temperature
(MRT). The 6-direction radiometer method provides averaged
directional readings of the Wm−2 of radiation, but does not
resolve the specific surfaces. In previous work at Princeton the
Spherical Motion Average Radiant Temperature (SMaRT) sensor
was developed to scan and map longwave radiant heat emission
from surfaces with a high resolution thermal array, which enabled
analysis of the exact sources of radiant heat and resolving the
exact location of hot surfaces and their geometry relative to
potential occupants in space (Teitelbaum et al., 2016, 2017;
Houchois et al., 2019). With this work we were able to show
how radiant heat can vary significantly across surfaces, and also
to calculate the distribution of MRT at any point in space as a
function of the highly resolved surrounding surface temperatures
and geometries measured by the sensor. This showed that indoor
surfaces often varied by more than 10◦C and MRT could vary
by > 2◦C when moving just 2 feet (60 cm) in a standard
heated office. The Princeton and ASU team initially brought
the MaRTy cart and the SMaRT sensor platforms together to
explore potential methods combining the high precision and
high resolution aspects of each system in a 1-day experimental
campaign in Philadelphia on the Temple University campus
(Aviv et al., 2021). As there were gaps in data produced by the
systems, a simulation technique was added from collaborators
at Penn that was informed by the results from both systems
to create spatial characterizations of the urban environment
that built on previous ray tracing techniques for longwave
heat transfer (Aviv, 2019; Aviv et al., 2022). The modeling
techniques became integrated as a tool for data reduction and
analysis from the two sensor platforms, which helped to generate
results that created a data-driven mapping of varying MRT
throughout an outdoor space in the collaborative paper that
showed for the first time a method to combine high resolution
surface temperatures showing variations in MRT in space that
could be validated against precise net radiometer measurements
(Aviv et al., 2021).
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The measurement and modeling of shortwave are both
improved in this paper. Modeling the radiative exchanges on
and within urban surfaces can be done several ways. Some
studies on urban climate have integrated ray tracing techniques
into the urban canopy model. A neighborhood-scale multi-
layer urban canopy model (MUCM) combined with ray tracing
methods was developed to account for shortwave and longwave
radiation exchange in the urban canyon, but it is based on
the two-dimensional canyon geometry and thus not feasible to
use a detailed three-dimensional geometry model as the input
(Krayenhoff et al., 2013). Doan and Kusaka (2019) introduced
a new MUCM also combined with a ray-tracing algorithm to
represent both shortwave and longwave radiative processes on
urban surfaces. The urban geometry model considers buildings
and vegetation land as bulks with thermal properties. Based
on the urban canyon model, Rosado et al. (2017) proposed an
urban canyon albedo model (UCAM) to calculate the amount
of radiant flux accounting for three reflection bounces, and the
results demonstrated the need to use the actual urban geometry
formore accurate studies. Another approach is using a ray tracing
model directly. A three-dimensional numerical model based on
ray tracing methods was developed by Yang and Li (2015) to
predict a detailed urban surface temperature distribution. The
urban geometry model consists of normalized cells, representing
different abstracted scenarios of building density, height and
arrangements. The aforementioned work took reflection and
urban albedo as important parameters when testing different
scenarios. There are also studies investigating the influence of
shortwave reflections on the energy balance (Vallati et al., 2018;
Ali-Toudert, 2021). As an approach that can support detailed
urban geometry model, the solar and longwave environmental
irradiance geometry (SOLWEIG) model can simulate spatial
variations of three-dimensional radiation fluxes in complex
urban settings with building digital elevation model as input
(Lindberg et al., 2008; Lindberg and Grimmond, 2011) and has
been tested in cases of different cities. For example, Chen et al.
(2016) employed the SOLWEIG model to simulate the radiant
heat flux densities in several urban settings in Shanghai, which
showed good agreement with the six directional radiant flux
density measurements. Research on more land cover types and
the exact contribution of reflection on the radiant heat flux
are required.

In the field of solar radiation measurement studies have been
carried out using novel combinations of sensors to better resolve
sky radiation as demonstrated in published work (Blum et al.,
2022). Here a precise pyranometer was combined with a sky
imager to improve the resolution of the precise data from the
pyranometer. These sky imagers are inherently limited in their
accuracy due to their use of a CMOS sensor which does not
respond proportionally to Wm−2 of irradiance because of their
limited spectral response.

Objective
The objective of this paper was to address some of the limitations
of the initial collaboration combining the MaRTy, SMaRT,
and ray tracing simulations (Aviv et al., 2021), and to carry
out a more extensive field campaign to test and demonstrate

improvements to the methods. A significant limitation in
the first study was the inability of the SMaRT sensor to
resolve any shortwave radiation as well as to record high
resolution longwave scans in a short enough time period
for the 1-day campaign, which resulted in significantly lower
resolution images.

This study uses an updated version of the SMaRT sensor, the
SMaRT Shortwave and Longwave (SMaRT-SL) that records 360◦

shortwave and longwave panoramic images, which is deployed
alongside the MaRTy cart across locations at ASU in Tempe,
Arizona for two hot clear days. It uses an updated modeling
technique to better address shortwave sky radiation as well
as reflections. We aimed to produce results that help better
characterize through measurement and modeling the relevance
of both the diffuse shortwave reflections along with the longwave
emissions at a high geometric resolution. We hope this will
provide a more clear picture of how the built environment,
and its planned and designed landscapes and buildings, have
easily-overlooked radiant relationships to the heat experienced
by urban dwellers.

Measuring radiant heat transfer is critical to understanding
urban heat, yet this highly variable phenomenon remains
often unexamined and underappreciated in its role affecting
people. Improving characterization of this phenomenon
and moreover, making new tools and techniques more
available to urban planners, designers, and architects will
create new opportunities to better address challenges of
urban heat. We argue these exchanges have many nuances
including highly complex and variable heat impacts
on people as they move through the geometry of the
urban fabric.

METHODOLOGY

Experimental Setup and Locations
Experiments were carried out on May 18 and 19, 2021 on the
ASU campus in Tempe Arizona. On each day the MaRTy cart
and SMaRT-SL sensor platforms were set up at different locations
in∼2 h increments between 8:00 am and 5:30 pm. Readings were
recorded from each device, panoramic photos (see Figure 1) were
taken of the sites, and the albedo and emissivity of the surfaces
were estimated.

There were five sites tested (see Figure 1). These varied in
conditions from grass to concrete with varying levels of sky
exposure. These were selected to try to achieve a variety of
representative scenarios with varying sky, sun, horizon, ground
cover, and ground temperature. The five sites were tested across
2 days. One site was measured on both days to have a reference
(Hayden Lawn).

First, the SMaRT-SL sensor took one complete measurement
which took ∼16–17min to complete. Second, MaRTy is placed
at the same location and measures for ∼1min which includes
20 s to account for the sensor lag of the net radiometers and
temperature sensor. Deploying and measuring with both MaRTy
cart and SMaRT-SL sensor requires just below 20min per
location. Measuring three locations requires ∼1 h including the
walk between locations.
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FIGURE 1 | Experiment locations on ASU Tempe campus. Panorama images of each location showing the surroundings and different conditions.

On the first day, May 18th, the sensors were deployed in three
locations (1) The Hayden Lawn, a large open grass field, (2)
The MU PV Canopy, an outdoor seating area under a large PV
shade structure; (3) The Forest Ave COOR, a concrete open area
in front of the Lattie F. Coor Hall at ASU. Five measurements
were made at Hayden lawn, Six at the MUPV Canopy, and four
measurements were made at Forest Ave COOR all spaced ∼2 h
apart with the Hayden and MU PV starting between 8 and 9 am
with the MU PV having an additional data collection between 9
and 10 am due to data loss between 8 and 9 am.

On the second day, May 19th, the sensors were rotated
through three locations, again (1) Hayden Lawn (reference
location), (2) Parking lot, an open area dominated by asphalt
concrete, and (3) COOR canyon, a concrete walkway between
buildings near the Coor Hall.

MaRTy Cart Mobile Net Radiometer
Platform
The MaRTy cart setup is the same as described in our previous
collaboration (Aviv et al., 2021), and as detailed in a first
experiment at ASU in Tempe (Middel and Krayenhoff, 2019).
It is a human-biometeorological platform (Figure 2), which was
custom-built to be a mobile platform that is easily moved from
location to location.

The MaRTy sensor platform records location (lat/lon,◦), air
temperature (◦C); relative humidity (RH%); wind speed (m·s−1);
longwave (Wm−2) and shortwave (Wm−2) radiant flux densities
in a 6-directional Hukseflux NR-01 net radiometer setup. It

FIGURE 2 | The MaRTy cart sensor platform.

determines MRT from combining net radiometer readings of
directional shortwave and longwave radiation, weighting each
direction according to angular factors of a standing person as per
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TABLE 1 | Apogee sensor specifications.

SL-510

Pyrgeometer

SP-510

Pyranometer

Calibration uncertainty 5% 5%

Measurement repeatability <1% 1%

Long-term drift <2% per year <2% per year

Non-linearity <1% <1%

Spectral range 5–30µm 385–2,105

nm

Temperature response <5% from

−15 to 45C

<5% from

−15–45 C

Window heating offset <10 W*m−2 <2 W·m−2

Uncertainty in daily total 5% 5%

Equation 1:

TMRT =

4

√

∑6
i=1Wi (akKi + aiLi)

al ∗ σ
− 273.15K (1)

where ak = 0.70 and ai = 0.97 are the unitless absorption
coefficients for short-wave and longwave radiant flux densities, σ
is the Stefan-Boltzmann constant inWm−2 K −4, and the unitless
angular weighting factors of Wi = 0.06 for the up and down
facing sensors and Wi = 0.22 for the sensors pointing in each
cardinal direction.

SMaRT-SL Short and Longwave Mapping
We build on previous work developing a scanning mean radiant
temperature sensor (SMaRT) sensor. The new expanded version
includes short and longwave (SMaRT-SL) thermopile array
detectors. It is composed of four directional radiative energy
sensors mounted on a 2-axis rotation stage, capable of 360
degrees of motion in the azimuthal direction and 180 degrees
of motion in elevation for on-demand full spherical coverage
of all four sensors. In this implementation, servos are used to
drive reduction gears on each rotation stage, allowing for high
directional accuracy and power and communication cable pass-
throughs inside the centers of the reduction gears. The system is
controlled by an Arduino DUE microcontroller.

The sensor package consists of: an Apogee Instruments SP-
510 Thermopile pyranometer, an Apogee Instruments SL-510
pyrgeometer, a Heimann HTPA 80x64d R2 L10.5/0.95 F7.7HiC
thermopile array thermal camera, and a novel custom-made
thermopile array shortwave camera using a HTPA 80x64d R2 L0
FCaF2 thermopile sensor. The novel addition of this shortwave
(here meaning UV to SWIR sensitivity) thermopile camera to
the conventional longwave IR thermal camera allows for explicit
directional and spatial quantification of all significant radiative
components of thermal comfort. The single-value pyranometer
and pyrgeometer measurements are then used as comparative
reference signals, and the pyranometer was additionally used for
initial calibration of the sensitivity coefficient of the shortwave
thermopile sensor.

The Apogee Instruments pyranometer and pyrgeometer are
measured using an ADS1115 16 bit precision, differential ADC
with a resolution of 3.9 µV. The pyrgeometer thermistor channel
is read with a standard 12-bit ADC for a resolution of 0.8mV.
The sensor specifications and errors are shown in Table 1.

The Heimann HTPA 80x64d R2 L10.5/0.95 F7.7HiC
thermopile array has 5,120 elements, and a field of view of ∼39
by 31 degrees. The f/0.95 lens has a LWP coating with a cut-on
(Tr: 5%) at 7.7µm ± 0.3µm. The accuracy is ±3% |TO – TA|
or ± 3K (whatever is larger) for object temperatures < 300◦C
and ambient temperatures from 5 to 50◦C, and the NETD is
140 mK@1Hz.

The shortwave thermopile array sensor combines a lensless,
unfiltered thermopile array with a VIS-NIR coated achromatic
optical float glass lens pair. The result is a low-resolution camera
with near-flat spectral response from 375 to 2500 nm. The HTPA
80x64d R2 L0 FCaF2 thermopile sensor has an ∼1mm thick
CaF2 window to seal the device, which provides nearly flat
bandpass response across the 200µm to ∼10,000µm range. The
focusing lens is a N-BAF10/N-SF5 achromatic pair with 14mm
focal length and 12.5mm diameter for an f-number of 1.15. A
VIS-NIR (400–1,000 nm) anti-reflection coating reduces glare
across the primary portion of the spectrum, and has a 50% signal
range from 375 to 2,650 nm. A rectangular lens hood further
reduces lens flare, an on-going issue due to the strength of the
direct beam sun. Finally, a servo actuated shutter-flap is used to
darken the device for zeroing and calibration of thermal offsets.
See Figure 3 for a cutaway 3-D model of the shortwave sensor.

The SMaRT-SL can complete a full set of measurements over a
15min period. Upon power up, the tripod base is used to align the
sensor in the North direction. Next, the sensor rotates to the Up,
North, East, South, West and Down directions, pausing at each
for ∼30 s to record the Apogee Instruments Pyranometer and
Pyrgeometer readings, creating a full 6-direction net radiometer
measurement with only two sensors. After this 6 direction
measurement is completed, the shutter is closed on the SW
thermopile camera and the raw voltage outputs of the thermopile
are read and averaged over ∼30 s. This provides the baseline
signal level offset due to the temperature dependent longwave
IR emission of the optical elements. After this calibration is run,
the device begins the panoramic scan, achieving full spherical
coverage from 70 images with small overlaps over about 8min.
After the panorama is completed, a followup SWIR camera
calibration and 6 direction net radiometry is taken.

SMaRT-SL Sensor Image Processing
The SMaRT-SL sensor raw data, in the form of a collection
of images, is post-processed to create a Lambert cylindrical
equal-area projection of the full scene. This process distributes,
upscales, smooths and averages the overlapping images, and
also serves the important role of evenly distributing pixel data
points to have equal solid-angle view factors. The image pixels
are binned and spaced at integer values in a discrete uniform
distribution in the horizontal and vertical dimensions in the final
projection, assuring that in 3D vector space every pixel value
in the projection image has an equal solid-angle view factor.
A matrix of corresponding 3D vector coordinates is saved with
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FIGURE 3 | Shortwave sensor cross section, with shutter in closed position. Adaptable system using c-mount components, and 3D printed lens shade.

the image, allowing further calculations to then be done in the
projection space utilizing this even point spread.

To generate the planar irradiance values for a given direction
from the SMaRT-SL data, virtual pyranometer and pyrgeometer
models were used to generate singular numbers. The 3D vector
coordinates of the pixels were used to apply Lambert’s cosine
law to weight the data points within view of the simulated plane.
This allowed the generation of not only cardinal direction planar
irradiance values to match the experimental pyranometer and
pyrgeometer data, but of any arbitrary plane direction as well.

A further insight made possible by both the unique resolution
and paired sensor setup of the SMaRT-SL allowed for very
accurate classification of any given pixel in the projection
of the scene as having either terrestrial, sky, or direct solar
origins. This was made possible by using logic that paired the
longwave and shortwave images: if the longwave reading was
more than 25◦C below ambient temperature the reading was
classified as “sky,” if the shortwave was above 1,000 W·sr−1

·m−2

the reading was classified as “direct sun,” and all other points
were classified as “ground.” This method proved quite robust,
however further testing and refinement of the process may
be required for scenes with significant cloud cover. Figure 4
demonstrates the technique’s ability to classify trees, buildings
and the overall varying horizon line. This classification allows
for both the quantification in any given measurement of the
individual contributions of direct and reflected sources, as well
as calculation of statistics such as Diffuse Horizontal Irradiance
(DHI) and Direct Normal Irradiance (DNI).

Simulation Methods
For shortwave irradiance simulation, a ray-tracing model
was constructed using Honeybee (version 0.66), a validated
environmental plugin in the Rhino/Grasshopper algorithmic 3D
modeling platform. With the inputs of the location (Phoenix,
USA, 33◦25’ N, 111◦56’ W), the dates and times of the

FIGURE 4 | Demonstration of pixel categorization at Hayden Lawn on

summed longwave and shortwave irradiance image where pixels classified as

“ground” are blacked out.

experiments (8 am-4 pm, May 18th and 19th, 2021), and the
direct normal irradiance and diffuse horizontal irradiance, the
model firstly generates the sky matrix for each simulation case.
The resolution for determining the sun’s location is 1 hour.
The sun path and the sun location during the experiments are
shown as Figure 5A. The hourly global horizontal irradiance
was collected in a weather station of the Arizona Meteorological
Network, which is located in the central Phoenix and around
16 kilometers away from the experimental sites. However, the
meteorological data does not include direct normal irradiance
and diffuse horizontal irradiance. In order to estimate the
aforementioned two parameters, the Typical Meteorological
Years (TMY) dataset provided by ISD (US NOAA’s Integrated
Surface Database) contains the irradiance data and was used
as reference. Based on the combination of the two sources,
the estimated direct normal irradiance and diffuse horizontal
irradiance were calibrated.

For the geometric modeling, the 3D model of buildings,
land surfaces of different types and trees were built and the
reflectivity coefficients of all surfaces were assigned based on
measurements at each site after experiments with an ASD
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FIGURE 5 | (A) The sun path and sun locations during the measurements; (B) Sample points distribution of Forest Ave site.

FieldSpec 4 Spectroradiometer, with reflectivity values averaged
over the 350–2,500 nm wavelength measurement range: 0.11 for
asphalt ground, 0.2–0.25 for pavement, 0.5 for vegetation, 0.3
for gravel, 0.4 for photovoltaic panels, 0.3 for concrete, 0.15
for brick, 0.2 for trees. For each simulation case, a spatial map
showing the mean spherical irradiance variation was created
with a testing plane at the height of 1.1m above the ground
representing the centroid of humans and the testing points
were generated in the resolution of 1m. Boxes centered on
the testing points were separated into six surfaces for plane
irradiance calculation and the results correspond to the east, west,
south, north, upward and downward orientations, respectively

(Figure 5B). Based on these inputs, the RADIANCE engine
embedded in Honeybee was used to build a ray-tracing model
for irradiance simulation (Ward, 1994). The plane irradiance of
all testing boxes’ surfaces can be calculated, based on which the
mean spherical irradiance was calculated using a cubic method.
This simulation technique has been developed in our previous
studies (Hou et al., 2021).

In order to investigate the reflectivity of the surrounding
environment and its influence on the irradiance received on the
ground, a parallel set of simulations was conducted for each case
with the reflectivity coefficients of all surrounding surfaces as
0 while keeping other settings unchanged. The parallel test still
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includes the indirect irradiance from the sky rather than from
the surfaces in the built environment such as building envelopes,
since the maximum number of diffuse bounces computed by the
indirect calculation were four for all cases.

RESULTS

We have selected sets of results from the five locations to best
illustrate the novel data that can be resolved by combining
these techniques. The full datasets will be made available and
submitted as data-in-brief and posted to a github repository
(chaos-laboratory/Resolving-Radiant-2022-Paper-Data). We
selected illustrative datasets collected from the Forest Ave site
next to the COOR building, the Hayden Lawn, and the MUPV
shade canopy. These provide a range of shortwave and longwave
conditions that expose the role of longwave outdoors, and
terrestrial sources of reflected shortwave, both of which are often
assumed to be small relative to direct sky solar radiation. We
show that they are not only significant, but that they have highly
variable distributions that affect the heat experienced by people
across short areas, and make shaded areas capable of significant
heat stress.

Longwave and Shortwave Radiant Energy
Spherical Panoramas
We first present the results of the longwave and shortwave high
resolution scans collected by the SMaRT-SL platform. We have
false-colored the images similar to thermal imaging, but in this
case the gradient is representing the W · sr −1

· m −2 coming
from that direction. For each site, Forest Ave in Figure 6, Hayden
Lawn in Figure 7, and MUPV in Figure 8 we also include a
visible panorama for reference to make it easier to interpret the
sources and structures that appear in the radiant panoramas.
Each image is a full 360 degree panorama, and the significant
variation in thermal radiation is clear. In the case of Forest Ave
in Figure 6 there are images for two times, one at 11 am and one
at 3 pm. The shortwave changes dramatically from 11 am to 3
pm as the sun passes behind the COOR building and creates a
large shaded area. Still there remain non-insignificant sources of
reflected shortwave that are of similar, and in some areas greater,
than the diffuse sky intensity. The longwave image is also very
interesting for Forest Ave as the building plays a significant role as
a heat source as does the hot concrete on the ground. At 2 pm the
shade creates an obvious reduction in shortwave, but although
the longwave has reduced without the direct heating from the
sun on the surfaces, it still represents a significantly high source
of radiant heat, and in the case of the building, it is blocking what
would otherwise be thermally cool longwave sky.

The Hayden lawn data is representative of large open areas.
The shortwave data again illustrates the significant reflection
from the surrounding surfaces. Here the longwave component is
more significant as the major shift in temperature from the grass
to the concrete causes a major change in the radiant heat. The
radiant heat from the grass surfaces is about 10–20% lower than
the concrete surfaces. This shift in heat of going from standing on
the lawn to standing on concrete would be equivalent to the air

temperature changing by several degrees. The SMaRT-SL sensor
data allows us to not only calculate the radiant temperature fields
in main directions, but to now visualize the role that all designed
surfaces in an environment play in the thermal load placed on
people using the spaces.

The MUPV canopy presents one of the most interesting
radiant datasets for our high resolution measurement case study.
The variation of openings in the canopy and the significant
heating of the panels cause unique shortwave and longwave
conditions. While the overall amount of shortwave is certainly
reduced by the canopy shading, there is still significant amounts
of shortwave that arrives through the gaps in the canopy. This can
largely be avoided by users as needed because the hot spots clearly
register in the visible image, but we noted that our measurements
even across a few inches could be dramatically influenced by
the highly variable shadows cast by the system, and passing
through the space users would still experience these small spaces
of shortwave radiation as well as the reflections from them which
are generally not considered heat source but nevertheless have
an effect.

What is more critical and fully unseen is the added longwave
heat emitted by the panels as they are heated in the sun and
radiate down in the longwave. The shaded canopy actually blocks
out the sky with a surface that is as hot as hot pavement. While
blocking the sun is critical to mitigate shortwave, the rest of the
sky acts as an important longwave radiant heat sink. The SMaRT-
SL system can clearly display both the significant longwave
radiant heat from the panels, and then also show how the sky’s
potential as a longwave radiant sink, or cooler, is also obstructed
by the panels.

Longwave Directional Irradiance
Next we present the results for the longwave data resolved
across principle directions for the various instruments for
comparison in Figure 9. We acquired longwave data similar
to our previous work (Aviv et al., 2021) taking readings using
the standard net radiometer measurements from MaRTy. For
the SMaRT-SL sensor an improved array detector enabled more
rapid acquisition of high resolution longwave panoramas, which
addressed one of the issues in the first collaboration with MaRTy
where the SMaRT-SL scans took more than 30min and had
limited resolution. The longwave results are in Figure 9 for data
from the MaRTy cart and from the processed SMaRT-SL sensor
longwave array, with the fraction from the sky and from the
ground illustrated in a stacked bar. The Apogee Pyrgometer that
was mounted on SMaRT-SL for additional verification did not
produce accurate data, most likely due to overheating in the hot
Arizona temperatures.

The longwave data shows consistently higher values for the
terrestrial down direction, up to 615W · m −2 for the ground
on Forest Ave, and the sky in the up direction has lower values
as expected, at 366W · m −2 for the sky on Forest Ave. This
MUPV canopy significantly increases the up directions longwave
irradiance due to the high temperature PV panel canopy. So while
providing shade, the PV canopy actually has the highest longwave
heat impact in the scene. One can also see temporally the effect
of the Forest Ave COOR building shading the ground in the
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FIGURE 6 | Forest Ave Shortwave 0.3–3µm (top) and Longwave 7.7–20µm (middle) panorama at 11 am from the SMaRT-SL sensor scan, (right) 11 am scan and

(left) 3 pm scan (bottom). Visual panorama at 11 am showing the COOR building and mixture of concrete and grass surfaces. Lambert cylindrical equal area projection

used.

FIGURE 7 | (left) Hayden lawn Shortwave (top) and Longwave (bottom) radiant energy panorama at 2 pm from the SMaRT-SL sensor scan. (right) Hayden lawn visible

panorama photo at 10 am, showing grass surfaces, sidewalks, and concrete buildings. Lambert cylindrical equal area projection used.

afternoon causing a reduction in the longwave, while similarly
to the MUPV canopy causing increased longwave in the UP
direction due to the presence of the hot building and reduced
view to the cooler sky.

There is good agreement between the MaRTy and SMaRT-SL
data, with the biggest discrepancy coming from the up direction
where the significant sky portion may not be read with the same
spectral sensitivity by the detectors due to filter cutoffs of the
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FIGURE 8 | (left) MUPV canopy shortwave (top) and longwave (bottom) radiant energy panorama at 2 pm from SMaRT-SL sensor scan, showing the significant

longwave heat. (right) MUPV canopy visible panorama photo at 10 am. Lambert cylindrical equal area projection used.

FIGURE 9 | Longwave radiation, W · m−2, measured at 11 am and 3 pm at Forest Ave by the COOR, and at 2 pm at the Hayden Lawn and at the MUPV Canopy.

Planar Irradiance values are from each direction and the overall average, from the MaRTy cart (left bar) and the SMaRT-SL array (right bar). The SMaRT data is broken

into sky and ground components by utilizing its greater degree of resolution.

longwave sensors components, as well as differing error modes
such as self heating. Generally an increased sky fraction caused
the SMaRT-SL reading to be reduced compared to the MaRTy
reading. Still, the results are a significant improvement over our
previous work with the two systems (Aviv et al., 2021).

Shortwave Directional and Total Irradiance
The shortwave imaging data present another important extension
from our previous work. The results of the new SMaRT-SL
shortwave array sensor also show relatively good agreement for
Forest Ave at 10 am and Hayden lawn at 2 pm as shown in

Frontiers in Sustainable Cities | www.frontiersin.org 10 July 2022 | Volume 4 | Article 869743223

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Merchant et al. Resolving Radiant

Figure 10. In this case we also have additional comparative data
from the Apogee Pyrometer mounted on SMaRT-SL and from
the shortwave simulation carried out to compare results from the
SMaRT-SL array broken down into sky and reflected surfaces.
The Forest Ave 3 pm andMUPVdata are both shown on different
scales because there was not direct sunlight, and in particular
that limited the shortwave intensity for the Forest Ave 3 pm
data. It has a maximum of just over 100W · m −2, but in the
morning in the sun it was nearly 1,000W ·m−2 in the upward sky
direction. The MUPV data illustrates the intense local variations
possible due to the PV panel shading—small differences in the
physical size and location of the sensors yields highly variable
results. Hayden Lawn illustrates how the reflected portion is both
dominating and significant in the north and east directions—due
the clear skies, the diffuse shortwave radiation from the sky is
quite low. The comparison of Forest Ave at 11 am and 3 pm
shows the significant differences of shading. On Forest Ave the
sun went behind the building at 3 pm. both in the upwards
and downwards directions, with a further marked change of
the reflected portions in the cardinal directions dominating the
overall radiative load. The variation among the data at Forest Ave
at 3 pm is likely due to the increased difficulty of parsing out the
much lower overall signals from an accurate accounting of the
roughly 450W · m −2 incident on the thermopile sensors due
to the radiant temperature of the longwave-emitting, shortwave
transparent lens system. A similar error mode can be found in
low intensity pyranometer measurements.

A significant conclusion borne out by both the simulation
and the SMaRT-SL sensor data is in the significance of the
reflected portion of the spectrum to the overall radiative load. For
the respective datasets shown in Figure 10, a simple accounting
comparing the up and down pyranometer data shows the
downwards reflected portion as 22.5, 18.2, 21, and 2.8% of the
upwards direction, compared to a more accurate accounting of
the ratio of the total spherical irradiance as 32.4, 45.9, 33.5,
and 36.7% by an average of the SMaRT-SL and simulation data.
The simple pyranometer comparison belies the significance of
the reflections to the overall radiative heat transfer in lacking
a more precise way of accounting for reflections. Furthermore,
the accounting of reflections not just in the downwards direction
holds significance for human thermal comfort, as the downwards
direction has lesser impact on a standing human form (Rizzo
et al., 1991).

Shortwave Reflected Radiant Heat
Figure 11 shows the variation in the fraction of reflected
shortwave. Here we have data taken directly from the SMaRT-
SL as well as from the simulation, which were both able to
resolve shortwave arriving from the sky and direct sun as well
as shortwave reflected off terrestrial surfaces. There is again
relatively good agreement between simulation and the sensor.
The discrepancies arise when the scene is shaded and there is
more significant variation at the site of the measurement.

Improving the measurement and understanding of shortwave
reflections is of particular interest because in practice the
reflection of shortwave radiation off of terrestrial surfaces is
often considered insignificant relative to the direct solar and

sky radiation. The reflected sources of radiation ranged from
10 to 70% of the total, with the open Hayden lawn receiving
a more consistent range of 25–35%. In addition, one can see
both the temporal and directional dependencies of the reflected
shortwave. Across the three locations, reflected shortwave was a
strong component of the total radiative heat load, with certain
local conditions like highly reflective buildings causing it to even
become the dominant portion. By breaking the data down by
direction, one can see that a simple accounting of the shortwave
as simply being driven by direct radiation from the sky is highly
incomplete. Furthermore, the significant variations seen in this
data show the importance of more accurate and spatially resolved
accountings provided by the SMaRT-SL and simulation methods
to better understand the complex influences of the reflected
radiative sources.

The north, south, east, and west directions provide insights
into how the sun reflects off of different surfaces throughout the
day, and to the high variability of heat experienced from the
non-direct sources of shortwave radiation. In all cases the down
direction clearly only provided reflection, but interestingly the
up direction was not just direct and included reflections as well.
These were caused by adjacent buildings and in particular the PV
canopy site had significant reflection.

For Figure 11A at Forest Ave, the mean spherical irradiance
keeps decreasing from 11 am (when it reaches the peak 320.4W ·

m −2). The percentage of reflected portion in the mean spherical
irradiance remains around 30%, with the highest as 32.9% at 3
pm and lowest as 26.5% at 5 pm. The avenue in the south-north
direction has a high H/W ratio with buildings on both sides.
Clusters of trees are on the north side. The concrete pavement
and grass are reflective. From the east the reflected percentage
increases and reaches the peak 83.2% (58.1W · m −2) at 3 pm,
when the direct sun ray comes from the southwest direction and
is reflected by the brick buildings, trees, grass and the concrete
pavement. From the west the reflected percentage is high in the
morning and reaches the peak 91.6% (119.8W · m −2) at 11 am,
and keeps decreasing after that, when the direct sun ray comes
from the southeast direction and is reflected by the building with
glass facade and the concrete pavement on the west side. From
the north the irradiance reaches the peak 88.0 % (110.5W · m
−2) also at 11 am, and has a decreasing trend afterwards. From
the south the reflection percentage decreases to the lowest at 1
pm, and increases after that. The reflection percentage at around
4 pm (∼47%) is lower than that in the lawn (51.3%) and under the
PV (62.3%). For the two open sites, the reflectance of the concrete
pavement in the avenue is lower than that of grass in the lawn.
The space under the PV shading structure has a brick building
and trees on the south side which may contribute to irradiance
from the south direction through multiple bounces, resulting in
a higher reflection percentage.

For Figure 11B at the MUPV, the Mean spherical irradiance
does not fluctuate much during the day, with the highest as
89.1W · m −2 at 12 pm and lowest as 56.9W · m −2 at 4
pm. The percentage of reflected portion in the mean spherical
irradiance does not vary much either, with the highest as 37.4%
at 12 pm and lowest as 30.3% at 8 am. The irradiance from the
upward direction (224.4W ·m −2) is lower than that in the lawn
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FIGURE 10 | Shortwave radiation,W · m−2, measured at 11 am and 3 pm at Forest Ave by the COOR, and at 2 pm at the Hayden Lawn and at the MUPV Canopy.

Planar irradiance values are from each direction and the overall average, from the MaRTy cart (left bar), the Apogee Pyranometer (middle-left bar), SMaRT array

(middle-right bar), and the simulation data (right bar). The SMaRT-SL and simulation data are broken into direct sky and reflected ground components by utilizing their

greater degree of resolution.

FIGURE 11 | Reflected shortwave variation across time and planar direction at Forest Ave (A), MUPV (B), and Hayden Lawn (C). Solid lines are produced from the

simulation data, and dashed lines are produced from the ratio of reflected ground to direct sky measurements taken from the SMaRT-SL sensor.

(797.6W · m −2) without shade above. Because of the PV panels
shading above with only some gaps between panels allowing
direct sunlight, the shortwave irradiance received from every
direction is lower than that in the open space such as the lawn.
From the east direction the reflected percentage increases from 8
am and reaches the peak 87.6% (30.8W ·m −2) at 2 pm, when the

direct sun ray comes from the southwest direction and is reflected
by the columns made of brick and semi-transparent glass and the
pavement. From the west the reflected percentage is high in the
morning and reaches the peak 91.9% (35.3W · m −2) at 12 pm,
and the irradiance from the north direction is relatively high and
reaches the peak 94.2% (41.5W · m −2) also at 12 pm, when the
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FIGURE 12 | [(A), left] Simulated mean spherical irradiance map of Forest Ave site using modeled site geometry (top) simulating with interreflections (left) or without

(right) surrounding interreflections at 3 pm, May 18. [(B), middle] Simulated from local geometry (top) of mean spherical irradiance map for Hayden Lawn with (left) or

without (right) surrounding interreflections at Hayden Lawn at 10 am on May 18. [(C), right] Simulation using geometry of MUPV site (top) showing mean spherical

irradiance map with (left) or without (right) surrounding interreflections at 12 pm, May 18.

direct sun ray comes from the south direction and is reflected
by the brick building, trees and the pavement on the north side.
The canyon in the west-east direction has a larger height-to-
width ratio, which results in higher reflection percentage for the
north direction. The South reflection percentage decreases from
8 am and reaches the lowest at 12 pm, and increases after that.
It is around 40–60% with more direct rays received and mainly
reflected from the pavement.

For Figure 11C at Hayden Lawn the mean spherical
irradiance reaches the highest at around 12 pm. The irradiance
coming from the up direction makes the largest contribution.
The second highest is from the south direction in compliance
with the direct sunlight direction. The reflected portion reaches
the highest as 33% at around 12–2 pm. For the east direction
the reflected percentage increases from 8 am and reaches the
peak 86.6% (107W · m −2) at 2 pm, when the direct sun ray
comes from the southwest direction and is reflected by the brick
building, trees and grass on the east side. For the west direction it
is high in the morning and reaches the peak 89.9% (119.8W · m
−2) at around 10am-12pm, when the direct sun ray comes from
the southeast direction and is reflected by the brick building,
grass on the west side. From the north it is high at 10 am -
2 pm with the peak over 90%, when the direct sun ray comes
from the southeast/south/southwest direction and is reflected
by the trees on the north side. From the south there are less
obstacles for the direct sunlight from the south direction, the
reflection percentage is around 40–60%, mainly reflected from
the grass.

TABLE 2 | Height-to-width ratio.

H/W Lawn MUPV Forest Avenue COOR Parking lot

East 0.19 / 0.23 / 0.07

West 0.1 / 1.1 / 0.04

North / 0.38 / 0.8 0.1

South / 0.39 / 0.4/2.1 0.5

Simulation of Radiant Heat Variation
Reflection Contribution
A further ability of the simulation method is to create 2D
spatial heat maps of the total spherical Irradiance across a site
as shown in Figure 12. These maps provide useful context for
the reflected shortwave data points shown prior. One can see
both the significant difference in intensity between just the direct
incident radiation compared to a full accounting with reflections.
The reflected portion can also be clearly seen as a strong driver of
increased spatial variation in the overall Irradiance across the site.

Reflection and Geometry Comparison
Between All Sites
Table 2 provides an overview of the geometry of the site related to
the height of surrounding infrastructure, terrain, or plants for all
sites in the four horizontal directions. Table 3 gives the average
reflected fraction of shortwave radiation for every site.
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TABLE 3 | Average of reflection.

Lawn MUPV Forest avenue COOR Parking lot

Mean Spherical 31.4% 34.5% 30.5% 25.9% 18.1%

East 59.2% 61.1% 61.3% 63.7% 57.4%

West 51.7% 54.1% 41.6% 39.4% 28.7%

North 79.8% 83.1% 70.0% 77.9% 56.4%

South 41.3% 44.9% 41.5% 39.7% 34.8%

Up 1.6% 6.9% 2.8% 4.0% 1.1%

Down 99.9% 100.0% 100.0% 100.0% 99.9%

The bold values indicate the highest reflected percentage for a given direction across the

different sites.

A summary of the overall results of the reflections across all
sites is as follows:

• Open spaces such as the Parking Lot have a relatively low
percentage, while the Lawn has a high percentage because of
reflected radiation, the grass.

• For the other three sites in urban canyons, the shading
structure increases the reflection percentage of MUPV,
while its H/W ratio is lower than that of Forest Avenue
and COOR.

• Forest Avenue has a high average reflection percentage in the
East direction, due to the concrete facade of the buildings on
the east side next to the reflective ground.

• MUPV has the highest reflection percentage in general,
however the mean spherical irradiance is the lowest during
the day among all sites, which is attributed to the PV panels
shading above with only some gaps between panels allowing
direct sunlight.

• The reflection percentage of COOR is high especially in the
East direction, because the concrete facade of the building on
the north side contributes much to the reflection especially
when the sun ray comes in from the South direction. Even
though the average reflection percentage of COOR in each
direction is not always the highest, its peak during the day
is always higher than that of other sites. Since there is
less surface facing East or West, the reflection percentage
is not always high during the day, resulting in the not so
high average.

DISCUSSION AND FUTURE WORK

As compared to the recent work evaluating longwave (Vanos
et al., 2021), we have shown an alternative method to resolve
longwave radiation with a thermopile array system using
moderate cost sensors that are not sensitive to convection
as with analog devices such as black globe thermometers.
Comparing the recent work combining pyrometer data with
sky imaging (Blum et al., 2022), we have shown an alternative
method using a custom shortwave thermopile sensor that
unlike a standard CMOS camera sensor provides an accurate
and full spectrum measurement of the shortwave irradiance.

We have validated both the longwave and shortwave systems
against simulation with results from a precise pyrometer
and pygometer net radiometer setup. Compared to a typical
globe thermometer whose ISO 7726 standard even recognizes
that convective flows around the analog device don’t allow
measurement better than ± 2◦C, the systems we demonstrate
can all produce radiant temperature values independent of
convection with results within 1◦C of each other across the
platforms tested.

The principle set of results produced from the experiments is
a set of data on the W ·m −2 of irradiance in both shortwave and
longwave from two different sensor platforms and a simulation.
In contrast to many studies on radiant heat, we do not focus
on translating this into a proxy of Meat Radiant Temperature.
While we recognize the importance of temperature proxy to
interpret heat, the directional and geometric nature of radiant
heat transfer is actually lost when using a temperature proxy that
leads most to an association with air temperature. The W · m
−2 coming from each direction represent important drivers of
sensation from radiant asymmetry, and the overall W ·m −2 has
a more direct relationship to view factor and surface area, which
are both aspects of radiant heat transfer that can be acted upon by
urban designers for the case of surface sizes, and also something
that urban dwellers can act upon by being either informed or
guided by program to areas where the less direct sources of
radiant heat like reflected shortwave and infrared longwave can
be minimized.

One challenge of presenting radiant results as W · m −2

is that since all surfaces are emitting, the positive values for
surfaces like the sky or cooler plants are counterintuitive. They
are emitting watts, but cooling because their emission is less than
the temperature of the receiving human body. In our analysis we
intentionally left out the temperature of the receiver. In the case
of the human body, the temperature is in the range of 30 ◦C,
and thus it is itself emitting on the order of 500W · m −2. It is
the net negative exchange with cooler surfaces that makes them
cold. But this analysis of net exchange can lead to a focus on the
longwave exchanges and MRT analysis that are typically done for
indoor thermal comfort in buildings. We argue that both indoors
and outdoors an independent accounting of the spatially resolved
shortwave and longwave radiant heat can provide more specific
and actionable information about how the surrounding surfaces
are imparting Watts of heat upon a location. For example, in the
case of the PV canopy, the total spherical longwaveWatts arriving
at a point below the panels has about double the heat being
delivered in the longwave emission from the hot PV panels above
than what would be delivered by the cool and clear sky hidden
behind them, but still only about half of what the unshaded direct
sun in the shortwave would be. However, rather than diminishing
the effect of the longwave heating of the panels, this further begs
the question of whether the geometry of the shading structure
could have had less random and more strategic placement of
holes to both shade from the direct path of the sun path while
exposing more clear sky to cool in the longwave. In future work,
we hope to use these tools of analysis to make more informed
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physical design and urban planning decisions based not just on
average temperature proxies, but informed by a highly resolved
understanding of radiant fluxes.

As we have mentioned, we neglect the temperature of the
person, but that can be simply added in to estimate the net
exchanges. What must also be recognized is the significance of
the form of the person or other radiant receiver. The directional
results are all for planar radiant fluxes, and our total results are
for a spherical source receiving radiation from all directions.
In other work indoors we have modeled the human body
(Aviv et al., 2022), and we are working to better integrate the
geometry of the human body as it is inserted into these complex
radiant fields. With modern computing power it is possible to
use the ray tracing techniques used to simulate reflections to
include net interactions with more complex geometries of the
actual person who may experience heat stress or significant
discomfort due to localized heating of different body parts,
and the higher resolution data provided by the SMaRT-SL is
critical to the use these techniques which better account for the
human form.

While our aim was to study the significance of shortwave
reflections, we have also shown the significance of reflections in
the longwave as well (Aviv et al., 2022). These become even more
complex though because surface emissivity and reflectivity in the
longwave can be even more difficult to evaluate. Still, reflections
in the longwave offer yet another opportunity to engage with
radiant heat.

Lastly, all of this analysis is inherently dependent on an
understanding of the surface and sky properties. This includes
shortwave reflectivities that were estimated, but also longwave
emissivities. There are also some spectral effects that may not
be accurately captured where black or greybody assumptions are
made. We believe in future iterations of the SMaRT-SL we will be
able to use the scanning of surfaces to not only capture radiant
heat fluxes from resolved surfaces, but to also capture surface
types and evaluate the emissivity and reflectivity of surfaces
in situ. This would then feed forward to allow simulations to be
done quickly to determine the radiant flux at any point in space
while accurately accounting for all reflections with measured
material properties.

CONCLUSION

We have demonstrated a new method to improve how
radiant heat transfer is resolved in both the shortwave and
longwave spectral domains. It has long been recognized
that the direct shortwave intense light from the sun causes
significant heat, and that large warm surfaces can cause
significant radiant heat in the longwave. In combination
these present significant potential risk for outdoor heat stress
and add to the thermal burden and energy demand of
urban infrastructure.

The combination of novel tools illustrate how high precision
net radiometry on a mobile platform can quickly evaluate

nuances of short and longwave radiant heat variation around
the hot Tempe, Arizona ASU campus, and in concert with a
scanning thermopile array detector we can further resolve the
precise sources of short and longwave heat across the exact
geometry of the site. The high resolution data has been validated
through directional averaging against the net radiometer and also
for the total spherical irradiance at the measurement location
with good agreement with variation ranging from 10 to 20% for
values >100W ·m −2, and more significant relative difference at
lower values where the internal device temperatures had a more
significant impact on the relatively small measured values.

By resolving the shortwave radiation sources we can also
differentiate the reflected sources from the ground vs the direct
and diffuse sources from the sky. This was also validated using
a simulation to consider how interreflections of shortwave
contribute to the total radiant heat experienced at a location.
We were able to show the sensor could accurately measure the
reflected shortwave and also show that it was above 30% for three
out of five sites when averaging the 4–5 measurements taken
throughout the day.

In closing, we believe there is significant potential to better
evaluate radiant heat fluxes as they affect urban dwellers in a
variety of ways. In the future we hope these improved techniques
can contribute to better characterization and ideally to exposing
opportunities to better respond to the challenges presented in our
ever warming urban climates.
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