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Summary

Cities exacerbate climate hazards, particularly extreme heat and flooding. The interaction be-
tween cities and climate change magnifies risks to human health and well-being, particularly
as high-risk areas often coincide with vulnerable populations lacking adequate resources to
adapt. However, current mapping efforts typically focus on single hazards and contain signifi-
cant gaps in the high-resolution spatial representation of these risks in urban areas worldwide.
This project aims to fill these gaps by using AI-based modeling, combined with novel crowd-
sourced and geospatial datasets, to precisely map multiple climate hazards and vulnerabilities
in cities.
By extending the mapping of compound heat and flood hazards to future climate projections,
this project will provide crucial insights into spatial dynamics and support the development of
equitable adaptation strategies for both present and future scenarios. Additionally, the integra-
tion of high-resolution climate maps with vulnerability datasets across urban areas will allow
us to quantify the disproportionate impacts on vulnerable communities and highlight climate
injustice.

1 Project Outline

1.1 Heat and flooding hazards in cities: now and future

As our cities grow, so does the amount of heat they trap. Changing natural surfaces to built
materials directly alters local climates, creating a highly variable distribution of heat in urban
areas. The location of the hot and cool spots across the city is then determined by urban form
and fabric, such as density and vegetation cover, as well as geographic factors like distance
from the coast and elevation. With almost two-thirds of the world’s population living in towns
and cities, urban heat presents significant health risks and economic burdens, particularly for
vulnerable communities who are disproportionately affected by rising temperatures and lack
the resources to cope (Hsu et al., 2021; Nazarian et al., 2022).

Urban structures, materials, and infrastructures also directly contribute to urban flooding
by exacerbating surface runoff, accelerating river discharge rates, and triggering flash floods.
These hazards come with high costs. The Insurance Council of Australia 2021 reported $12.3
billion in claims during 2020-21 from storms and flooding, with 1 in 25 adult Australians mak-
ing damage claims. The US National Centre for Environmental Education, on the other hand,
reported an average cost of $4.6 billion per flooding event. These figures reflect the economic
impact in developed countries; the costs and impacts of flooding in vulnerable nations are often
underreported or unknown. Beyond health and economic impacts, exposure to flooding is asso-
ciated with increased long-term mortality risks, including those from mold, structural damage,
and personal stress and hardship (Wu et al., 2024).
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Both of these hazards are expected to worsen due to climate change and future urban expan-
sion. Global temperatures have risen significantly, with many regions experiencing increased
frequency and intensity of heatwaves since the mid-20th century (Meehl and Tebaldi, 2004;
Perkins-Kirkpatrick and Lewis, 2020). The higher frequency, intensity, and duration of heat
events, compounded by urban heat islands, will have detrimental effects on cities worldwide
(Ward et al., 2016). For instance, future healthcare costs related to heat are projected to rise
substantially in major cities globally (Tong et al., 2021; Romanello et al., 2021). Similarly,
there is clear evidence of increasing short-duration rainfall extremes worldwide (Fowler et al.,
2021). In urban areas, this will likely heighten the frequency and severity of flooding, leaving
city populations worldwide to contend with multiple, compounding climate hazards now and
in the future.

While this research has given us a deeper understanding risks of these climate hazards to
public health in urban areas, an essential next step is the development of high-resolution spa-
tial maps that can further quantify climate justice. This approach involves recognizing the
simultaneous exposure to multiple hazards, compounded by community vulnerabilities, and
considering projected changes due to climate change and future population dynamics. A holis-
tic approach is crucial for addressing the urgent need to mitigate the disproportionate impacts
of climate change on marginalized and disadvantaged populations globally.

1.2 New methods to map urban climate hazards: AI and novel datasets

Mapping flood and heat risk in cities is inherently complex. First, there is a need for method-
ologies that produce high-resolution and accurate datasets to capture the compounded effects
of both hazards, which is currently lacking in the field. Second, this information must be in-
tegrated with high-resolution urban characteristics influencing exposure to heat and flooding.
While urban datasets are becoming increasingly available and more consistent globally, their
systematic integration into the prediction of compound hazard maps remains limited. Third,
comprehensive assessments are crucial to needed to factor in anticipated climate change im-
pacts, requiring workflows that compare current risk maps with future projections.

To address these complexities and respond to emerging datasets and methods, the project
(Figure 1) will develop an AI-based methodology to map urban climate hazards, focusing on
extreme urban heat and flood risks under both present-day and future climate conditions. By
leveraging emerging high-resolution urban data as well as global quality-controlled and crowd-
sourced climate datasets, machine learning (ML) algorithms will be trained and tested to iden-
tify and map areas of high climate hazard risk. Additionally, the project will determine how
these spatial patterns will shift and change under multiple future climate scenarios. Initial work
will focus on mapping Australian cities as a proof of concept, with the methodology designed
for global application. The use of AI-driven analysis and emerging global datasets will ensure
scalability across various cities worldwide. The following sections detail the methodology,
datasets, and preliminary investigations that ensure the feasibility of this project.

1.2.1 Upscaling temperature observations with convolutional neural networks

High-resolution heat maps are often based on satellite-derived land surface temperatures (LST).
However, satellite images capture surface temperatures of roofs and top of the tree canopies,
which have limited relevance to human heat exposure and heat stress experienced at street
level (Martilli et al., 2020; Naserikia et al., 2023). Air temperature, the most relevant metric
for heat exposure, is typically measured by official weather stations, but these are sparse in
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Figure 1: Climate hazard map creation for present-day and future climates.

cities and provide only point measurements with limited and inconsistent spatial coverage.
To address these gaps, this project will leverage citizen weather observations (Fenner, 2020;
Potgieter et al., 2021), which offer broader coverage and more observations in cities, combined
with datasets of urban characteristics, and will use ML algorithms to upscale the data to high-
resolution heat mappings.

Heat maps will be developed based on the datasets and methodology developed by PI Nazar-
ian (Potgieter et al., 2021; Naserikia et al., 2023; Lipson et al., 2022b; Brousse et al., 2023),
leveraging quality-controlled, crowd-sourced citizen weather observations from various global
cities. For example, this crowdsourced data includes quality-controlled hourly observations for
air temperature, humidity, and wind speed. PI Nice has been collecting crowdsourced observa-
tions at hundreds of locations across all the Australian capital cities since 2019. More impor-
tantly, the project PIs, through a collaboration with Ruhr University Bochum, have access to
their multi-year quality controlled dataset of crowdsourced observations, with coverage of all
global cities. The project PIs also have access to and the expertise to utilize additional datasets
of urban form and geographic characteristics relevant to heat mapping across global urban ar-
eas. These include datasets of urban features and vegetation footprints, heights, and fractions,
the World Settlement Footprint 3D (Esch et al., 2022) at 90m, supplemented by worldwide
building footprints (Microsoft, 2024a) and global road detections (Microsoft, 2024b). As land
cover, especially impervious surfaces, have a large impact on urban heat, we will also use the
GISA-10m, Global Impervious Surfaces at 10m resolution dataset (Sun et al., 2022). Finally,
these will be combined with influential local geographic characteristics of land use types, to-
pography (elevation), and distance from the coast. Integrating these datasets to assess and
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inform urban temperature predictions can only be achieved using AI/ML approaches.
Before conducting the heat mapping, it is important to identify which variables most signif-

icantly influence heat distribution across cities. To achieve this, we employed Random Forest
(Ho, 1995) and Gradient Boosting (Chen and Guestrin, 2016) for feature importance analy-
sis in our pilot investigations (Naserikia et al., 2022). These methods allowed us to extract
and rank the most contributing variables, ensuring that the heat maps are built using the most
relevant data to enhance accuracy in capturing temperature distribution across heterogeneous
urban environments. To further enhance the analysis of spatial patterns and heat mapping, we
propose the use of ML techniques that are capable of capturing spatial dependencies, such as
Convolutional Neural Networks (CNN). CNNs are highly effective in processing grid-based
data, making them well-suited for extracting spatial features from satellite imagery and other
urban geospatial datasets such as land cover and urban morphology. By using CNNs, we can
capture fine-scale spatial variations in urban heat and flood risks, which allows for more high-
resolution identification of heat across urban landscapes. Figure 2 shows an example of the
heat maps developed for Sydney on a summer day, using a CNN model and datasets including
crowdsourced temperature measurements, LST data (Landsat), and urban land cover/structure
variables. This work serves as a proof of concept for the use of AI-driven methods and novel
datasets to capture high-resolution maps of air temperature in cities.

Figure 2: Heat map of air temperatures in Sydney developed using CNN and
datasets of crowdsourced temperature measurements, Landsat imagery, and urban land
cover/structure variables for a summer day.

In the proposed project, the integration, quality control, and accessibility of the urban heat
datasets (including Land Surface Temperature and crowdsourced air temperature) will be con-
ducted by a postdoctoral research associate at UNSW, PI Naserikia with prior experience in
this area (Naserikia et al., 2023) and enabled by this grant funding, under the direction of PIs
Nice and Nazarian.
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1.2.2 Reconciling local and catchment scale flood maps

For flooding risks, ML techniques will be employed to reconcile the differing scales between
existing local and catchment flood hazard mapping (typically at 5-20 metres resolution based
on hydrodynamic modelling) with the coarser resolution extreme rainfall data. The aim here
is to develop a model that estimates flood impacts at the spatial scale of the heat impacts.
The integration of the rainfall data with the existing flood mapping is required to provide a
homogeneous city-wide flood hazard assessment and to translate the high resolution climate
model rainfall simulations into flood hazards.

The rainfall data in the form of Intensity, Frequency, Duration (IFD) data, at a resolution of
2.5 kilometres, which was optimised to provide comprehensive information on extreme rain-
falls at the national level rather than the scale of any particular catchment or city (Johnson et al.,
2016a). PI Johnson’s earlier work on spatial disaggregation of climate model simulations sug-
gests that factors representing loss of variance between spatial scales can be used to inform the
relationships between the IFD data with the flood mapping (Nahar et al., 2017). Other inputs
to the ML modelling will be high-resolution Digital Elevation Models, satellite-derived land
cover which controls hydraulic roughness and Mean High Water Spring tide levels which con-
trol tailwater levels and hence backwater flood hazard. Random Forest models will be investi-
gated based on their previous good performance in flood susceptibility mapping (Gharakhanlou
and Perez, 2023). The flood hazard from the 1% Annual Exceedance Probability event will be
assessed, focusing primarily on flood depth but also flood extents and velocities which together
create the overall flood hazard.

The focus of this phase will be limited to pluvial (i.e. rainfall driven) and fluvial (i.e. river
driven) flood hazards as coastal flood hazard from erosion and storm surge is assessed differ-
ently from hydrological hazards. One of the key research questions to be answered in this
phase is how to resolve temporal scaling questions with the flood mapping. For example the
peak flood in small urban catchments can result from very short duration rainfall events. But
such events can be embedded in larger flood-producing systems e.g. the so-called Pasha Bulker
storm in 2007 led to major flash flooding in Newcastle CBD from thunderstorms that occurred
within a wider extra-tropical cyclone system that led to main river flooding of the Hunter River
over multiple days (Johnson et al., 2016b). This temporal scale duality will be important to
resolve in the mapping because it will need to be considered under future climate scenarios
when extracting and bias correcting the precipitation projections. This work has an extensive
focus on novel methodologies for flood mapping and will be supported by the RA under the
direction of PI Johnson at UNSW.

1.2.3 Urban climate hazards under future climate conditions

To map the shifting and changing temporal and spatial urban heat patterns, future climate
projections from the Coupled Model Intercomparison Project Phase 6 (Eyring et al., 2016)
(CMIP6) archive, developed within the framework of IPCC’s 6th Assessment Report (IPCC,
2021), will be used. This method has been previously used in other future climate scenario
work by PI Nice (Nice et al., 2024) and PI Nazarian (upcoming work). A future climate change
signal from a number of Shared Socioeconomic Pathways (SSPs) will be superimposed onto
present-day time series and generate future heat hazard mapping via a ‘morphing’ process,
shifting (in mean) and stretching (in minimum and maximum) the observed time series, chang-
ing both the mean and the variance (Belcher et al., 2005; Pulkkinen and Louis, 2021). Present
day urban heat mappings generated in the previous stage of the project will be morphed into
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projected spatial maps for 2050 and 2080.
It is important to note that for future mapping, the nature of the data changes, as temporal

aspects become as important as spatial aspects. Unlike the present-day data used in the first
phase, the future climate projections from CMIP6 are derived from simulations that capture
both spatial and temporal variability across different climate scenarios. These datasets provide
high-resolution insights into future climate conditions, but they also introduce uncertainties
related to long-term projections. The spatial maps we expect to generate for 2050 and 2080
will be influenced not only by the urban landscape but also by the temporal trends of climate
variability and extremes. Building on what we have learned from the AI trained on the current
heat mapping, we will refine our approach to integrate these projections and better anticipate
future heat hazard patterns.

To accurately capture these temporal and spatial variations, we propose the use of state-
of-the-art ML techniques such as Convolutional Long Short-Term Memory (ConvLSTM) and
CNN-Transformer hybrid networks. These models are able to capture both spatial correlations
and temporal dependencies. By leveraging large datasets, they can learn patterns and relation-
ships that are often too complex to be captured by traditional methods, particularly in urban
environments. Using these data-driven frameworks, we can effectively model the dynamic in-
teractions between excess heat and flooding across Australian cities. PIs Johnson and Nazarian
have experience in using Partial CNN models coupled with LSTMs to gap fill remotely sensed
data using spatialy and temporally coincident information. This was implemented using U-net-
like architecture. Learnings from training such models on multi-spectral data can be translated
here to the multi-hazard context of temperature and floods.

Future flood hazard maps will be generated by bias correcting downscaled rainfall simula-
tions from Coordinated Regional Downscaling Experiment (CORDEX) simulations to estimate
future IFDs. Earlier work by PI Johnson’s team identified the best methods to bias correct dy-
namically downscaled rainfall projections when estimating IFDs (Li et al., 2017b,a). The future
IFDs will be combined with sea level rise projections from CMIP6 and then using ML methods
from Phase 1 to map the changes in IFDs into future flood hazards. ML methods are vital for
this mapping due to non linearity in the catchment response to flooding. ML methods have
been used to emulate high-resolution flood hazard assessments based on low-resolution mod-
els under historical climate conditions, but have not yet been used to estimate future flood risk
where changes in both rainfall extremes and tailwater conditions will combine to add additional
complexity to the problem (Fraehr et al., 2023).

2 Deliverables

Research outputs will target scholarly and public audiences.
Public outputs: A dedicated project website will collect and host the data and articles

and reports to make all of these project outputs publicly and freely available. Publication of
scientific summaries and opinion pieces in venues such as the Conversation will help provide
access to the project insights to a lay audience.

Code generated in the project will be made available through a publicly available reposi-
tory (such as Github) but permanently archived in a digital object identifier (DOI) referenced
Zenodo repository.

Datasets will be consist of GIS layers or NetCDF spatial and temporal maps for present day
climate hazards and for future SSP scenarios in 2050 and 2080.
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Scholarly outputs: As a multi-disciplinary project, the outputs will be published in a range
of top ranked peer-reviewed journals across urban climates, and modelling (e.g. Science of
the Total Environment, Urban Climate, Geoscientific Model Development), hydrology (e.g.
Journal of Hydrology), and data publishing (e.g. Earth Systems Science Data, Scientific Data).
Topics covered will include methodologies for urban heat mapping (present-day and future
predictions) and methodologies for mapping flooding risks. Finally, datasets generated by this
project will be published as open datasets.

3 Timeline

The timeline (Figure 3) provided by the project funders indicates that notifications of the results
will be delivered in December 2024, with project funding beginning in February 2025 and
ending in February 2026. We will begin recruitment of the research associate immediately
on the award notification. A preferred candidate has already been identified, as of the grant
writing, so the commencement of the project can take place on time in February 2025.

Figure 3: Project timeline.

The project has four major components to deliver. They are present-day heat mappings,
present-day flood mappings, projections of future climate shifts in heat and rainfall, and future
heat and flood mappings. PI Naserikia will produce the present-day heat mappings in the first
four months. Concurrently, PI Nice and Nazarian will produce the future climate shifts in heat
while PI Johnson will generate the same for rainfall. The second four months, the present day
flood hazard mappings will be produced. In month eight, the future trends will be applied to the
present-day heat and flood mappings to generate future maps. Finally, in the last two months,
the data description journal article will be written and submitted and final datasets and code be
deposited into the Zenodo repository.

4 Team

The investigator team assembled for this project is exceptionally qualified to execute the pro-
posed research requiring interdisciplinary datasets and methodologies. Our collective expertise
spans climate science, flood hazards, and most crucially the use of novel data sources and
machine learning.

This project will be supported by five team members, with PI Naserikia as the postdoctoral
research associate (1 year 1.0 FTE) focusing on generating heat datasets and flood hazard map-
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ping under the supervision of the other three PIs. A fifth member, a level 6.2 research assistant
(250 hours over 10 weeks) will be responsible for data preparation of data to be upscaled.

Heat mapping will be led by PIs Nazarian and Nice, established urban climate scientists
with extensive experience in urban heat assessments and urban climate informatics, including
machine learning, data analysis, and innovative data sources like quality-controlled weather
stations with active collaborations and co-publications, including contributions to the Western
Sydney Region of Councils Cool Suburbs rating and assessment tool for building heat resilience
in urban development.

PI Nazarian, one of the four experts who established the field of urban climate informatics
(UCI), has notable ML contributions in a review of ML in UCI (Middel et al., 2022) and land
cover analysis (Naserikia et al., 2022). PI Nice has published research utilising ML in air
pollution prediction (Wijnands et al., 2022), sky detection in urban imagery (Nice et al., 2020b),
and neural network clustering of urban design typologies (Nice et al., 2020a). PIs Nazarian and
Nice will supervise the research associate, focused on urban heat data integration and quality
control. PI Naserikia has done a proof-of-concept for present-day heat mapping over one city
which will directly contribute to the success of the project.

PI Johnson, internationally recognised for her leading research in rainfall extremes, flood
hazards, and humanitarian engineering, is best known for designing methods to remove biases,
enabling impact-relevant climate change assessments directly relevant to this project and a CI
in the ARC Training Centre for Data Analytics for Resources and Environments as the water
domain lead working with industry partners on integrating data science methods into their
operations. She will lead the reconciliation of scales in existing flood hazard mapping and
develop new methodologies to project these mappings into the future and will supervise the
research associate at UNSW to assist with this research.

A 1.0 FTE 1-year post-doctoral researcher (PI Naserikia) at UNSW will perform the assess-
ment of the present and future climate hazards mapping for this project under the direction of
the project PIs. PI Naserikia has experience developing global dataset of land surface tem-
perature using high resolution satellite imagery. She also has experience applying various AI
models for spatial analysis in urban areas including mapping heat for multiple projects with
different scales, work she published (as lead author) in two high impact journals (Naserikia
et al., 2022, 2023).

5 Pathway to Impact

Climate hazards threaten people and livelihoods. Cities, where most people live, are especially
vulnerable and exacerbate two hazards: urban heat and flooding. Heat is a silent killer, harm-
ing more Australians than any other natural disaster (Nazarian et al., 2022), while flooding
accounts for the majority of disaster claims and costs the Australian economy $5 billion an-
nually (Department of Veteran’s Affairs, 2022). Both hazards are closely linked to how urban
areas are developed and grow (Nazarian et al., 2022; Feng et al., 2021), and they dispropor-
tionately impact the most vulnerable communities in Australian cities (Australian Government
Bureau of Meteorology, 2022). Despite the severity of these impacts, there remains a signif-
icant gap accurately mapping urban climate hazards, especially the combined heat and flood
risks (multi-hazard assessment) across urban areas.

Accurately mapping heat and flooding hazards remains a challenge, primarily due to the
limitations of existing datasets and inadequate spatial coverage for informing high-resolution
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mappings. In the case of heat, spatial maps often come from satellite-sensed land surface tem-
peratures (LST) which are of limited relevance to heat exposure of people (Martilli et al., 2020;
Naserikia et al., 2023). Similarly, fine-grained data representing flood hazards are consistently
lacking across cities, as flood mapping is typically prepared on a catchment scale. This leads to
variability in resolution and coverage due to misalignment with local government boundaries.
In addition estimating high-resolution flood hazards for large river systems, for example, the
Hawkesbury-Nepean River in New South Wales in Australia, poses substantial computational
challenges.

This project aims to leverage innovative urban climate informatics methods, including ground-
level citizen weather observations (Fenner, 2020; Potgieter et al., 2021) upscaled by machine
learning (ML) algorithms to overcome the identified gaps in high-resolution heat mappings and
reconciling previously incompatible flood mappings, to capture and develop spatial data on ur-
ban climate justice. Through advanced deep learning models such as CNNs and ConvLSTM,
we aim to enhance prediction accuracy, optimize the model’s ability to generalize across dif-
ferent regions and climate scenarios, and ultimately improve urban hazard identification and
response strategies.

Increasingly governments are looking to alleviate climate change impacts by using better
predictive models that allow first responders to prioritise efforts during disasters and planners
and urban managers to identify areas that are at higher risk, and to take steps to mitigate that risk
to reduce the impact of natural hazards. For example, improving flood mapping can increase
awareness among residents that their neighbourhoods are flood prone. Water sensitive urban
design interventions such as swales, detention basins and permeable paving seek to reduce
stormwater runoff. In rarer cases managed retreat by moving at-risk populations away from
highly flood prone areas, such as the town of Grantham in the Lockyer Valley, Queensland have
also occurred. So too has buy-back of houses in highly flood-prone areas such as Lismore,
NSW. But governments still struggle to identify the co-location of populations experiencing
socio-economic marginality and disadvantage and climate change related extreme events. A
particularly vexing question is how to predict future risk based on future populations, a task
taken up by this project.

6 Dataset Plan

Climate science has a long history of making datasets publicly available. This project will not
be an exception to this common practice. In fact, this project would not be possible without
the datasets made public by other researchers. We intend to make the data available following
the model of Lipson et al. (2022a). A data description paper will be published describing and
publicising the dataset. The paper will reference the Zenodo repository containing the data.
The data will be released under a Creative Commons Attribution licence (CC-BY-4.0). Both the
publication and the Zenodo repository will document the structure of the datasets and provide
sufficient metadata to enable other researchers to fully utilise the datasets. Additionally, the
code used to generate and process the datasets will also be deposited in the Zenodo archive to
allow reuse as well as independent replication of the data generation.

This plan addresses the FAIR Data Principles in the following ways. The data will findable,
as the publication and Zenodo data set will be assigned a DOI number. The metadata and
structural descriptions of the datasets in the publication and in the repository will fully describe
the datasets. The dataset will be globally accessible through the DOI number and dataset will
be stored permanently on Zenodo.
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The data will be shared in commonly used formats, NetCDF and GIS raster and vector
files to make them broadly usable and utilise extensive internal metadata to make the datasets
self-descriptive, in addition to the documentation provided in the publications and repository
metadata.

Finally, an overriding principle of this project will be to ensure the datasets are widely
used. The datasets will be created and documented in the manner commonly used in shared
climate science datasets, but will also enable non-scientists (government agencies, consultants,
NGOs) to utilse the information they contain. Finally, the Creative Commons license will allow
unrestricted use of the data generated by this project.

7 Equity Considerations

This project advances equity-related considerations in a number of ways.

1. The first is the composition of the research team. The four PIs are all early to mid-career
researchers. Three of the four PIs are female. And the project is being led by PI Nazarian,
a person of color. PI Nazarian has also been active over her career in mentoring early-
career female academics, with notable success (two securing USyd Horizon Fellowship
and one Assistant Professor at the Pratt Institute), as well as acting as UNSW Gender
Equity Champion with substantial input on policies at her university. PI Naserikia (the
preferred candidate for the research associate position) is also female and an early career
academic.

2. The second consideration is the nature of the research itself. The four PIs have been en-
gaged in research around climate justice and how climate hazards have a disproportional
impact on the most disadvantaged members of society. The climate hazard mappings pro-
duced by this project are a critical step in identifying these inequitable risks and enabling
mitigation and responses to reduce the injustices carried by these groups.

8 Ethical Considerations

Ethical considerations for the project include:

1. Considerations about the environmental sustainability of the research. For the proposed
project, this includes project travel and scope 3 emissions from data centres and out-
sourced computational cost of the project to the Australian National Computing Infras-
tructure (NCI). Both UNSW and the University of Melbourne have reached net zero
emissions for their scope 1 and scope 2 emissions. NCI uses 100% renewable energy so
has zero carbon emissions. Data centres are major water users and Gadi at NCI is water
and evaporatively cooled which reduces its energy need but increases the water footprint
of the infrastructure. Given the project team has already existing ongoing strong collab-
orative links, no face to face travel specific to the project has been budgeted and project
team meetings will be facilitated through the use of virtual project team meetings using
Zoom or similar.

2. Mapping flood hazards has ethical implications for communities through its impacts on
insurance coverage and property prices. Communities have the right to be informed of
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the true flood hazard that they are exposed to. However the implications of this knowl-
edge are potential increases in insurance premiums and in some cases inability to obtain
insurance coverage at all. In addition, if properties are known to be flood affected then
their resale value is reduced. The flood mapping to be undertaken as part of this project
is not new but is instead bringing together existing information on flood hazard and its
coincidence with heat hazards. Therefore it is considered that the additional ethical im-
plications are minor over existing government funded flood mapping.

3. Finally as discussed above in terms of the equity implications of the project, the ratio-
nale for this work are issues of injustice facing already vulnerable communities due to
their uneven exposure to climate hazards and the intersectionality of this exposure with
other forms of inequality or disadvantage including for example poverty and migrant
populations. Therefore there is a strong ethical impetus to complete this project to better
understand the extent of the current and future climate injustice facing the case study pop-
ulations. And more broadly to develop tractable methodologies to identify such injustice
globally.
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